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A B S T R A C T

The number of reporting activities in real time has increased over the last years. This situation has pushed the
need for providing real time analysis and visualizations to support decision-making. We propose a visualization
framework for exploratory data analysis of multivariate data streams that relies on dimensionality reduction
and machine learning techniques for plotting the data in two dimensions. Users can demarcate regions of
interest for their study, and use them to make predictions or to decide when to train a new model. The
knowledge gained from these visualizations allows users to: (i) characterize the data stream scenario; (ii)
track the evolution of a case of interest; and (iii) configure and raise alarms according to the user-defined
regions. We illustrate the effectiveness of our proposal through a case study analyzing real-world streaming
data to identify patients with multi-drug resistant bacteria when they are in a hospital intensive care unit. Our
visualization framework enables the patient follow-up which can allow clinicians to support decisions about
the health status evolution of a particular patient. This could provide information for deciding on a particular
treatment or whether to isolate patients with a high risk of having multi-drug resistant bacteria since their
presence boosts infections in intensive care units.
1. Introduction

The volume, velocity and variety of data production are increasing
in recent years due to cheaper data storage devices and the inclu-
sion of data recording technologies in everyday life (Kitchin, 2014).
Some fields of application with a high rate of data generation, such
as analysis of network traffic, clinical, or sensor data, have to deal
with processing data streams obtained continuously. This requires spe-
cific streaming architectures to produce and consume the data almost
in real-time. Specifically, this data has to be processed sequentially,
usually considering time windows, to perform different data analysis
tasks. These tasks can range from simple operations, such as vari-
able filtering or correlation computing, to more advanced data mining
techniques (Ikonomovska, Loskovska, & Gjorgjevik, 2007). Retrieving
information from streaming processes is difficult due to its changing na-
ture, which conditions the entire analysis pipeline (Mansmann, Fischer,
& Keim, 2012).

Information visualization allows analysts to combine their domain
knowledge with their ability to visually gain insights about relation-
ships and underlying patterns in the data. Visualization in data mining
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processes involves domain experts in a more immersive way, allowing
experts to easily handle noisy datasets. Moreover, it is acknowledged
that user interaction is often essential for visual analytics (Stadler,
Donlon, Siewert, Franken, & Lewis, 2016) since it facilitates and speeds
up tasks related to data exploration, decision-making, or drawing con-
clusions. However, visualizing data streams adds difficulties to the
analysis process, such as the computing architecture to support it, how
to manage and understand the gradual changes that occur continuously
in data, and the possible associated loss of context (Krstajić & Keim,
2013).

Raw data are usually high-dimensional and therefore susceptible to
the curse of dimensionality when considering Machine Learning (ML)
algorithms (Bellman, 1957). One of the strategies to tackle the curse
of dimensionality is to consider dimensionality reduction (DR) algo-
rithms (Friedman, Hastie, & Tibshirani, 2001). These methods apply
linear or nonlinear transformations to map data into lower-dimensional
spaces (two or three, for visualization purposes). Some supervised DR
methods, like Linear Discriminant Analysis (LDA) (McLachlan, 2004) or
Large Margin Nearest Neighbours (LMNN) (Domeniconi, Gunopulos, &
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Peng, 2005), map the data in order to separate different classes in a
low-dimensional space. Other unsupervised methods like t-distributed
Stochastic Neighbor embedding (t-SNE) (Maaten & Hinton, 2008) or
Uniform Manifold Approximation and Projection (UMAP) (McInnes,
Healy, Saul, & Großberger, 2018), can be employed as an approach
to clustering tasks as they try to group similar data in the lower-
dimensional space.

In this paper, we propose a visualization framework for exploratory
data analysis based on DR and ML techniques. Our framework allows
users to analyze multivariate data streams and preserve the so-called
‘‘mental map’’ (Eades, Lai, Misue, & Sugiyama, 1991) that allows
them to mentally organize and integrate new information into their
existing knowledge structures. The visualization interface enables users
to define regions of interest and to monitor the temporal evolution
of cases by considering a new record each time an event occurs.
Additionally, the interface can also be used to raise alerts when the
evolution of the new records tends towards a risk condition. When new
records are received (in each time window) they are mapped using the
current DR transformation, similar to an out-of-sample forecast. The
current DR transformation is obtained by considering historical records
(the training set). Note that the DR transformation is obtained using
training data collected at some point in time. Therefore, it may not
represent a future context adequately. In practice, users can visualize
the new records and decide whether to use them to compute a new DR
transformation.

The review presented by Dasgupta, Arendt, Franklin, Wong, and
Cook (2018) organizes the different kinds of visualizations for stream-
ing data into three categories, according to their goals: (i) active
monitoring of the evolution process, (ii) follow-up of an event, and
(iii) release situational awareness. The review assesses 22 proposals,
but only one fits into the three defined categories. Our proposal also
belongs to the three categories due to the possibilities of: (i) monitoring
current and historical scenarios, (ii) following-up the progress of a spe-
cific case, and (iii) raising alarms if a case transitions into a risky state.
For this purpose, we combine the use of both information visualization
and ML techniques.

