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A B S T R A C T

Predicting electricity demand data is considered an essential task in decisions taking, and establishing new
infrastructure in the power generation network. To deliver a high-quality electricity demand prediction, this
paper proposes a hybrid combination technique, based on a deep learning model of Convolutional Neural
Networks and Echo State Networks, named as CESN. Daily electricity demand data from four sites (Roderick,
Rocklea, Hemmant and Carpendale), located in Southeast Queensland, Australia, have been used to develop the
proposed hybrid prediction model. The study also analyzes five other machine learning-based models (support
vector regression, multilayer perceptron, extreme gradient boosting, deep neural network, and Light Gradient
Boosting) to compare and evaluate the outcomes of the proposed deep learning approach. The results obtained
in the experimental study showed that the proposed hybrid deep learning model is able to obtain the highest
performance compared to other existing models developed for daily electricity demand data forecasting. Based
on the statistical approaches utilized in this study, the proposed hybrid approach presents the highest prediction
accuracy among the compared models. The obtained results showed that the proposed hybrid deep learning
algorithm is an excellent and accurate electricity demand forecasting method, which outperformed the state
of the art algorithms that are currently used in this problem.
1. Introduction

Supporting the growth of energy security policies and plans is
considered an essential task that can be achieved by relatively reducing
the predicted errors of the electricity demand (𝐺) data [1]. In fact,
errors in the estimation of 𝐺 data may lead to affect energy policies and
systems [2,3]. For example, a report published in 2017 by Finkel [4]
identified erroneous demand forecasts as one of the primary causes of
several Australian electrical grid issues.

Electricity demand forecasting errors may have different conse-
quences depending on the prediction time-horizon where the problem
is defined: In long-term scales, demand overestimation may result in
wasteful and ineffective over-investment in assets, raising costs that
are then passed on to customers, raising this way the cost of energy.
On the other hand, underestimating the electricity demand can result
in insufficient investment, which might lead to problems with energy
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security and reliability. In short-term scales, prediction errors are asso-
ciated with issues in the electricity supply and transportation, as well
as punctual shortages due to underestimation of the demand. Note that
the use of renewable energy has made this problem even harder, due
to the intrinsic variability of renewable sources [5,6].

To address this imbalance in power supply and demand under such
conditions, it is vital to properly predict 𝐺. To this end, a particularly
accurate predictive model is required. In recent years, several predic-
tion models have been utilized to address this complex forecasting
problem of electricity demand time series in different countries such
as China [7], Brazil [8], Iran [9] or countries of the West Africa [10],
among others. The most commonly used approaches may be further
classified into statistical models and Artificial Intelligence/Machine
Learning (AI/ML) based models. For example, a variety of statistical
models, such as regression with seasonality, Exponential Smoothing,
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Auto-Regressive Moving Average (ARMA), Auto-Regressive Integrated
Moving Average (ARIMA), and Nonlinear AutoRegressive Moving Av-
erage model with exogenous inputs (NARMAX) [11–14], have been
previously used to predict 𝐺. These statistical methods have demon-
strated good empirical performances. The key benefit of statistical
models over ML-based models is that these statistical models did not
require intensive computing as required by ML-based techniques. How-
ever, the non-linear and non-normal distribution of 𝐺 time series
makes it challenging for statistical models to produce accurate pre-
dictions [15]. Therefore, in order to increase prediction accuracy,
researchers have used a number of ML-based models that are very
excellent at capturing the non-linear characteristics of 𝐺 time series,
despite the fact that they are computationally costly. In previous works,
different ML models have been used to predict 𝐺 time series. For
example, multivariate adaptive regression spline (MARS), classical sup-
port vector regression (SVR), hybrid particle swarm optimized (PSO)
merged with SVR, M5 trees model, artificial neural network (ANN),
online sequential extreme learning machine (OS-ELM) or multiple lin-
ear regression [16]. A recent study has applied ML approaches to
predict 𝐺 time series in three-time steps of half-hourly, hourly and
daily, showing that MARS is an excellent approach in half-hourly and
hourly prediction time steps whereas for daily, the SVR model exceeded
the comparison models [2]. Subsequently, 𝐺 prediction accuracy was
improved by integrating the improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) method, used to
decompose the 𝐺 time series before developing the prediction model. In
this case, the PSO procedure was utilized to determine the parameters
of the SVR model creating hybrid ICEEMDAN-PSO-SVR model [17].
In [18] a recent approach is proposed which also involves the de-
composition of 𝐺 times series into different sub-components, and the
prediction of future 𝐺 values using an Extreme Learning Machine. In
addition, note that climate variables have shown to have a significant
effect on predicting 𝐺 data. Thus, a wide range of climate and Reanal-
ysis datasets [19] have been employed within ML methods to find the
relationships between predictive and 𝐺 data. Finally, in [20] a new
methodology for 𝐺 prediction was introduced, by using maximal over-
lap discrete wavelet transform as a significant technique used before
the OS-ELM model to decompose the inputs 𝐺 data into a number of
filters for more accurate 𝐺 prediction.

Despite the benefits that ML models have shown in different pre-
diction problems, including electricity demand as shown above, deep
learning (DL) strategies are rapidly developed and have demonstrated
a higher prediction performance compared to ML models in many
cases [21]. The first and most important benefit of DL is their ability to
create new features to address complex prediction tasks without human
involvement in the training phase, unlike the ML methods, which
require human participation [22]. Second, DL approaches consider mul-
tiple layers that make the model more effective in the training part and
work better with unstructured datasets [23–25]. Finally, DL algorithms
have a significant ability to deal with enormous datasets as they can
execute a large number of computations in valuable time and cost [26,
27]. In terms of 𝐺 prediction, Deep Belief Networks (DBN) comprised
of layers of Boltzmann machines, have been previously applied, and
the results obtained showed that the DBN outperformed the traditional
ANN model [28]. Long Short-term Memory Network (LSTM) [29]
was also proposed for short-term electricity demand prediction and
Deep neural networks [30] was used for demand management and
load prediction, resulting in superior performance compared to ANNs.
Furthermore, in [31] a Deep Recurrent Neural Network (DRNN) based
on pooling was proposed to predict a short-term electricity demand
problem. In this case, traditional RNNs were outperformed by the
DRNN model. Additionally, numerous studies have demonstrated that
hybrid models, which are created by integrating a few different pre-
diction models and data processing methods, may effectively increase
the predictive accuracy of ML and DL methods. For instance, [32]
2

proposed an ensemble model for predicting electrical load based on
enhanced kernel-ELM, extended Kalman filter, and empirical mode de-
composition (EMD). A Bayesian neural network and wavelet transform
ensemble electrical load prediction model was developed in [33], and
empirical results support the model’s strong predicting performance. In
order to estimate electricity load, [34] introduced an SVR model inte-
grated with EMD and autoregressive methods. That study demonstrated
that the provided model can concurrently perform prediction with
excellent accuracy. In order to predict 𝐺, [35] developed an ensemble
technique based on EMD and DBN. The simulation results showed that
the proposed model outperforms traditional ML models. Furthermore,
in order to accurately estimate household energy consumption, [36]
proposed a CNN-LSTM neural network that can extract spatial and
temporal data. Compared to other traditional DL and ML models, the
proposed CNN-LSTM method yielded the lowest root mean square
error.

This study presents a hybrid model which integrates a convolutional
neural network (CNN) and Echo State Network (ESN), for the accu-
rate prediction of 𝐺 time series, which we called CESN. This specific
combination of techniques is used to create a novel CESN hybrid
model, an advanced tool that shows excellent results in the prediction
of electricity demand time series. The ESN which forms part of the
proposed CESN approach is a type of Recurrent Neural Network (RNN),
related to the idea of reservoir computing, where the traditional hidden
layer is replaced by a dynamical reservoir [37]. Unlike traditional
Neural Networks, the ESN is computationally efficient, since there is
no back-propagation phase on the reservoir and it does not have the
vanishing-gradient problem [38]. Furthermore, ESN can handle chaotic
time series like 𝐺 [39] and are not affected by bifurcations [40,41]. The
CNN has also been a good approach for predicting chaotic and real-
world time series [42], so its hybridization with the ESN tries to further
exploit these properties of both networks. In this study, we have also
employed an improved optimization approach based on the Bayesian
optimization technique for optimizing the CNN hyperparameters as
well as ESN reservoir parameters, to obtain high accuracy and better
prediction capabilities of the final hybrid approach.

The rest of the paper has been structured in the following way:
the next section is dedicated to the method’s theoretical synopsis.
Section 3 demonstrates the method, datasets, model development and
model evaluation used in this paper. Section 4 presents the results
obtained and a discussion with comparative analysis against other
ML algorithms. Finally, Section 5 illustrates the paper’s conclusion
and possible future research directions. Appendix A shows a table of
acronyms to ease the reading of the paper, Appendix B provides more
implementation details about the CESN architecture and Appendix C
shows further experimentation carried out to show the performance the
proposed model.