As a case study, we have applied the proposed framework in the
intensive care unit (ICU) of the University Hospital of Fuenlabrada,
a public hospital in the area of Madrid (Spain). Monitoring both the
health status evolution of a particular patient and also the global
health condition is especially relevant in ICU settings. Patients admitted
in this clinical unit have a critical health status and it is essential
to follow them up in order to act as soon as possible and therefore
avoid a non-reversible worsening. Therefore, the health-status real-
time visualization of a patient’s condition is a very relevant tool for
clinicians. In collaboration with the University Hospital of Fuenlabrada,
we analyzed the Electronic Health Records (EHR) of patients with
multi-drug resistant (MDR) bacteria in the ICU. The provided dataset,
which corresponds to real-world data over a period of one year, feeds
our framework as a data stream. The main purpose of the proposed
framework is the early detection of MDR bacteria, which could provide
crucial clinical information for deciding on a particular treatment or
whether to isolate patients with a high risk of having MDR. Towards
that end, the visualization tool enables clinicians: (i) to characterize the
EHR data stream scenario by plotting the data in two dimensions; (ii) to
follow-up and predict the evolution of the health condition of a patient
of interest; and (iii) to define warning regions and configure and raise
alarms according to these regions to potentially identify patients at risk
of having MDR bacteria. Furthermore, clinicians can decide when to
update training data to generate a new model, depending on whether
they are interested in considering long or short periods of time.

The paper is structured as follows. Section 2 presents the state of
the art in streaming visualization. Section 3 describes our framework
and how it fits in with the different proposals on how data streaming
visualization should be. Section 4 presents a case study, considering
real-world data streams registered in the ICU. Finally, in Section 5 we
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draw conclusions and propose future lines of work.
2. Related work

Streaming visualizations can be divided in two types according to
their data treatment. On the one hand, the first type implies that data
is not stored in any way and users only can visualize a snapshot of the
current scenario. On the other hand, the second class involves storing
dynamic data and retrieving it for a data stream. We focus on this
second type since we allow analysts to store the evolution of data to
train ML models. Visualizations for dynamic data have to address some
issues related to the way humans detect changes and movements of the
analyzed elements over time in graphical representations. Specifically,
these visualizations have to try to preserve the context of the data and
their mental map as they are obtained from new data records. This
includes managing the volume and speed of the stream and being able
to identify changes in the represented mappings (Dasgupta et al., 2018;
Endert, Pike, & Cook, 2014).

Most of the user-friendly alternatives to create data visualizations
do not provide native integration with streaming data architectures,
such as Tableau (Inseok & Hyejung, 2017), or it requires adherence to a
payment plan, as it occurs with Qlik Replicate (QlikTech International,
2022). This has prompted the data visualization community to create
ad-hoc graphical interfaces to deal with data streams. Specifically, Das-
gupta et al. (2018) present visualization solutions for streaming data.
Ten of these visualization proposals (Alsakran, Chen, Zhao, Yang, &
Luo, 2011; Bach et al., 2016; Forbes, Höllerer, & Legrady, 2010; Gotz
& Stavropoulos, 2014; Li & Baciu, 2014; Moere, 2004; Satyanarayan,
Russell, Hoffswell, & Heer, 2015; Steiger et al., 2014; Wong, Foote,
Adams, Cowley, & Thomas, 2003; Xie & Qiu, 2007) use scatter plots
as a type of mapping, as in our proposal. Some of them are focused
on data management and performance, leaving the implementation of
the visualization display to the users (Forbes et al., 2010; Satyanarayan
et al., 2015). From the rest of proposals, we want to emphasize specifi-
cally one. Steiger et al. (2014) define a visualization system to analyze
anomalies on sensor data streaming. The tool uses a DR algorithm
to present the obtained data and determine the area of influence of
the clusters from a training stage. As a complement, they also offer a
calendar view. This proposal is the closest to our tool in the reviewed
literature. The main point in common is the use of linear DR projections
to define different areas of anomalies by using the k-Means clustering
algorithm. We differ in the use of other linear and non-linear DR
methods in our process, such as LDA, and UMAP, resulting in linked
mappings that can increase the knowledge obtained by looking at the
information from different points of view.

The tools shown in Dasgupta et al. (2018) are generally designed
for their application in specific fields. For instance, most of the so-
lutions applied are related to the analysis of social network data,
where geolocation is an important feature. This is the case with Scat-
terBlogs2 (Bosch et al., 2013), where the authors use the superposition
of Twitter records on a geographical map. Analysts train a Support-
Vector Machine classifier to determine the messages that are relevant
to the analysis of a topic of interest. Then they visualize through a
color map the relevance of the tweets to track an event. Whisper (Cao
et al., 2012) is also related to the use of social media analysis to track
a process. This tool is developed to focus on data streams between
user groups, such as geographic location, and a topic of interest. The
rest of tools cover other areas, like cybersecurity monitoring (Fischer
& Keim, 2014). The framework that we present in this paper is not
restricted to a particular field and it can be applied to monitor trends,
identify patterns, and make informed decisions in different application
fields, such as finance, healthcare and social media. In particular, we
will illustrate it by using a case study based on healthcare data for
monitoring the patient health status.

Other tools and methods in the literature show the use of incre-
mental algorithms to project new records and deal with the inherent

heterogeneity of streaming data. This is the case of Neves et al. (2020),
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which describes an incremental dimensionality reduction method with-
out the need to revisit the old records. The aim of providing analysts
with an efficient way to deal with the difficulties of heterogeneous
data by using incremental algorithms is also present in Fujiwara et al.
(2019). These tools are useful, but they differ with our proposal in
that we assume a fixed set of features, and even though incremental
algorithms may be useful if applied on top of the proposed method, it
is beyond the scope of this study. Another research (Fekete & Primet,
2016) presents how to reduce the computational time to present data
by performing progressive analysis on incremental data. This proposal
is well defined, and points to future steps in our research, such as may
be the use of progressive algorithms in exploratory data analysis, but
does not allow applying domain expert insight and judgment as our
proposal. By leveraging the streaming nature of trajectory data, the
interactive visualization of hot routes in real-time, by using parallel
processing on GPU, has proven to be effective (Gomes, dos Santos,
Vidal, da Silva, & de Macêdo, 2018; Li, Han, Lee, & Gonzalez, 2007).
The concept of Progressive Visual Analytics is discussed in more depth
in Angelini, Santucci, Schumann, and Schulz (2018).

Specifically in healthcare, visualization tools can provide some ad-
vantages to support clinical decision making (Shneiderman, Plaisant,
& Hesse, 2013). Among these advantages, these tools allow clinicians
to obtain a proper analysis, extract clinical knowledge, characterize
and understand the similarity between scenarios, visualize relation-
ships through comparative analyses, and present risks and warnings.
However, there are still some limitations that should be addressed,
including the ability to stream patient datasets, link or coordinate the
multiple views, group patients, and be interactive and intuitive. The
review by Dunn, Burgun, Krebs, and Rance (2016) presents current
tools designed to meet the needs of multidimensional clinical data
visualization.

The literature on data streaming, ML and healthcare focuses on
performance and robustness of the streaming architectures, rather than
on visualization techniques. However, a recent review (Levy-Fix, Ku-
perman, & Elhadad, 2019) has compiled applications that employ
heuristics, ML and/or data visualization for clinical decision support
(CDS). This review groups the CDS into three classes: (i) infobuttons,
which collects information from external resources such as text files
of medical sources, to show results that match the search criteria;
(ii) content aggregation and organization (CAO), which reorganizes
clinical information recorded in the health information system to ex-
tract knowledge and support decision making; and (iii) alert CDS,
which aims to generate alerts based on clinical data and ML techniques.
Our proposal can fit both in CAO and Alert CDS.

Apart from some works related to the initial stages of the data
analysis process in the ICU (Kotanidou, De Georgia, Kaffashi, Jacono,
& Loparo, 2015; Sun et al., 2020), due to the novelty of data streaming
and the challenges previously described there are just some preliminary
works related to the study of ICU streams. For example, Lauritsen
et al. (2020) presented an explainable early warning score system based
on artificial intelligence for early detection of critical illness for early
detection of acute critical illness. In the same line, an interpretable and
generalizable survival model that predicts sepsis onset in the ICU 4, 6,
8, and 12 h in advance was proposed in Nemati et al. (2018). In Blount
et al. (2010), a platform to collect and analyze data from a neonatal
ICU, which includes a method to raise alarms for the most frequent
diseases in this environment was proposed. Sow, Biem, Sun, Hu, and
Ebadollahi (2010) describe a system capable of predicting the prognosis
of patients on ICU environments based on physiological patient data
streams. A different approach was proposed in Rejab, Nouira, and Amri
(2014), where the authors created a system to tackle the storage and
collection of ICU streaming data. Brich et al. (2020) present a method
to perform comparative analysis among patients admitted in the ICU
by using Time Curves (Bach et al., 2016). Although we believe that
is an interesting perspective, we consider that the use of overlapping
3

areas to compare patients with each others is not the most clear way
to represent them. Our proposal goes beyond, implementing a more
flexible system which makes it possible to consider and evaluate new
DR and ML techniques. The proposed system allows users to visualize
data almost in real time, and to warn, monitor, and analyze data
streams.

3. Streaming visualization proposal for healthcare management

This section describes the specific requirements for visualizing
healthcare streaming data and details the proposed architecture shown
in Fig. 1. In this architecture the clinical records are sent to a Kafka
queue for on-demand retrieval. ML and DR methods can be applied
interactively. The interaction with the DR transformation/ML module
helps users to refine the mapping to achieve the visualization that best
fits the scenario.

3.1. Requirements

Firstly, we have taken into account the difficulties described in Das-
gupta et al. (2018) to come up with our solution. Additionally, we have
incorporated some requirements suggested by the clinicians to visualize
healthcare data streams:

• R1. The framework has to preserve the mental map for as
long as the analyst chooses: The mental map allows the domain
experts to follow the evolution of different events. In our case
study, we track medical patient records. Note that the record
of an ICU patient is in continuous evolution, registering the
specific health conditions at a particular moment, for example,
after a microbiology test is performed. Therefore, each patient
can appear with a different number of records in the training
set, depending on the number of associated events and the length
of the considered time interval. The inclusion of these records
in the dataset is useful to characterize (both in training and
testing) the patient’s progress. This mental map, linked to the
structure of the visual representation, is maintained as long as
the DR transformation is not updated. If the scenario changes
and the transformation is not accordingly updated, immediate
forecasts may no longer be valid and the performance of the
current model worsens. Then, it may be convenient to train a
new model including the most recent records to try to adapt it to
the new situation. Since this may involve changing the analysts’
mental map, it is necessary to allow them to decide freely when
they wish to obtain a new model (which can incorporate long
periods of time).