2. Review of ML and DL techniques theoretical framework

2.1. Fundamental concepts of CNNs

CNNs are efficient tools for time series prediction. In CNN, con-
volution layers are the primary distinction between CNN and Neural
Network [43]. These convolution layers have the ability to automat-
ically extract characteristics from input data, collecting those that are
crucial for mapping the connection between input and output variables.
The CNN model can be run with multi-layer architectures, involving
the pooling layer, convolutional layer, flattening layer, fully connected
or dense layer and output layer. In particular, the convolution layer in
the CNN structure learns the input data features through convolution
operations, the pooling layer compiles the features obtained by the
convolution operations and implements dimensionality reduction and
secondary feature extraction operations, the flattening layer is used
to transform the multi-dimensional feature maps received from the
previous pooling layer into a one-dimension array to meet the data

processing requirements of the next fully connected layer, and the
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Fig. 1. A typical 1D CNN architecture.
Table 1
Descriptive statistics of daily electricity demand 𝐺 at four substations of Southeast
Queensland where the proposed deep learning hybrid CESN model is implemented.

Statistical parameters Roderick Rocklea Hemmant Carpendale

Median (MW) 531.83 380.08 273.74 29.98
Mean (MW) 534.84 380.13 278.27 30.28
Standard deviation (MW) 98.74 97.64 80.13 5.44
Variance 9748.67 9533.75 6420.99 29.58
Maximum (MW) 1003.88 869.09 703.87 60.75
Minimum (MW) 65.23 38.04 40.11 5.74
Range 938.65 831.05 663.76 55.01
Interquartile range 118.05 164.44 131.34 6.89
Skewness 0.30 0.12 0.06 0.56
Kurtosis 3.50 2.73 2.30 4.14

regression prediction is ultimately accomplished by the fully connected
or dense layer, which collects the input data characteristics gained
through the pooling and flattening operation [44]. CNN is widely
used in image recognition in which 2D convolutional filters are used.
However in time series prediction tasks CNN with 1D convolutional
filters are used [45], a CNN model with three 1D convolutional layers
and one fully connected layer is presented in Fig. 1.

This study has employed the activation function as ‘‘ReLU’’ to im-
prove the computing efficiency of nonlinear data ([46,47]). The below
equation describes the calculation process of the convolution layer.

𝑓 = 𝜑 (𝜔𝑛 ⊕ 𝑥 + 𝑏𝑛) (1)

where 𝜔, 𝑛, 𝑥 and 𝑏, represent the weighting factors in the kernels, the
number of kernels, the vector of the input series and the vector of the
bias, respectively. The symbol ⊕ denotes the convolution operation and
𝜑 represents the rectified linear unit (ReLU) activation function, which
with default values, returns the following element-wise;

𝜎 (𝑦) = max (0, 𝑦) (2)

where 𝜎 is a function of 𝑦 over the set of zero and the input 𝑦.
This function is linear for values greater than zero, however, it is a
nonlinear function as negative values are always output as zero. The
retrieved feature may have a sizeable number of dimensions after the
convolution procedure, therefore to efficiently minimize the number of
feature dimensions, a pooling layer is added after the convolution layer.
As the performance of the maximum pooling operation in time series
prediction tasks is typically superior to that of the average pooling
operation, it is used in this paper instead of the average pooling layer.
Eq. (3) also describes how to calculate the maximum polling operation.

𝑌𝑃 = 𝑃𝑜𝑜𝑙max
(

𝑌𝑐
)

(3)

where 𝑌𝑃 represents the output of the pooling layer, and 𝑃𝑜𝑜𝑙max
represents the maximum pooling function.
3

2.2. Fundamental concepts of ESN

ESN is a specific type of RNN that replaces RNN hidden layer with
a reservoir. The ESN model, in contrast to RNN models, uses a fixed
recurrent neural network as a reservoir and simply modifies the output
weight matrix using a linear learning method, allowing for increment
in computational efficiency [37]. Fig. 2 depicts the basic ESN structure,
which comprises of a reservoir, an input layer, and an output layer.
The numbers of input neurons, reservoir neurons, and output neurons
are denoted by 𝐾, 𝑁 , and 𝐿, respectively. Let 𝑢 = 𝑢(𝑛) denote the
external input, 𝑥 = 𝑥(𝑛) the reservoir state, and 𝑦 = 𝑦(𝑛) the output
vector. 𝑊𝑖𝑛, 𝑊 , 𝑊𝑏𝑎𝑐𝑘, and 𝑊𝑜𝑢𝑡 denote the weight of the matrices of
the input, reservoir, feedback, and output, respectively, and the size
of the matrices is successively given by 𝑁 × 𝐾, 𝑁 × 𝑁 , 𝑁 × 𝐿, and
𝐿×(𝐾+𝑁). The ESN model is trained by a supervised learning process,
which involves two main steps, the reservoir states wast first updated,
and then the reservoir-to-output layer’s weight matrix 𝑊𝑜𝑢𝑡 was learned.
The dynamics of the ESN system can be defined as follows [48]:

𝑥 (𝑡 + 1) = 𝑓
(

𝑊𝑖𝑛𝑢 (𝑡 + 1) +𝑊 𝑥 (𝑡) +𝑊𝑏𝑎𝑐𝑘𝑦 (𝑡)
)

(4)

𝐲 (𝑡 + 1) = 𝑓 𝑜𝑢𝑡 (𝑊𝑜𝑢𝑡𝑥 (𝑡 + 1)
)

(5)

where 𝑓 denotes a sigmoid function inside the reservoir state and 𝑓 𝑜𝑢𝑡

denotes the output activation function.
During the ESN model training phase, the matrices 𝑊𝑖𝑛 and 𝑊 are

initialized randomly. The inputs are projected into the high-
dimensional state spaces in the reservoir, and the matrix can be learned
by linear regression [49,50]. Studies have concluded that the reservoir
performs the same role as the kernel in kernel-based learning algo-
rithm [51,52] and is able to take into account the temporal information
available in the inputs [53]. Thus, training an ESN is both simple and
fast, and the ESN can avoid the vanishing gradient problem associated
with NN and RNN, and reduce the computational complexity for mod-
eling time series data. Additionally, [54] have identified the number of
neurons in the reservoir (𝑁), the connectivity rate (𝛼 ≈ [0.01 − 0.05])
and the spectral radius (𝜌 ≈ [0.1−0.99]) are crucial parameters of ESN.
The spectral radius 𝛼 of an ESN is the maximum of all eigenvalues of the
reservoir weights and the connectivity rate 𝛼 represents the connection
situation among the neurons in the reservoir. These hyperparameters
have a significant impact on how well ESN performs. In spite of certain
suggestions made by earlier research [55,56], it might be challenging
to choose the right parameter values for a given application. In this
study, we use the Bayesian approach [57] to find parameter values
appropriate for the particular application in order to achieve good
prediction performance.
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Fig. 2. Schematic view of Echo State Network (ESN).
Fig. 3. Schematic view of 1D-Convolution Neural Network (CNN) integrated with Echo State Network (ESN) to develop the hybrid Deep Learning model CESN.
2.3. Proposed CNN-echo state network (CESN)

The architecture of the proposed deep hybrid model is shown in
Fig. 3. The ESN model was integrated with CNN to form a hybrid model
called CESN for the prediction of daily electricity demand 𝐺. In our
proposed 𝐺 prediction framework, the CNN model is used for extracting
data features from the lagged series of the 𝐺. The CNN portion of the
model extracts both features of the common and local trend that need
various periods of time from the 𝐺 time series. The extracted data
features from the CNN layers are flattened out before passing it through
the ESN model, which worked as the predictive regression operator
for 𝐺 data. One of the advantages of this deep hybrid CESN model
is its capacity to extract complex spatial and temporal information
from a lagged 𝐺 time series and retain these elements for prediction.
As aforementioned, the ReLU was used as an activation function for
CNN, Adam was used as the back propagation algorithm, and the
FCL was replaced by the ESN model in this proposed CESN model. A
detailed summary of the CESN architecture, including all its parameters
is shown in Appendix B.
4

2.4. Benchmark models

Several ML benchmark models have been considered for compar-
ison with the proposed CESN approach. We describe here the most
important characteristics of these ML approaches.

2.4.1. Deep Neural Network (DNN)
The Deep Neural Network (DNN), also known as the multi-layer

feed-forward ANN, is an advanced form of the ANN. DNN model
comprises of the input layer, hidden layers and the output layer [58].
The input layer is used to receive signals from peripherals or systems,
and the output layer makes decisions about inputs. Hidden layers exist
between the input and output layers, which are the actual computa-
tional engines of the DNN model [59]. DNN techniques are well suited
for big data analysis and have useful applications in time series fore-
casting, pattern and speech recognition, computer vision, and natural
language processing. Furthermore, DNN methods are mostly used in the
literature for nonlinear prediction tasks [60–63].
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Fig. 4. Map of Southeast Queensland showing the exploded section of the study sites where daily electricity Demand (𝐺) prediction is done.
Fig. 5(a). Monthly distribution of 𝐺 in the Study substations based on months of years.
2.4.2. Support Vector Regression (SVR)
SVR, which can be applied to both classification and regression

tasks, is one of the widely statistical machine learning algorithms
and used the structural risk minimization (SRM) principle [64,65].
SVR employs the kernel function to map lower-dimensional data into
higher-dimensional data, this kernel function can be of a different form
(Gaussian, Polynomial, and linear). The SVR model in this study utilizes
the Gaussian kernel function, also known as Radial Basis Function
(RBF) [66]. RBF is a popular choice for regression tasks, primarily due
5

to its capability of handling intricate error boundaries and its simple
tuning process.