• R2. Define the refresh rate of the dataset according the an-
alyst and system requirements: The refresh rate for streaming
analytics depends on the analysts’ objectives and the application
field. Some fields, such as urban mobility or live network mon-
itoring to prevent cyber attacks, can need a high refresh rate
than in the healthcare scenario. It is necessary to ensure that the
data presentation rate does not exceed the available computing
capacity or the domain expert’s analysis capability. Through the
user interface, users would set how often the dataset should be
updated in case there were new events. This would allow users to
adapt the refresh rate to the limitations in receiving, processing
and analyzing the data.

• R3. Represent the time variable in the visualizations: The
course of time should be represented in the visualization to guide
users in their decisions. There are different ways to include time
in the graphs, as described in Dasgupta et al. (2018). In this paper,
we show the time evolution by changes in the opacity of markers
that represent records of cases of interest. The incoming records
are added to the previous ones in the mapping, and the opacity of
the old records is modified to represent their time difference with

respect to the currently represented instant. The use of different



Expert Systems With Applications 227 (2023) 120252M.A. Mohedano-Munoz et al.
Fig. 1. Diagram of our streaming architecture.
opacity values in a multi-class scatter plot with several points may
result in unexpected colors composition due to point occlusion.
This can be corrected through the interactive chart by hiding
particular records or by zooming in on a target area. We have also
included the option to display only the records for a defined size
time window and let users to move through the representation by
the slider control included under the visualization as mitigation
of the time representation problem.

• R4. The framework has to preserve historical data: Preserving
previous entries of the data stream can be important to try to
improve ML models. The consideration of previous records makes
it possible to increase the size of the training set and, potentially,
to generate more accurate models and better predictions for new
incoming data. Historical records can be used for training even
when they are hidden in the visualizations. The newly acquired
data are mapped according to the calculated model in an out-
of-sample approach. In our tool we have included the option to
specify the time window used to train the model. The idea is to
provide a simple method so that users can focus on analyzing spe-
cific scenarios where they know interesting cases have occurred
or to avoid the effects of seasonality in the data used to train the
DR models.

• R5. The framework has to enable analyst to track the evo-
lution of a patient: In different fields it is important to be able
to track any case of interest. Our approach represents the case
to be tracked using a different marker in the visualization. This
allows users to quickly identify the case of interest and follow
the evolution. To improve the visual follow-up of a case, we have
linked consecutive projections of the same case in different time
instants. Note that the possibility of visually following a case can
be helpful for analysts if combined with a situational awareness
system based on warning areas.

• R6. The framework has to present situational awareness:
In the use of a streaming visualization tool as a monitoring
system is important to configure alarms to detect patients who
potentially transit to a state of risk, before their health status
worsens. We enable analysts to set alert regions, based on their
perception and domain knowledge, directly on the visualization
mapping. Through these regions, e.g. it is possible to determine
which patients may be at risk as their records are updated in
the stream. It would be desirable that this situational awareness
could be assisted by machine learning techniques but without
eliminating the clinician’s perception and domain knowledge as
a decision-making factor.

Fig. 2 shows our interface for streaming data visualization in health-
care. Clinicians can create up to four interactive visualizations simul-
taneously by utilizing various dimensionality reduction methods for
comparative purposes, based on a selected data source and features
to be analyzed. Our prototype also provides descriptive statistics and
4

measurements of the importance of each feature according to Sanchez,
Raya, Mohedano-Munoz, and Rubio-Sánchez (2020) (see bottom-left
panel) to provide CDS. Since we present a proposal with different
requirements to be considered, we separate our streaming architecture
and our visualization proposal. We will describe the elements related to
data collection and treatment in the following subsection. In addition,
we will explain visualization issues of our framework in Section 3.3.

3.2. Architecture

A typical streaming data architecture consists of a real time pro-
ducer that sends the raw data, a consumer to catch the messages, a
system to perform real time analysis, and a dashboard to show the data.
This kind of architecture needs to present independence between the
producer and the consumer, provide persistent data storage until the
consumer retrieves the information, be ready for message flow peaks,
and be fault tolerant (Dunning & Friedman, 2016).

We choose Apache Kafka (Kreps, Narkhede, Rao, et al., 2011) to
manage our data stream. This technology allows us to manage the entry
of data streams under a publisher-subscriber pattern. We linked the
data production to the Kafka queue through a Python producer. This
structure allows data to be added to the Kafka queue from different
sources and events in the patients’ medical records. The producer
serializes the raw data in JSON format, and sends it to the Kafka queue
at the same time as it is recorded. It also preprocesses the raw data by
correcting invalid format entries. We also linked the Kafka queue with
our application through a Python consumer.

The consumer incorporates the data to our main dataframe every
time that the refresh event is activated. The refresh event is determined
by the update of the time window defined in the user interface. Then,
users can specify the parameters of the DR and ML algorithms inter-
actively (see Fig. 2). The main limiting factor of the architecture for
dealing with streaming data is the execution time of the ML and DR
algorithms. This can be managed by changing the query intervals of
the consumers to the Kafka queue. Based on the visualization, clinicians
can decide whether to train a new model or continue using it during
the next current refresh events. It also allows them to graphically
demarcate regions of interest for their study, which can be used to
highlight patient records within or outside this region, to use it as a
warning signal.