2.4.3. Xtreme Gradient Boosting regressor (XGB)
Xtreme Gradient Boosting (XGB) belongs to the family of decision

tree-based boosting algorithms [67]. The XGB model’s less computa-
tional cost and precision have prompted us to compare its performance
to the CESN for 𝐺 prediction. The trees or weak learners are added
in sequential order, and only the residuals are fed to the next weaker
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Fig. 5(b). Box plot showing the distribution of 𝐺 in the study substations based on days of the week.
Fig. 6(a). Partial autocorrelation plot of daily (𝐺) time-series data for four substations. Red bars that extend across the horizontal blue lines are statistically significant. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
learner thereby reducing errors [68]. Contrary to RNN and NN with
back propagation, the XGB model is not prone to the vanishing gradient
problem as it employs the Newton boosting based on the Newton–
Raphson technique which accelerates the approach to global minima
thereby eliminating the vanishing gradient problem.

2.4.4. Light Gradient Boosting decision tree model (LGBM)
Microsoft released the Light Gradient Boosting decision tree (LGBM)

model as an open source model in 2017 [69]. LGBM is a boosting
ensemble model that transforms coupled weak learners into a potential
model [43]. LGBM improves upon Gradient Boosted Decision Trees
(GBDT) models in terms of faster execution time and reduced memory
consumption while maintaining high accuracy [70]. As the amount of
6

data grows, the accuracy of traditional GBDT-based models decreases
and the prediction speed drops significantly [71]. LGBM models use
histogram-based algorithms to reduce the impact of high-dimensional
data, speed up computation time, and prevent overfitting of predictive
systems [72]. Recent studies have used the LGBM as a prediction model
for wind speed [73–75] prediction, solar radiation prediction [76] and
also in electricity load prediction problems [77].

2.4.5. Multi-Layer Perceptron model (MLP)
Artificial Neural Network architectures encompass many kinds of

algorithms with exceptional designs to fits well-described applica-
tions [47]. The distinction among those algorithms is typically asso-
ciated with the information processing strategies adopted. The MLP
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Fig. 6(b). Lag period optimization for daily electricity prediction based on RMSE (MW), RRMSE (%) and correlation coefficient 𝑟 for all substations.
model is mostly used in prediction tasks [78]. This data-driven method
analyzes the embedded feature patterns to produce a meaningful de-
scription of the next time, steps [79,80]. The MLP structure includes 3
layers of perception, namely, the input layer, the hidden layer, and the
output layer. Each layer has several processing units called neurons,
and each neuron is fully interconnected with weighted connections
to the unit in the next layer [81]. The learning process comes from
the error of back-propagation using the gradient descent research
approach. The benefits of the MLP model in prediction tasks are:
quicker implementation, fast training, robustness to outliers and/or
missing data; moreover, when an MLP is designed with an appropriate
number of neurons, it is a universal approximator [82]. The general
expression of the network can be given as follows [83]:

𝑦 = 𝑓2

( 𝑁
∑

𝑗=1

(

𝑤𝑗𝑓1

( 𝑛
∑

𝑖=1
ℎ𝑖𝑗 + 𝑏𝑗

)

+ 𝑏0

))

(6)

where 𝑦 is the predicted output, ℎ𝑖𝑗 , 𝑏𝑗 , and 𝑓1 are respectively, the
weight matrix, the bias vector, and the hidden layer activation function,
and 𝑤𝑗 , 𝑏𝑜, and 𝑓2 are the weight vector, the bias scalar, and the output
layer activation function respectively.

3. Material and methods

In this section, the electricity demand (𝐺) dataset and the key
processes used in the development of the deep hybrid CESN model are
briefly introduced.

3.1. Electricity demand data

Electricity demand data (𝐺) for this study was requested from En-
ergex, the federal government-owned electricity distribution company
based in South East Queensland (SEQ). The Energex network extends
across an area of over 25,000 square kilometers. More than 53,000
km of overhead and subterranean power lines, 288 substations, and
around 50,000 distribution transformers all contribute to the delivery
of electricity. The company’s system operation records half-hourly 𝐺 in
Megawatts (MW ), and therefore this research has utilized the data in
MW to create predictive models for electricity demand. Note that for
the interpretation of the model performance in terms of the electricity
demand that is normally measured in MWh, the respective timescale
over which results are presented should be applied (with Energy (MWh)
7

= Power (MW) × Time (hours)). This will help normalize the differ-
ent experiments where temporal scales are different. This database
provides the company with enough information about actual demand
every half-hour, considered during maintenance planning. Table 1
shows the statistical characteristics of the substations 𝐺 dataset. Besides
this, Fig. 7 in Section 4 shows examples of electricity demand profile
𝐺 generated by the proposed CESN model.

The training procedure of the proposed CESN model uses data from
four different substations (Roderick, Rocklea, Hemmant and Carpen-
dale) between 01/07/2011 and 30/06/2021 at 30-minute, three hours,
and daily prediction levels. Fig. 4 shows the location of these stations. It
is noteworthy that half-hour Energex data were converted to 3-hourly
by calculating the sum of every 6 values and similarly for the daily
interval comprised of 48 values for the day.

Fig. 5(a)(a–d) shows a boxplot with the distribution of 𝐺 at four
substations over 1/07/2011 to 30/06/2021, including the median,
first and third quartile, minimum and maximum value of electricity
demand (𝑀𝑊 ). The electricity demand during the summer months
(Dec, Jan and Feb) and winter (Jun, Jul and Aug) were relatively higher
compared with spring months (Sept, Oct and Nov) and Autumn (Mar,
Apr and May). Furthermore, weekend 𝐺 consumption was lower than
that of weekdays: the mean G on weekdays was 560, 420, 360, and
28 MW compared to 420, 260, 180, and 27 MW for Roderick, Rocklea,
Hemmant and Carpendale, respectively (see Fig. 5(b)).

3.2. Predictive model development

3.2.1. Selection and initialization of G time-series data
In this study, the antecedent lagged inputs based on the 𝐺 data are

used as predictor variables to train the proposed deep hybrid CESN,
as well as the benchmark models. This was done by first determining
the salient lagged inputs based on 𝐺 time-series using partial auto-
correlation function (PACF), and then further validating the lagged
inputs by using Extreme Learning Machine model. The PACF shows
the correlation, 𝑟𝑐𝑜𝑟𝑟, between the 𝐺 time series at 𝐿𝑡 for up to a
specific number of lags. Fig. 6(a) shows the statistically significant
lagged data of each substation, the 𝑋-axis is the time of the lags,
and the blue line represents the confidence interval. Any PACF outside
the confidence level represents a strong partial autocorrelation for the
series at certain lags. As per Fig. 6(a), it can be seen that the lags
at 1, 2, 3, 5, 6, 7, 8, 11, 13, 14 and 15 (for Roderick), 1, 2, 3, 5, 6, 7, 8, 9, 13, 14
and 15 (for Rocklea), 1, 2, 3, 5, 6, 7, 8, 9, 13, 14 and 15 (for Hemmant), and
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Fig. 7. Performance of our proposed CESN model for daily electricity demand prediction compared with six benchmark models SVR, MLP, XGB, DNN, and LGBM in Roderick
substation.
1, 2, 3, 4 and 5 (for Carpendale) have a high correlation with the 𝐺
at time 𝑡. Furthermore, to validate the PACF criteria for selecting the
order of lag variable, the Extreme Learning Machine (ELM) model was
utilized. Fig. 6(b) shows the ELM model (Transfer function= Sigmoid
and number of hidden neuron= 50) performance in terms of root mean
square error (RMSE, 𝑀𝑊 ), relative root-mean square error (RRMSE,
%) and correlation coefficient (r) with varying lag (1–40) for the 4
substations at SEQ.

It is important to note that from, Fig. 6(b), the optimal lagged input
combination was 9, 8, 10 and 5 for daily G data for Roderick, Rocklea,
Hemmant and Carpendale, respectively, with the higher magnitude of
r and lower magnitude of RMSE and RRMSE. Therefore, the input and
output variables of the deep hybrid CESN and benchmark models can
be formulated as follows (example for 10 lags):

𝑖𝑛𝑝𝑢𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10
𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11

⋮
𝑥𝑡−1, 𝑥𝑡−2,… , 𝑥𝑡−9, 𝑥𝑡−10

⎫

⎪

⎪

⎬

⎪

⎪

⎭

, 𝑡 ≥ 10 (7)

𝑜𝑢𝑡𝑝𝑢𝑡 =
( )𝑇 , 𝑡 ≥ 10 (8)
8

𝑥11 𝑥12 ⋯ 𝑥𝑡
3.2.2. Preprocessing and data segregation
In this study, there is no missing 𝐺 data between the period

01/07/2011 to 30/06/2021, therefore no imputation mechanism is
required. The normalization of the lagged 𝐺 data is done by 𝑍 −
𝑠𝑐𝑜𝑟𝑒 normalization. A z-score or standard score is obtained when the
population mean is subtracted from an individual raw score. The dif-
ference is then divided by the population standard deviation to obtain
a dimensionless quantity, which is the standard score. The ability to
calculate prediction intervals is one of 𝑧 − 𝑠𝑐𝑜𝑟𝑒 normalization’s strong
points. Normalized attributes are less impacted by outliers since the
𝑧 − 𝑠𝑐𝑜𝑟𝑒 normalization is based on the standard deviation rather than
the range. The Z-score can be defined as:

𝐺′ =
𝐺 − 𝜇
𝜎

(9)

where 𝐺′ stands for the normalized 𝐺, and 𝜇 and 𝜎 are mean and stan-
dard deviation of 𝐺 respectively. Once the Lagged data is normalized,
they are further segregated into training, validation and testing. The
training data is used to train CESN as well as benchmark models. The
testing data have no effect on training and provide an independent
measure of network performance during and after training. The vali-
dation data are used for measuring the generalization capability of the
network and stop training when generalization comes to an end. In this
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Fig. 8. Histogram illustrating the frequency (in percentages) of absolute Prediction errors (|𝑃𝐸|,𝑀𝑊 ) of the best performing CESN model during test period compared with
benchmarked models for the prediction of daily electricity demand (𝐺,𝑀𝑊 ) at (a) Roderick, (b) Rocklea, (c) Hemmant, and (d) Carpendale.
study, the data from 01/07/2011 to 30/06/2020 (3652 data points) are
used for training and validation whereas the data from 01/07/2020
to 30/06/2021 (365 data points) are used for testing. During model
training, the validation split was set as 0.2 𝑖.𝑒. 20%, which means the
20% of the training data are used for validation purposes.

3.2.3. CESN model development
As previously stated, this article combines CNN and ESN to pro-

pose a deep hybrid CESN prediction model. CNN is used to perform
9

feature extraction on the preprocessed data, and the extracted feature
vectors are used as inputs into the ESN for model prediction. The
model combines CNN’s ability to extract data features, improve the
prediction accuracy of the model, and uses ESN to predict the model,
which improves the efficiency of model training. A summarized CESN
algorithm (Fig. 3) involves the following eight steps:

• Convert normalized 𝐺 dataset to signal vector as input to the CNN
model.
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Fig. 8. (continued).
• Initialize the CNN parameters, such as the maximum epoch of
iteration, the learning rate, the optimizer and the number of
filters.

• Implement convolution and pooling.
• Fine tune the stacked model using the Bayesian optimization

algorithm.
• Finish the optimization and acquire the features of the data set
• Use the extracted features for regression by ESN.
• Initialize the ESN parameters, such as the total number of neurons

in the reservoir, Spectral radius, and the Connectivity rate.
• Get the final optimized CESN model and predict on test data-set.
10
As aforementioned, this study has utilized one of the popular ML hy-
perparameter optimization (HPO) [57] algorithms known as Bayesian
optimization. Bayesian optimization is a sequential design strategy and
can minimize the objective function efficiently. The Hyperopt python
library was employed in this study. Hyperopt offers the sequential
model-based optimization (SMBO) method that uses the Tree of Parzen
estimators (TPE) algorithm to optimize the hyperparameters. Table 2
displays the hyperparameters search space for the CESN and benchmark
models’. Before selecting the ideal model hyper-parameter, HyperOpt
takes into account all possible combinations within this search space.
Apart from HPO, when developing the deep hybrid CESN model for
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Fig. 9. Box plots of the prediction error (PE) generated by CESN vs other benchmarked models in the testing phase. For notations and model names, please refer to Table 3.
Fig. 10. Empirical cumulative distribution function (ECDF) of the prediction error generated by the CESN model vs. DNN, LGBM, SVR, XGB and MLP models. (a) Roderick, (b)
Rocklea, (c) Hemmant, and (d) Carpendale.
daily 𝐺 prediction, this study also used the following regularization
strategy to minimize the overfitting.

• The parameter of dropout is set to 0.1, which makes 10% of
random neuron nodes in each hidden layer to be discarded. This
dropout regularization is used to weaken the strong dependence
of some nodes and distribute the back-propagation correction
value to each parameter in a balanced manner.

• The learning rate is reduced by using the callback function called
ε𝑅𝑒𝑑𝑢𝑐𝑒𝐿𝑅𝑂𝑛𝑃 𝑙𝑎𝑡𝑒𝑎𝑢ε to further improve the performance of the
neural network when the evaluation indicators stop changing in
the network. The specific operation of the callback method is that
if the model performance in the validation set stops improving,
11
the learning rate is reduced at a rate of 0.7 times. The lower limit
of the learning rate is set to 0.00001.

• Further, in order to reduce model overfitting when training goes
too long, we used a technique called ‘‘early stopping (𝑒𝑠)’’. This 𝑒𝑠
method tracks the model performance against validation data and
halts the training after 10 consecutive epochs without additional
improvement.

3.2.4. Benchmark model development
Regarding alternative ML for comparison, five other well-known

prediction models based on the Deep Neural Network (DNN), Light
Gradient Boosting Machine (LGBM), Xtreme Gradient Boosting(XGB),
Support Vector Regression (SVR), and Multilayer Perceptron (MLP)
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Fig. 11. Bar chart showing a comparison of the optimal models in terms of their absolute percentage bias (𝐴𝑃𝐵,%) and the Kling–Gupta efficiency (𝐾𝐺𝐸) in the testing phase.
For notations and model names, please refer to Table 3.
Fig. 12. The evaluation of the proposed CESN model against the five other benchmarked models based on Global performance indicator (𝐺𝑃𝐼).
were developed. All of them were built using Keras 2.2.4 [84] on
TensorFlow 1.13.1 [85] backend in Python 3.6. They were trained on
a system with 32 GB RAM and an Intel Core i7 processor.

3.3. Performance evaluation metrics considered

Several metrics have been used to evaluate model efficiency. Each
metric informs about different quantitative behavior and has its own
strengths and weaknesses. This work uses the following set of com-
mon statistical metrics [47,65,86–89]: Correlation (𝑟) (10), Root Mean
Square Error (RMSE) (11), Mean Absolute Error (MAE) (12), Root Mean
Square Percentage Error (RMSPE) (13), Mean Absolute Percentage
Error (MAPE)(14), Willmot’s Index (WI) (15), Nash–Sutcliffe Equation
(NS) (16), Legates and McCabe’s (LM) (17), Explained Variance Score
12
(𝐸𝑣𝑎𝑟) (18), Uncertainty at 95% (𝑈95) (19) and 𝑡 estimator(19).

𝑟 =
∑𝑛

𝑖=1(𝐺
𝑚 − ⟨𝐺𝑚

⟩)(𝐺𝑝 − ⟨𝐺𝑝
⟩)

√

∑𝑛
𝑖=1(𝐺𝑚 − ⟨𝐺𝑚

⟩)2
√

∑𝑛
𝑖=1(𝐺𝑝 − ⟨𝐺𝑝

⟩)2
(10)

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝐺𝑝 − 𝐺𝑚)2 (11)

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝐺𝑝 − 𝐺𝑚

| (12)

𝑅𝑀𝑆𝑃𝐸 =

√

1
𝑛
∑𝑛

𝑖=1(𝐺𝑝 − 𝐺𝑚)2

⟨𝐺𝑚
⟩

(13)

𝑀𝐴𝑃𝐸 = 1
𝑛
∑

|𝐺𝑝 − 𝐺𝑚
|

𝑝 (14)

𝑛 𝑖=1 𝐺



Energy 275 (2023) 127430S. Ghimire et al.
Fig. 13. 3D-bar plot of the Combined Performance Index (𝐶𝑃𝐼) of CESN vs. the comparative DNN, LGBM, SVR, XGB and MLP models used in prediction of daily electricity
demand (𝐺). Names for each model are provided in Table 3.
Fig. 14. Taylor diagram depicting the correlation coefficient, standard deviation and root mean square deviation (𝑅𝑀𝑆𝐷) of CESN vs. DNN, LGBM, SVR, XGB and MLP models.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝑊 𝐼 = 1 −
∑𝑛

𝑖=𝑛(𝐺
𝑚 − 𝐺𝑝)2

∑𝑛
𝑖=𝑛(|𝐺𝑝 − ⟨𝐺𝑚

⟩| + |𝐺𝑚 − ⟨𝐺𝑚
⟩|)2

(15)