As a dashboard, we have developed a Python application where
clinicians, with the help of visualization experts, can set the visual-
ization parameters and compute the different projections. We have
implemented it using Plotly Dash (Plotly, 2021) to manage the user
interactions and start the Flask (Flask, 2020) server. The sci-kit learn
library (Pedregosa et al., 2011) is used as basis for the ML and DR
algorithms. We have published the tool and its source code online
(http://monkey.etsii.urjc.es/healthcare-streaming-analytics/dynamic-a
nd-interactive-visual-analytics). Its pure Python architecture allows
visualization experts to easily add new functionalities and adopt it to
their needs.
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Fig. 2. Dashboard for streaming data visualization in healthcare. Domain experts can set parameters of visualization and machine learning algorithms through the user interface,
as well as to create alert areas. Clinicians can also support their decision-making through descriptive statistics. Users can select the data source from the area marked as 1, selecting
the features to use and defining the classification and clustering parameters from the section marked as 2. For Visualization 1, users can set its parameters in the field marked as
3 to obtain an interactive visualization in the space marked as 4. This process is similar for each of the desired visualizations (from Visualization 1 to Visualization 4).
Fig. 3. Proposal for a streaming analytics pipeline. The analyst has the option to assess the validity of the previously trained models through the visualizations. If the model is
considered to be valid, it will be employed to map the incoming stream. Otherwise, the analyst can train a new model.
3.3. Visualization

The target of our visualization tool is to provide support so that
healthcare personnel can make predictions about current and future
status of a patient. Domain experts can gain a better understand-
ing of the current scenario and contribute to the analysis of their
field of knowledge. To achieve this goal, we propose a visualization
pipeline and an associated interactive prototype that follows the visual-
information seeking mantra (Heer & Shneiderman, 2012; Shneiderman,
1996).

The proposed pipeline shown in Fig. 3 allows clinicians to decide
which are the most suitable models from visualizations obtained after
applying different DR algorithms. Analysts continue to use the selected
models as long as they consider them effective to perform out-of-sample
forecasts with the incoming data. When users decide that the trained
model is no longer valid for the current situation, the model can be
5

trained again with data between the dates of interest. The idea is to fit
the incoming data records to this new model. In addition, the prototype
allows clinicians to display only a subset of selected records of their
interest.

The prototype considers different supervised and unsupervised al-
gorithms for DR. We considered the following algorithms that allow
us to map incoming data records according to the established model:
Principal Component Analysis (PCA) (Jolliffe & Cadima, 2016), Mul-
tidimensional Scaling (MDS) (Cox & Cox, 2000), Locality Preserving
Projection (LPP) (He, 2005), Locally Linear Embedding (LLE) (Roweis
& Saul, 2000), LDA, LMNN and UMAP. Each algorithm has a differ-
ent objective and can help analysts to extract knowledge from the
dataset. For instance, on the one hand, the objective of the supervised
algorithm LDA is to maximize the classes separability. The most rel-
evant features for every class, and their importance (Sanchez et al.,
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2018), can be characterized through the resulting linear transforma-
tion (Rubio-Sánchez, Raya, Diaz, & Sanchez, 2015). On the other hand,
unsupervised algorithms, such as UMAP, can find underlying cluster
structure in the data according to record similarity. The available
algorithms are explained through a tool tip. We have included in the
tool the possibility of oversampling and undersampling the training
set to deal with the effects of apply dimensionality reduction algo-
rithms on cases of streams with a high imbalanced rate by using
the imbalanced-learn Python library (Lemaître, Nogueira, & Aridas,
2017). DR algorithms that are not sensitive to imbalanced classes are
executed with the whole training set. The options considered are:
Random undersampling, Tomek links (Tomek, 1976), cluster centroids,
SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002) and SMOTE
combined with Tomek links (Batista, Bazzan, Monard, et al., 2003).
Undersampling with the Tomek links algorithm can be used before
training to clean noisy records.

Clinicians can extract different information from the visualizations
according to the parameters and the DR algorithms. Once they consider
the obtained mapping as a reasonable one, they can interact with the
dashboard (see Fig. 2). Clinicians can set points defining the vertices of
a polygon to automatically delimit a region of interest, e.g., the region
where most points of a certain class have been projected. From these
regions they can detect whether the incoming out-of-sample forecast
may have a high probability of belonging to the class of interest. As
a support for this analysis, clinicians can highlight the points inside
or outside the polygon, depending on the objective of the analysis. In
addition, analysts can compare the perception obtained from the graph-
ical classifier (the area built from a polygon defined in the mapping)
with classification methods from ML algorithms. As a demonstration,
we have implemented a 𝑘-NN classifier (Bishop, 2006) that can be
applied on the mapping of all training points. In its most simple variant
(voting 𝑘-NN), the class membership of a new sample is determined
to be the majority class among its nearest (most similar) samples. As
a consequence, its use is very intuitive in 2D even for non-experts
in machine learning, which enables clinicians to directly visualize its
performance in low-dimensional environments as our 2D mapping.
Note that, according to Cover and Hart (1967), the asymptotic error
rate of the voting 𝑘-NN rule is less than twice the Bayes error probabil-
ity. We have also implemented random oversampling (Ramyachitra &
Manikandan, 2014) in the classification pipeline to mitigate the effects
of imbalance associated with the streaming data.

Sometimes the high number of events over time for the entire
data stream scenario can interfere with the clinician’s mental map and
he/she may want to reduce the number of represented records. In other
cases, the analyst’s objective is to understand the whole scenario, which
requires representing all the points involved. Therefore, we represent
all the points and let the clinicians decide whether to hide certain cases
(e.g. patients with a better health status) by means of a filtering option.

4. Case study

In this section we describe the use of the visualization framework
for streaming data in a hospital ICU. In particular, our analysis is fo-
cused on the presence of multidrug-resistant (MDR) bacteria, since they
boost the adverse impact of infections in ICUs (Martínez-Agüero et al.,
2022; Mora-Jiménez, Tarancón-Rey, Álvarez-Rodríguez, & Soguero-
Ruiz, 2021). In this analysis, we, as visualization experts, have provided
support to clinicians. Specifically, to the head of the ICU service and
his team from the University Hospital of Fuenlabrada, in the use of
the framework and dimensionality reduction methods. After its use to
follow up patients, the ICU clinicians positively evaluated the tool,
especially its ability to interact with the visualization in order to
generate warning regions (one or more) based on their knowledge and
needs. They also noted as beneficial the possibility of model retraining
6

when new data suggests the need for a better fitted model.
4.1. Multi-drug resistance bacteria fundamentals

Antibiotics have been powerful drugs to treat certain infections
caused by bacteria. Since the penicillin was discovered in 1928, the use
of antibiotics has saved a lot of lives. However, the misuse and overuse
of antibiotics is contributing to change the bacterial environment and
therefore to increase the number of bacteria resistant to current an-
tibiotics. Indeed, MDR bacteria, i.e., bacteria which are resistant to
multiple antibiotics, is one of the greatest threats to health systems in
many countries around the world (World Health Organization, 2015).

In this paper we focus on streaming analytics associated with MDR
bacteria in the ICU. The main reason is that ICU patients require
critical medical care, and the early identification of bacteria resistant to
antibiotics is essential for an effective therapy. Antimicrobial suscepti-
bility tests are used to detect whether an antibiotic in the antibiogram
is sensitive or resistant to a particular bacterium. Since these results
usually require between 24 and 48 h after the bacterial culture is
collected, we propose to use our visualization framework to try to better
understand antibiotic pressure, making it possible to take adequate
isolation and treatment for patients with high risk of having MDR
bacteria. Therefore, we suggest using our framework to: (1) track the
current situation in the ICU; (2) create warning regions, according to
the expert knowledge, to potentially identify patients at risk of having
MDR bacteria when their projections are inside the region; and (3)
follow the evolution of a patient of interest.

The database used to simulate the data streaming in the current
study consisted of clinical data extracted from the EHR associated
with 2544 ICU patients at the University Hospital of Fuenlabrada
(Spain) in the period between 2014 and 2015. Each data record con-
tains the specific characteristics of a patient at a given time interval,
and it is described by a multivariate time series (MTS). The MTS
represents the families of antibiotics taken by the patient, whether
the patient has mechanical ventilation or not, and the kind of bac-
terial culture collected. A total of 22 antibiotic families (the most
usual) were extracted from the EHR and encoded as binary time se-
ries to indicate whether the patient has taken (or not) the following
families of antibiotics: aminoglycosides, amphenicols, antifungals, car-
bapenems, first, second, third and fourth generation of cephalosporins,
glycopeptide, glycylcyclines, lincosamides, macrolides, monobactams,
nitroimidazoles, oxazolidinones, broad-spectrum penicilins, penicilins,
polymyxins, quinolones, sulfonamides, tetracycline and non-grouped
antibiotics. Regarding mechanical ventilation, a binary time series
indicates if the patient is assisted with automatic ventilation. Finally,
the type of bacterial culture is represented by one of the following
categories: surface, respiratory, catheter, blood, external wound, faeces,
internal medium, urine, sputum, liquid, abdominal or others. The result
of the culture identifies whether a tested antibiotic in the antibiogram
is resistant to a particular bacterium. It is interesting to remark that
the antibiotics the patients intake during their stay in the ICU can be
different to those tested in the culture.

According to the culture’s results and taking into account that
the survival time of bacteria is, on average, 15 days, the patient
streaming records are classified into three different classes: class 0
identifies patients’ records with negative results when testing MDR;
class 1 corresponds to records with negative results to MDR bacteria,
but with positive results to the test during the previous 15 days; class
2 are records with positive results to MDR bacteria. Note that, in this
scenario, it is possible to find imbalance in the number of records per
class.

4.2. Characterization of streaming data

We evaluate here the capabilities of the proposed framework to
represent and analyze the data stream scenario (i.e., the health status
of the patients at a given moment), as well as the evolution of the

patients’ health status in the ICU during a specific period of time.
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Fig. 4. Plots after applying LDA on the training dataset (from 1 September to 21 December 2014), with 524 records (380 in class 0, 78 in class 1 and 66 in class 2). To deal
with imbalanced classes, the training dataset is preprocessed using: (a) SMOTE and (b) Tomek Links. The classes can be activated or deactivated by selecting them in the legend,
allowing users to choose a subset of classes to be visualized.
A screenshot of the framework dashboard was presented in Fig. 2,
where we show the ICU scenario between 2014-09-01 and 2015-01-08.
Each point in the scatter plot corresponds to a patient record, labeled
according to the class the record belongs to. We identify class 0 with
blue, class 1 with green and class 2 with purple. The class records
can be activated (displayed) or deactivated (not displayed) by clicking
in the corresponding class directly in the legend. The markers are
different for the train and the test sets. If a record is employed to
train the model, then it is represented using a circle. If the record
is part of the test set or is an out-of-sample record, it is represented
through an hexagram or six-pointed start. Furthermore, we use three
opacity levels, with values between 1.0 and 0.15 to identify the data
records: (1) the high level, opacity value = 1.0, implies that the record
is linked to the last MDR test of a current ICU patient; (2) medium
level, opacity value = 0.35, represents previous records for a current
ICU patient; and (3) lower level, opacity value = 0.15, identifies records
mapped in the visualization associated with patients that are no longer
in the ICU. The refresh interval for streaming data is established in the
user interface (60 s in the screenshot shown in Fig. 2, see the edit box
‘‘refresh time’’ expressed in seconds in the area marked as 1). A step
represents the data obtained during the last refresh interval. As the time
interval to be represented is very wide (more than three months), we
have simulated the data stream by increasing the data presentation rate
in several orders of magnitude. This way, data collected during one day
are presented every 60 s, allowing us to obtain a larger volume of data
more quickly. In any case, the infrastructure allows us to do it in real
time.