𝑁𝑆 = 1 −
∑𝑛

𝑖=1(𝐺
𝑚 − 𝐺𝑝)2

∑𝑛 𝑚 𝑚 2
(16)
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𝑖=1(𝐺 − ⟨𝐺 ⟩)
𝐿𝑀 = 1 −
∑𝑛

𝑖=1 |𝐺
𝑚 − 𝐺𝑝

|

∑𝑛
𝑖=1 |𝐺𝑚 − ⟨𝐺𝑚

⟩|

(17)

𝐸𝑣𝑎𝑟 = 1 −
Var(𝐺𝑚 − 𝐺𝑝) (18)
Var(𝐺𝑚)
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Fig. 15. The performance of the proposed CESN model in comparison to other models using directional symmetry (DS) criteria.
Table 2
Architecture of the CNN integrated with ESN (CESN) model vs. SVR, MLP, XGB, DNN, and LGBM models developed for daily electricity
demand prediction at four sites of Southeast Queensland. Note: - ReLU = Rectified Linear Units; Adam = Adaptive Moment Estimation, gbdt
= traditional Gradient Boosting Decision Tree, rbf = Radial Basis Function, logistic = Logistic Sigmoid Function, tanh = Hyperbolic Tangent
Activation Function, loguniform = In the log-uniform distribution, points are sampled uniformly between 𝑙𝑜𝑔(𝑎) and 𝑙𝑜𝑔(𝑏), where 𝑙𝑜𝑔 is most
frequently the logarithm with base 10.

Predictive models Model hyperparameters Hyperparameter selection Roderick Rocklea Hemmant Carpendale

Filter1 [50, 80, 100, 200] 100 50 100 50
Filter 2 [40, 50, 60, 70, 80] 60 50 40 40
Filter 3 [20, 10, 30, 5] 5 30 10 5

Reservoir neurons [50, 80, 100, 200] 100 80 100 50
Spectral radius [0.5, 0.55, 0.6, 0.7, 0.75, 0.8,

0.9]
0.6 0.55 0.7 0.5

Connectivity rate [0.01, 0.02, 0.03, 0.04, 0.05] 0.01 0.03 0.01 0.01
Epochs [1000]
Solver [‘adam’]

Convolution
Neural Network
Integrated
with Echo State
Network (CESN)

Batch size [5, 10, 15, 20, 25, 30] 5 10 5 5

Hiddenneuron 1 [100, 200, 300, 400, 50] 300 200 100 100
Hiddenneuron 2 [20, 30, 40, 50, 60, 70] 50 40 20 20
Hiddenneuron 3 [10, 20, 30, 40, 50] 50 10 10 20
Hiddenneuron 4 [5, 6, 7, 8, 12, 15, 18] 18 5 5 5

Batch size [5, 10, 15, 20, 25, 30] 10 5 5 5
Solver [‘adam’]

Deep Neural
Network (DNN)

Epochs [1000]

Boosting Type ‘gbdt’
Maximum tree leaves [40, 50, 60, 70] 50 40 50 40
Boosting learning rate [0.01, 0.1, 0.001, 0.005] 0.001 0.001 0.005 0.001
Maximum tree depth [5, 8, 10, 20, 25] 20 10 20 10

Light Gradient
Boosting
Machine (LGBM)

Boosted trees to fit. [20, 50, 70, 80, 100] 70 50 70 50

Boosting learning rate [0.01, 0.1, 0.001, 0.005] 0.001 0.01 0.005 0.001
Maximum tree depth [5, 8, 10, 20, 25, 30, 40] 40 25 40 10

Extreme
Gradient
Boosting (XGB) Boosted trees to fit. [30, 50, 70, 80, 90, 100] 30 70 90 30

Kernel ‘rbf’
Epsilon 0.0001

Cost Function (C) loguniform (−40, 10) 161.516 21510.1 521.72 20646.7
Support Vector
Regression (SVR)

Penalty function (Gamma) loguniform (−40, 10) 0.03304 0.0688 0.118 0.0683

Hidden neuron [50, 60, 70, 80, 90, 100] 60 80 70 80
Activation function [‘relu’, ‘logistic’, ‘tanh’] logistic relu relu tanh

Learning rate [0.001, 0.002, 0.005, 0.006] 0.001 0.005 0.002 0.001

Multilayer
Perceptron
(MLP) Solver [‘adam’]
14



Energy 275 (2023) 127430S. Ghimire et al.

(
C

𝑇

𝑅

𝐾

𝑂

𝐶

a

𝑈95 = 1.96(𝑆𝐷2 − 𝑅𝑀𝑆𝐸2)0.5 (19)

𝑡 =

√

(𝑛 − 1) ⋅𝑀𝐵𝐸2

𝑅𝑀𝑆𝐸2 −𝑀𝐵𝐸2
(20)

We also use the Theil’s inequality coefficient (TIC) (21), Standard
Deviation of Relative Error (STDRE) (22), the skill score (SS) (23),
the relative RMSE (𝑅𝑀𝑆𝐸𝑟) (24), Kolmogorov–Smirnov Test Integral
KSI) (25), the Critical Limit Over-estimation (OVER) (26) and the
ombined Performance Index (CPI) (27).
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𝑆𝑆 = 1 −
𝑅𝑀𝑆𝐸(𝑝, 𝑥)
𝑅𝑀𝑆𝐸(𝑝𝑟, 𝑥)

(23)

𝑀𝑆𝐸𝑟 =
𝑅𝑀𝑆𝐸(𝑝, 𝑥)
𝑅𝑀𝑆𝐸(𝑟, 𝑥)
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𝑆𝐼 = 100
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𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛

𝐷𝑛𝑑𝑥 (25)
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𝑃𝐼 = 𝐾𝑆𝐼 + 𝑂𝑉 𝐸𝑅 + 2𝑅𝑀𝑆𝐸
4

(27)

where 𝐺𝑚 and 𝐺𝑝 are the observed and predicted value of G, ⟨𝐺𝑚
⟩ and

⟨𝐺𝑝
⟩ are the observed and predicted mean of G, 𝑝 stands for the model

prediction, 𝑥 for the observation, 𝑝𝑟 for perfect prediction (persistence),
and 𝑟 for the reference prediction.

The above metrics have the following skills:

• 𝑟 are in the interval [−1, 1]. 𝑀𝐴𝐸 and 𝑅𝑀𝑆𝐸 are 0 in perfect
predictions and ∞ in a worst fit.

• Standard deviation of relative error (𝑆𝑇𝐷𝑅𝐸) calculates the data
dispersion. A smaller value of 𝑆𝑇𝐷𝑅𝐸 indicates that the data is
less scattered [90].

• Models with lower 𝑈95 and t-statistics value close to 0 perform
better predictions.

• The value of Theil’s inequality coefficient (TIC) is in the interval
[0, 1] where 𝑇 𝐼𝐶 close to 0 indicates good predictions [91].

• RMSPE and MAPE have ranged from 0% to 100%. Model per-
formance is excellent when 𝑅𝑅𝑀𝑆𝐸 is lower than 10%, good if
𝑅𝑅𝑀𝑆𝐸 is between 10% and 20%, fair if 𝑅𝑅𝑀𝑆𝐸 is between
20% and 30%, and poor if 𝑅𝑅𝑀𝑆𝐸 is greater than 30% [92].

• WI is a metric that overcomes the insensitivity issues of RMSE
and MAE. WI values close to 0 show inaccurate models and those
close to 1 [93].

• NS evaluates both the observed and predicted variance G and it
has ranges from −∞ (the worst case) to 1 (perfect fit) [94].

• LM is a more robust metric developed to address the limitations
of both WI and NS [95] and has value ranges between 0 and 1
(the best case).

• 𝐸𝑣𝑎𝑟 computes the biased variance to explain the fraction of
variance. It has a range from 0 to 1.

• 𝑅𝑀𝑆𝐸, 𝑂𝑉 𝐸𝑅 and 𝐾𝑆𝐼 are combined into a single metric
named CPI which takes into account dispersion, absolute bias
(through RMSE) and likeness of distributions (through KSI and
OVER). KSI gives information about the similarity between the
distributions of the measured and modeled diffuse fractions and
15

discriminates well between different models. OVER describes the
relative frequency of exceedance situations, when the normalized
distribution of modeled data points in specific bins exceeds the
critical limit that would make it statistically undistinguishable
from the reference distribution. A CPI value close to 0 shows an
excellent performance [96].

Furthermore, the overall performance of the model was evaluated
by the Global Performance Indicator (GPI) that can be calculated by
the six metrics as follows [97].

GPI𝑖 =
6
∑

𝑗=1
𝛼𝑗 (𝑔𝑗 − 𝑦𝑖𝑗 ) (28)

where 𝛼𝑗 is the median of scaled values of statistical indicator, 𝑗 = 1
for RMSE, MAE, MAPE, RMSPE and MBE (𝑗 = 1, 2, 3, 4, 5), −1 for 𝑟; 𝑔𝑗 is

scaled value of the statistical indicator 𝑗 for model 𝑖 with larger GPI
indicating a better performance.