The mental map is created based on the mapping of the patients’
records during the validity period of the trained model. This period
can be established according to clinical criteria. Note that, when the
clinicians consider the model is no longer valid, it should be advisable
to train it again with a more recent data stream. This could lead to a dif-
ferent mapping, which may be somewhat inconsistent with the previous
mental map. As an example of different mappings, we show in Fig. 4 the
LDA projection in the period from September 2014 to December 2014,
but two strategies to handle imbalanced classes are considered. The
results obtained when considering SMOTE are represented in Fig. 4(a),
whereas those with Tomek Links are in Fig. 4(b). We decided to employ
the Tomek Links method as reference to handle imbalanced classes for
the rest of LDA projections in this case study.

The clinicians analyzed the data stream scenario in the ICU with
our help once the model was trained. Note that if the current scenario
changes and the new patients’ records are not adequately represented
by the model, it is possible to train it again including more recent
records to try to properly capture the new situation of the ICU.
7

4.3. Definition of warning regions

Once the clinicians got an overall perspective of the current sce-
nario, they can draw one or more polygons on the projected space
to establish each one as a region of interest. Each region, which can
be easily modified at any time, can be considered as a warning area
associated with potential MDR events. Warning regions can be set
according to the occurrence of cases in the mapping, by defining a
polygon encompassing the selected points, and can include details of
the data to be displayed, on demand. We have included an alarm system
based on the movements of cases in/out the warning regions.

Fig. 5(a) shows an example of the region defined by the points
(streaming records) selected after training the model. It is possible to
raise a warning over the data records when their projection is included
or excluded in the warning region, depending on the purpose of the
analysis. In this case, the clinicians decided to raise a warning for
records within the warning region, which mostly is associated with
class 2 (see Fig. 5(b), with triangle markers for records in the warning
area).

Since the model was trained with the purpose of monitoring and
gaining insights of new incoming records, the clinicians decided to
visualize just the records associated with the step linked to the date
of December 21, 2014, as in Fig. 5(c). Note that there are two records
inside the polygon: one record classified as class 2 (purple triangle) and
another classified as class 0 (blue triangle), although the region was
supposed to be associated with class 2.

This may help experts to follow what is happening at any given time
in the ICU, making it easier to track the patient records not considered
for training the model.

4.4. Patient evolution tracking

Health information systems provide access to patients’ records,
enabling clinicians to follow them up as time evolves in their ICU stay.
Though raw data are available in the bedside monitors for each patient
individually, a general dashboard of the events associated with all ICU
patients is appropriate to get an overview of the ICU environment,
especially when considering the spread of adverse pathogens. The visu-
alization of these records in the same display may help the clinicians to
predict in advance bacterial multi-resistance analytic results. The delay
in a proper diagnosis of multi-resistance bacteria and in the appropriate
treatment presents a risk both to the particular patient and to the
rest of patients in the ICU. Just take into consideration that, in this
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Fig. 5. Warning region defined in accordance with the accumulation of high-risk records (class 2). (a) Training records and warning region; (b) identification of high-risk records,
represented as triangle markers with the color associated with the ground truth class; (c) simplification of (b) just representing records associated with data collected in the ICU
on December 21.
particular application, the culture results are usually provided between
24 and 48 h after taking the biological sample. In this scenario, the
possibility of early MDR predictions would enable the activation of
safety measures, such as patient isolation. It is important to remark
that, to make visualizations independent of the time the culture’s result
is provided, a record is labeled with the corresponding ground truth in
all figures presented in this paper.

Fig. 6 shows the following-up of a patient of interest (marked with
the star diamond symbol) throughout his/her ICU stay from December
22, 2014 to January 9, 2015. Records of patients in the ICU during
this period of time are also represented with hexagrams. The model
was trained with data stream records until December 21, 2014, using
the supervised LDA technique for DR. Panels from (a) to (f) represent
the follow-up of different data stream records for the same patient of
interest. Note that every panel in this figure is associated with a differ-
ent date, and just records registered that specific date are represented
except for the records of the patient who is being tracked (all records
are visualized). In this figure, the first mapped record (marked with
a star diamond symbol) of the patient of interest is on December 22,
2014, one day after training the model using LDA as DR (see Fig. 6(a)).
Note that the record of interest in panel (a) is inside the warning area.
The second record is on December 23, 2014. Though there is no specific
screenshot for this date, we visualize that it is inside the warning area
of high risk. It is labeled as class 2 two days after. The third record
happened on December 25, 2014 (see Fig. 6(b), including the mapping
of the record on December 23). Note that the record mapping of the
patient who is being tracked is outside of the warning region. Two new
bacterial cultures, with positive results, were tested for this patient:
8

on December 27 and 30, 2014. Records associated with these results
are represented in purple in Fig. 6(c). The last record of this patient is
on January 5, 2015 (see Fig. 6(d)). Since the patient was discharged
from the ICU on January 8, the markers related with his/her records
are still depicted in Fig. 6(e) and are not displayed on January 9 (see
Fig. 6(f)). This visualization in real time allows to identify patients who
present high-risk of having MDR bacteria and, consequently, enable
taking appropriate actions as for example, to isolate the patient.