We evaluated the model performance with Kling–Gupta Efficiency
(KGE) [98] and Absolute Percentage Bias (APB; %) [99]. Mathemati-
cally, these metrics are stated as follows:
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√
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⟩
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∑𝑛

𝑖=1((𝐺
𝑚 − 𝐺𝑝) ∗ 100)
∑𝑛

𝑖=1 𝐺𝑚
, (30)

where 𝑟 is the correlation coefficient, 𝐶𝑉 is the coefficient of variation.
Additionally, the performance to predict the direction of movement

was measured by a Directional Symmetry (DS) as follows:

𝐷𝑆 = 1
𝑛

𝑛
∑

𝑡=2
𝑑𝑡 × 100% (31)

where:

𝑑𝑡 =

{

1 if (𝐺𝑚
𝑡 − 𝐺𝑚

𝑡−1)(𝐺
𝑝
𝑡 − 𝐺𝑚

𝑡−1) > 0

0 otherwise
(32)

We use the Diebold–Mariano (DM) and Harvey, Leybourne, and
Newbold (HLN) test to evaluate the statistical significance of the mod-
els. When DM and HLN test have values greater or equal than 0, then
the alternative models overcome the comparative models [100–102].

4. Results and discussion

The performance of the proposed CESN model for daily electricity
demand prediction has been tested and verified through a comparative
analysis against six benchmark models including SVR, MLP, XGB, XGB,
DNN, and LGBM, see Fig. 7 for the Roderick substation (results on
the other three substations: Rockle, Hemmant, and Carpendale are
placed in Appendix C). In general, the proposed CESN model consis-
tently produced the best performance based on the different evaluation
metrics considered, detailed in Section 3.3, over the four study sites.
SVR and DNN were the second-best models depending on performance
indicators and study sites. The LGBM and XGB models generated the
lowest predictive accuracy. We detail these results in this section.

Table 3 shows the correlation coefficient values for all considered
models in daily electricity demand prediction.

The results obtained clearly show that the proposed CESN outper-
forms the competitive models over four study sites. For instance, CESN
produced the highest correlation coefficient values 𝑟 ∼ 0.926, 0.925,
0.932 and 0.818 for each substation studied, considerably better than
the obtained values of next best model SVR with 𝑟 ∼ 0.909, 0.920,
0.918 and 0.810 and far from the worst case, the LGBM with 𝑟 ∼ 0.905,
0.849, 0.866 and 0.815. The average error values from Table 3 also
indicate a better predictive performance of CESN relative to the other
models. Specifically, CESN predicted daily electricity demand at four
study sites with 𝑅𝑀𝑆𝐸 ∼ 32.126, 34.195, 17.688, and 3.050 MW and
𝑀𝐴𝐸 ∼ 22.527, 22.755, 12.002, and 2.259 MW, which are between
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Table 3
Descriptive statistics of daily electricity demand 𝐺 at four substations of Southeast

ueensland where the proposed deep learning hybrid CESN model is implemented.
Study site Predictive model Model performance metrics

r RMSE (MW) MAE (MW)

Roderick

CESN 0.926 32.126 22.527
SVR 0.909 35.293 24.642
MLP 0.907 35.742 25.291
XGB 0.883 39.835 28.097
DNN 0.838 47.655 37.08
LGB 0.905 56.679 47.286

Rocklea

CESN 0.925 34.195 22.755
SVR 0.920 35.138 24.338
MLP 0.917 35.748 24.883
XGB 0.917 35.979 24.459
DNN 0.912 36.892 23.704
LGB 0.849 47.413 33.103

Hemmant

CESN 0.932 17.688 12.002
SVR 0.918 19.244 12.571
MLP 0.913 20.972 15.06
XGB 0.902 21.648 14.995
DNN 0.887 23.764 17.683
LGB 0.866 30.222 22.962

Carpendale

CESN 0.818 3.0503 2.2598
SVR 0.810 3.1108 2.3256
MLP 0.812 3.0993 2.2899
XGB 0.812 3.4756 2.5816
DNN 0.812 3.1175 2.3355
LGB 0.815 3.0865 2.3039

3 to 43% of RMSE and between 4 to 52% lower than the previous
omparative models, the SVR and LGB respectively.

The frequency histograms illustrated in Fig. 8 offer the possibility of
better understanding of prediction error distributions for all models.

n general, a right-skewed pattern with more absolute prediction errors
|𝑃𝐸|) close to zero indicates a better predictive capacity. The visual
omparisons clearly show that, across the four study sites, the proposed
ESN model yields the best performance, followed by the SVR. The MLP
nd XGB models were in the moderate group while LGBM and DNN
roduced the worst performance. These analyses were also confirmed
y the notched box plots and empirical cumulative distribution function
ECDF) of |𝑃𝐸| in Fig. 9 and Fig. 10, respectively. These figures
learly show that the boxes of CESN and SVR represent lower medians,
nterquartile ranges, and outliers meaning the distributions of |𝑃𝐸|

alues were narrower, with the majority of error values closer to zero.
y contrast, the ECDF of the LGBM is shifted right the furthest towards
igher values, indicating that it provides the most prediction errors.

The prediction capacity for daily electricity demand of the proposed
ESN model and comparative candidates was further measured by
valuating its skill score (𝑆𝑆), standard deviation of relative error
𝑆𝑇𝐷𝑅𝐸) and explained variance (𝐸𝑣𝑎𝑟). The higher 𝑆𝑆 and 𝐸𝑣𝑎𝑟

values or lower STDRE values demonstrate a better performance. From
Table 4, it is evident that the CESN yielded the best performance for
all sites with 𝑆𝑆 ∼ 86.85% (Hemmant substation), 𝑆𝑇𝐷𝑅𝐸 ∼ 4.07%
Roderick substation), and 𝐸𝑣𝑎𝑟 ∼ 0.864 (Hemmant substation). The SVR
odel generally generated the second-best predictive performance,

xcept for the Carpendale substation. The worst performances are
NN (Roderick and Carpendale substation) and LGBM (Rocklea and
emmant substation).

Similarly, for the statistical performance criteria including
𝑀𝑆𝑃𝐸, 𝑀𝐴𝑃𝐸, 𝑊 𝐼 , 𝑁𝑆 and 𝐿𝑀 , the advantages of the proposed
ESN model over other benchmark models can also be seen in Tables 5
nd 6. The CESN model generally produces the lowest values of RMSPE
nd MAPE, and the highest values of 𝑊 𝐼,𝑁𝑆 𝑎𝑛𝑑 𝐿𝑀 , indicating its
est performance for daily electricity demand prediction. Consistent
esults were also found for the second-best and worst performance,
.e., SVR and LGBM models, respectively, over the Roderick, Rocklea
nd Hemmant sites. However, the findings are slightly different at the
16
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Table 4
The testing performance of the CNN integrated with ESN (CESN) model vs. SVR, MLP,
XGB, DNN, and LGBM models as measured by skill score (𝑆𝑆), standard deviation of
elative error (𝑆𝑇𝐷𝑅𝐸) and explained variance (𝐸𝑣𝑎𝑟).
Study site Predictive model Model performance metrics

Skill Score (SS) STDRE 𝐸𝑣𝑎𝑟

Roderick

CESN 75.44% 4.07% 0.856
SVR 70.36% 4.68% 0.826
MLP 69.60% 4.52% 0.822
XGB 62.24% 5.14% 0.779
DNN 23.56% 5.90% 0.683
LGB 45.96% 4.67% 0.814

Rocklea

CESN 85.64% 8.53% 0.854
SVR 84.84% 8.64% 0.847
MLP 84.31% 8.77% 0.841
XGB 84.11% 9.21% 0.838
DNN 72.40% 9.58% 0.830
LGB 83.29% 12.26% 0.720

Hemmant

CESN 86.85% 7.62% 0.864
SVR 84.43% 9.38% 0.842
MLP 81.51% 7.95% 0.831
XGB 80.30% 10.04% 0.813
DNN 61.60% 11.44% 0.771
LGB 76.26% 14.98% 0.685

Carpendale

CESN 16.80% 7.93% 0.669
SVR 13.46% 9.13% 0.655
MLP 14.10% 8.44% 0.658
XGB 8.02% 8.00% 0.659
DNN 14.81% 9.82% 0.655
LGB 13.10% 9.46% 0.661

Table 5
The geographic comparison of the accuracy of the CNN integrated with ESN (CESN)
model vs. other comparative models in terms of the relative errors (𝑅𝑀𝑆𝑃𝐸,%) and
(𝑀𝐴𝑃𝐸,%) computed within the test sites. Note that the best model is boldfaced.

Study site Predictive model Model performance metrics

RMSPE MAPE

Roderick

CESN 5.86% 4.04%
SVR 6.43% 4.47%
MLP 6.52% 4.55%
XGB 7.26% 5.07%
DNN 8.69% 6.95%
LGB 10.33% 8.37%

Rocklea

CESN 9.15% 6.64%
SVR 9.40% 7.02%
MLP 9.57% 7.28%
XGB 9.63% 7.26%
DNN 9.87% 6.95%
LGB 12.69% 10.04%

Hemmant

CESN 8.52% 6.06%
SVR 9.27% 6.70%
MLP 10.11% 7.46%
XGB 10.43% 8.12%
DNN 11.45% 10.15%
LGB 14.56% 13.72%

Carpendale

CESN 10.33% 8.02%
SVR 10.54% 8.15%
MLP 10.50% 8.07%
XGB 11.77% 8.61%
DNN 10.56% 8.39%
LGB 10.45% 8.20%

Carpendale site, varying depending on the criteria considered. The XGB
model yields the highest values of 𝑊 𝐼 ≈ 0.807 compared to 𝑊 𝐼 ≈ 0.798
rom the CESN model as the second-best performance. By contrast,
ased on the RMSPE, MAPE, NS and LM criteria, the LGBM model
roduced the second-best performance while XGB was the worst model.

Table 7 provides the geographic comparison of the accuracy of
ll considered models, using the uncertainty at 95% (𝑈95), t-statistics

(𝑡) and Thiel’s inequality coefficient (𝑇 𝐼𝐶). The 𝑈95 is an efficient

uantitative criterion for selecting the optimal predictive model among
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Table 6
The performance of the CNN integrated with ESN (CESN) model vs. SVR, MLP, XGB,
DNN, and LGBM models using the Willmott’s Index (𝑊 𝐼), Nash–Sutcliffe Coefficient
(𝑁𝑆) and the Legates & McCabe’s (𝐿𝑀) Index of Agreement. Note that the best model
is boldfaced.

Study site Predictive model Model performance metrics

WI NS LM

Roderick

CESN 0.916 0.856 0.651
SVR 0.898 0.826 0.618
MLP 0.894 0.822 0.608
XGB 0.863 0.779 0.565
DNN 0.735 0.683 0.426
LGB 0.826 0.645 0.268

Rocklea

CESN 0.937 0.854 0.712
SVR 0.932 0.846 0.692
MLP 0.927 0.841 0.685
XGB 0.923 0.838 0.690
DNN 0.926 0.830 0.700
LGB 0.858 0.720 0.581

Hemmant

CESN 0.935 0.862 0.700
SVR 0.919 0.837 0.685
MLP 0.916 0.810 0.623
XGB 0.890 0.797 0.625
DNN 0.835 0.755 0.557
LGB 0.637 0.629 0.425

Carpendale

CESN 0.798 0.669 0.455
SVR 0.789 0.655 0.439
MLP 0.791 0.658 0.448
XGB 0.807 0.605 0.378
DNN 0.765 0.654 0.437
LGB 0.781 0.661 0.445

Table 7
The comparison of the prediction accuracy of the CNN integrated with ESN (CESN)
model vs. other comparative models in terms of the uncertainty at 95% (U95), 𝑡-
tatistics (t) and Theil’s inequality coefficient (TIC) during testing. Note that the best
odel is boldfaced.
Study site Predictive model Model performance metrics

U95 t TIC

Roderick

CESN 89.104 −0.292 0.029
SVR 97.875 −0.523 0.032
MLP 99.130 −0.371 0.032
XGB 110.460 −0.648 0.036
DNN 132.180 0.325 0.043
LGB 132.240 −22.585 0.053

Rocklea

CESN 94.828 0.185 0.045
SVR 97.331 −1.416 0.046
MLP 99.138 0.538 0.047
XGB 99.795 −0.571 0.047
DNN 102.300 0.609 0.048
LGB 131.500 −0.403 0.062

Hemmant

CESN 48.882 −2.334 0.042
SVR 52.923 3.567 0.045
MLP 56.264 −7.327 0.050
XGB 58.586 6.207 0.050
DNN 64.533 5.727 0.055
LGB 79.051 10.154 0.069

Carpendale

CESN 8.457 0.014 0.051
SVR 8.629 0.833 0.052
MLP 8.592 0.902 0.052
XGB 9.128 −9.728 0.060
DNN 8.636 1.355 0.052
LGB 8.557 0.885 0.051

different models by offering useful information on a particular model’s
deviance. The statistical 𝑡 test indicates the desired model while the
𝑇 𝐼𝐶 is useful for evaluating the generalization ability of the model.
Values of 𝑈95, 𝑡 𝑎𝑛𝑑 𝑇 𝐼𝐶 approaching zero signify a high prediction
accuracy. The results from Table 7 also indicated the best performance
17

of CESN against the compared models. m
Table 8
Evaluation of the CNN integrated with ESN (CESN) model
against comparison models in terms of the Diebold–Mariano
(DM) test statistic. The column of the table is compared with
the rows, and if the result is positive, the model in the rows
outperforms the one in the column; on the contrary, if it is
negative, then the one in the column is superior.

CESN DNN LGB SVR XGB MLP

CESN 0.678 1.469 1.048 3.669 2.072
DNN 0.786 0.584 3.253 0.241
LGB −0.126 2.717 −0.373
SVR 3.321 −0.241
XGB 3.311

Table 9
Evaluation of the CNN integrated with ESN (CESN) model
against comparison models in terms of the Harvey–Leybourne–
Newbold (HLN) test statistic. The column of the table is
compared with the rows, and if the result is positive, the model
in the rows outperforms the one in the column; on the contrary,
if it is negative, then the one in the column is superior.

CESN DNN LGB SVR XGB MLP

CESN 0.712 1.542 1.100 3.852 2.175
DNN 0.825 0.614 3.415 0.253
LGB −0.132 2.852 −0.392
SVR 3.487 −0.253
XGB −3.476

The proposed CESN and the relative five benchmarked models’
performances were also evaluated using the absolute percentage bias
(𝐴𝑃𝐵), Kling–Gupta efficiency (𝐾𝐺𝐸), Global performance indicator
𝐺𝑃𝐼), and combined performance index (𝐶𝑃𝐼). The results repre-
ented in Fig. 11 clearly show that for every study site, the CESN
odel generated lower 𝐴𝑃𝐵 and higher 𝐾𝐺𝐸 values compared to

ther models. The 𝐺𝑃𝐼 and 𝐶𝑃𝐼 values illustrated in Fig. 12 and
ig. 13 also supported that CESN was able to produce daily electric-
ty demand prediction better than SVR, MLP, XGB, XGB, DNN, and
GBM models. Furthermore, according to the 𝐶𝑃𝐼 (Fig. 13), DNN
as the second-best model for predicting daily electricity demand
ver Hemmant and Carpendale sites while MLP produced the worst
erformance over Roderick and Hemmant sites. Fig. 14 plotted the
aylor diagram for better understanding of how well distributions of
redicted and observed data match each other in terms of standard
eviation, correlation, and root-mean-square difference (𝑅𝑀𝑆𝐷). Over
he four study sites, compared to other models, CESN has a higher
orrelation meaning better agreement between simulated and observed
ata. Furthermore, the simulated data from the CESN model were also
loser to the standard deviation (red line) of the observations and
𝑀𝑆𝐷 line showing the higher quality of the simulation process. This

tatistical summary revealed that the performance of DNN was far away
rom other models.

Finally, the performance was evaluated for each pair of models us-
ng the Diebold–Mariano (𝐷𝑀), Harvey–Leybourne–Newbold (𝐻𝐿𝑁)
est statistics (Tables 8 and 9) and the ratio of root mean square
rror (𝑅𝑀𝑆𝐸𝑟) (Table 10). The interpretation of these performance
ndicators is based on a comparison between columns and rows. When
he result is positive (Tables 8 and 9) or greater than 1 (Table 10),
he model placed in the rows exceeded the model in the columns,
nd conversely. The findings consistently indicated that the proposed
ESN model is able to generate the daily electricity demand prediction
ith the highest level of accuracy. Similarly, Fig. 15 shows that deep
ybrid CESN model DS (i.e., directional prediction accuracy) is more
ccurate than others, with an average of 84.59%. Congruently with
arlier findings, DM, HLN, and DS test provide consistent results, which
ndicate that deep hybrid CESN predicts daily electricity demand 𝐺

ore accurately than other models.
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Fig. B.16. CESN architecture.

Fig. C.17. Comparison of the proposed CESN model for daily electricity demand prediction analysis with six benchmark models including SVR, MLP, XGB, DNN, and LGBM in
Rocklea substation.
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Fig. C.18. Comparison of the proposed CESN model for daily electricity demand prediction analysis with six benchmark models including SVR, MLP, XGB, DNN, and LGBM in
Hemmant substation.
Table 10
The performance of the CNN integrated with ESN (CESN)
model with comparative benchmark models in the test period
measured by the ratio of root mean square error (𝑅𝑀𝑆𝐸𝑟).
The column of the table is compared with the rows, and if the
result is > 1, the model in the row outperforms the one in the
column; on the contrary, if it is < 1, then the one in the column
is superior.

CESN DNN LGB SVR XGB MLP

CESN 1.024 1.045 1.040 1.298 1.032
DNN 1.020 1.016 1.268 1.008
LGB 0.996 1.243 0.988
SVR 1.248 0.993
XGB 0.795

5. Conclusions, limitations, and future research directions

An artificial intelligence technique based on the deep hybrid CESN
model, which integrates a convolutional neural network (CNN) model
with the Echo State Network (ESN) process, has been introduced in
this study for the prediction of daily electricity demand data (𝐺). Five
19
benchmark models (support vector regression (SVR), multi layer per-
ceptron (MLP), Xtreme gradient boosting (XGB), deep neural network
(DNN), and Light Gradient Boosting decision tree model (LGBM)) were
also developed to evaluate the prediction accuracy of the CESN model,
based on data collected for four stations in southeast Queensland,
Australia. Based on the results obtained, it has been shown that the
proposed CESN model was able to obtain better 𝐺 prediction perfor-
mance not only than the benchmark models developed in this research
study, but also when it is compared with previous works [2,20,103]
on 𝐺 prediction. The main reason behind the better performance of
the proposed CESN model is that, apart from learning the load trend
characterization, CESN integrates the advantage of the contextual fea-
tures yielded from the timestamp and the temporal information in the
historical electricity demand data to achieve better predictive accuracy.

Despite the performance of the proposed CESN model has been
consistently demonstrated using different statistical tests and criteria
over the four study studies, we have also shown that it is different from
the other comparative models based on ML. The predictive capacity
of SVR, MLP, XGB, XGB, DNN and LGBM models varied depending
on the performance indicators and study sites. While the inconsistent
results emphasize the importance of applying multiple performance
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Fig. C.19. Comparison of the proposed CESN model for daily electricity demand prediction analysis with six benchmark models including SVR, MLP, XGB, DNN, and LGBM in
Carpendale substation.
evaluation matrices, further investigation of the pre-processing data,
patterns of data at study sites, uncertainty prediction analysis, and
model configurations of all considered models are required.

In general, we have shown that the proposed hybrid CESN model
can deliver better performance in electricity demand prediction than
classical ML methods. The proposed CESN model can also support
electricity markets and provide a precise decision support tool valuable
to improve policies applied and decision making processes.

Regarding limitations and future lines of research, note that noise
information can significantly affect the performance of predictive mod-
els. Time-series denoising techniques, for example, multivariate empir-
ical mode decomposition (MEMD) [104] or variational mode decompo-
sition (VMD) [105], can be applied to enhance prediction accuracy. The
original electricity demand time series can be decomposed completely
into several components, where the noise term can be removed. An-
other factor that can also affect the model performance is the seasonal
pattern, which is a common component in the electricity demand time
series. Fast Fourier Transform (FFT) [106] might be an effective method
to address the seasonal problem. The FFT technique measures the
20
seasonal length and then computes the seasonal indexes by the seasonal
adjustment method to complete the seasonal factor eliminating process.

Uncertainty analysis of short-term electricity demand prediction
is also an essential step because of the intermittent, unpredictability
and variations of the distributed generations and loads in microgrid
systems. The interval prediction method, such as least square support
vector regression (LSSVR) [107], can be applied to provide informa-
tion related to prediction uncertainty. This uncertainty analysis will
provide the confidence levels of the proposed predictive models in
capturing both the future tendency of the electricity demand and the
best coverage probability and prediction interval width.

Finally, incorporating causality in electricity demand prediction is
also suggested for future research to improve and maintain prediction
at a high level of prediction accuracy in different time periods. Addi-
tional information may include, but is not limited to, economic factors,
and weather condition forecasting. However, these additional inputs
might have different effects on short-term and long-term electricity
prediction. In addition, when incorporating various input variables, a
feature selection process can be performed to select the most influential
predictors and eventually form hybrid models.
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Table A.11
List of Acronyms.

Term Acronyms

Artificial Intelligence AI
Artificial Neural Network ANN
Autoregressive Integrated Moving Average ARIMA
Auto-Regressive Moving Average ARMA
Convolutional Neural Network CNN
Decision Trees DT
Deep Belief Networks DBN
Deep Learning DL
Deep Neural Network DNN
Deep Recurrent Neural Network DRNN
Empirical Mode Decomposition EMD
Empirical Risk Minimization ERM
Extreme Learning Machine ELM
Gated Recurrent Unit GRU
Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise ICEEMDAN
K-Nearest Neighbors KNN
Light Gradient Boosting decision tree LGBM
Long Short-Term Memory LSTM
Machine Learning ML
Multi-Layer Perceptron model MLP
Partial Autocorrelation Function PACF
Prediction Interval PI
Particle Swarm Optimized PSO
Radial Basis Function RBF
Recurrent Neural Networks RNN
Rectified Linear Unit ReLU
SHapley Additive exPlanations SHAP
Structural Risk Minimization SRM
Support Vector Regression SVR
South-East Queensland SEQ
Xtreme Gradient Boosting XGB
Table B.12
Parameters of the CESN architecture.

Roderick Rocklea Hemmant Carpendale

1D CNN Block (3 CNN Layers)

Train size (Seq. length, T. steps, Feats.) (2922, 1, 9) (2922, 1, 8) (2922, 1, 10) (2922, 1, 5)
Test size (Seq. length, T. steps, Feats.) (365, 1, 9) (365, 1, 8) (365, 1, 10) (365, 1, 5)
Validation size (Seq. length, T. steps, Feats.) (730, 1, 8) (730, 1, 10) (730, 1, 5)
CNN input shape (T. steps, Feats) (1, 9) (1, 8) (1, 10) (1, 5)
CNN Layer1: Filter 100 50 100 50
Kernel Size 10 10 10 10
kernel_initializer glorot_unif. glorot_unif. glorot_unif. glorot_unif.
Padding Same Same Same Same
Pooling Layer MaxPool 1 MaxPool 1 MaxPool 1 MaxPool 1
Activation Relu Relu Relu Relu
CNN Layer2 60 50 40 40
Kernel Size 1 1 1 1
kernel_initializer glorot_unif. glorot_unif. glorot_unif. glorot_unif.
Padding same same same same
Pooling Layer MaxPool 1 MaxPool 1 MaxPool 1 MaxPool 1
Activation Relu Relu Relu Relu
CNN Layer3 5 30 10 5
Kernel Size 1 1 1 1
kernel_initializer glorot_unif. glorot_unif. glorot_unif. glorot_unif.
Padding same same same same
Pooling Layer MaxPool 1 MaxPool 1 MaxPool 1 MaxPool 1
Activation Relu Relu Relu Relu
Final Layer Flattening l. Flattening l. Flattening l. Flattening l.
Final CNN Layer Output (2922, 5) (2922, 30) (2922, 10) (2922, 10)
Solver Adam Adam Adam Adam
Epochs 1000 1000 1000 1000
Batch size 5 10 5 5

ESN Block

Input Layer (2922, 5) (2922, 30) (2922, 10) (2922, 10)
Spectral Radius 0, 6 0, 55 0, 7 0, 5
Connectivity rate 0, 01 0, 03 0, 01 0, 01
Output Layer (365, 1) (365, 1) (365, 1) (365, 1)
21



Energy 275 (2023) 127430S. Ghimire et al.

t
t
M

CRediT authorship contribution statement

Sujan Ghimire: Data curation, Methodology, Software, Valida-
ion, Visualization, Writing – reviewing, Conceptualization, Investiga-
ion. Thong Nguyen-Huy: Writing – review & editing, Investigation,
ethodology, Reviewing. Mohanad S. AL-Musaylh: Writing – review

& editing, Investigation, Methodology, Reviewing. Ravinesh C. Deo:
Methodology, Visualization, Writing – reviewing, Investigation, Con-
ceptualization, Supervision, Reviewing. David Casillas-Pérez: Writ-
ing, Visualization, Editing, Methodology, Conceptualization, Investi-
gation, Reviewing. Sancho Salcedo-Sanz: Writing – editing, Visu-
alization, Conceptualization, Methodology, Investigation, Reviewing,
Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data were acquired from ENERGEX (https://www.energex.com.au).

Acknowledgments

The authors thank the data providers, all the reviewers and the
Editor for their thoughtful comments, suggestions and the review pro-
cess. Partial support of this study is through the project PID2020-
115454GB-C21 of the Spanish Ministry of Science and Innovation
(MICINN).

Appendix A. Acronyms

Table A.11 provides the acronyms used in this paper:

Appendix B. CESN architecture

Fig. B.16 shows the architecture of our proposal CESN divided into
blocks.

Table B.12 details the parameters of each block in order to be
implemented.

Appendix C. Further results

Figs. C.17, C.19 and C.18 show the prediction results of our pro-
posed CELM method together with the other six methods of the com-
parison, see Section 4.
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