To evaluate the influence of the DR method, Fig. 7 shows the
following-up of the same patient mapped in Fig. 6 when using UMAP
(unsupervised method) instead of LDA. Remark here that, for each
panel, we display both records considered to train the model as records
of test ICU patients during the specified dates. Owing to the high the
number of records, larger-sized dots are depicted to represent mapping
areas with markers overlapping. Firstly, in Fig. 7(a), we represent the
records after training the model. As previously indicated, the patient
of interest is admitted in the ICU on December 22, 2014, and his/her
record is represented by a purple diamond star (see Fig. 7(b)). This
patient was tested on December 23 and 25. Note that these patient
records are mapped on two very different areas, with the most recent
record labeled as class 1 (transition class) and located very distant to
the record mapped on December 23. To complement this explanation,
remark that the result of the bacterial culture on December 25 was
sensitive, and therefore it was assigned to class 1 (see Fig. 7(c)). The
next culture test of the tracked patient was performed on December
27, being multi-drug resistant to some bacteria. As a consequence,
two purple stars associated with records for this patient on December
27 and 30, respectively, are represented in Fig. 7(d). The last record
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Fig. 6. Warning regions in LDA plots for identifying records with high risk due to MDR bacteria (class 2), and following-up of the records of a specific patient (marked with a
star diamond symbol) in the ICU. Records of hospitalized ICU patients during the considered time period (from December 22, 2014 to January 9, 2015 at different steps) are also
represented.
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Fig. 7. Following-up of a patient of interest (marked with a star diamond symbol) throughout his/her ICU stay when using UMAP mappings. Records of patients in the ICU during
the considered time period (from December 21, 2014 to January 5, 2015) are represented with hexagrams, as they are out of the training set.
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Fig. 8. Visual representation of the application of 𝑘-NN on the UMAP visualization
shown in Fig. 7 some days later. Circles indicate records employed as training set
of classes 0, 1 and 2. Hexagrams represent test records of classes 0, 1 and 2. Both
are consistent with the colormap employed along the case study. Red xcross markers
indicate misclassifications.

of this patient is on January 5 and is still class 2 (see Fig. 7(e)).
Note that, once the patient is considered as class 2, next records are
placed in close areas since the clinical condition does not change.
The representation of the whole data stream scenario can support
the patient’s risk assessment by analyzing the mapping of the records
closest to the record of interest.

4.5. Classification with a machine learning algorithm

Once the UMAP visualization was generated, we decided to design
a classifier trained with a ML algorithm. The tool currently allows
users to apply the 𝑘-NN classifier considering the mapped records
after DR to make it possible to intuitively visualize its performance
directly on the 2D mapping. In this case study, the training set is
composed of the original records registered between September 1,
2014 and December 21, 2014. To palliate the effects of the class
imbalance in the training set, we perform a preprocessing stage of
random oversampling (Ramyachitra & Manikandan, 2014).

The classifier performance was evaluated on a test set not con-
sidered for training the classifier. In particular, we chose all patients
between December 22, 2014 and January 9, 2015, i.e., 15 ICU patients
providing 97 records. Following the heuristic proposed in Dasarathy
(1991) and widely used in the literature, we chose 𝑘 ≈

√

𝑛 by default,
where 𝑛 is the number of cases in the original training set. In this
case, 𝑘 = 22. Quantitative results about classification (both in absolute
and relative numbers) are presented in Table 1, while visualization
of misclassifications is displayed with red xcross marker in Fig. 8.
Note that the best accuracy is obtained for class 2 (63.63%), which is
the class of greatest interest for the clinicians. The worst performance
corresponds to the classification of records labeled in class 1 (47.61%).
This result seems reasonable since class 1 can be considered as a
transition class between negative and positive MDR results.

The early identification and the tracking of patients with high risk
to be multi-drug resistant in real time may provide useful knowledge
for the patient, for the ICU, and for the healthcare system in general.

5. Conclusions and future work

This paper proposes the analysis of multidimensional data streams
through visualization as a support to decision-making. Data streams
11
Table 1
Confusion matrix of the test set when applying 𝑘-NN on the UMAP visualization. Rows
indicate the ground truth label of the record, and columns the label predicted with
𝑘-NN.

Predicted class Total

Class 0 Class 1 Class 2

Class 0 17 (51.51%) 6 (18.18%) 10 (30.30%) 33 (100%)
Class 1 12 (28.57%) 20 (47.61%) 10 (23.80%) 42 (100%)
Class 2 3 (13.63%) 5 (22.72%) 14 (63.63%) 22 (100%)

present some challenges, such as the changing underlying dynamics in
the data over time, and no control about class imbalance. Our approach
is a framework oriented to fields with continuous data generation. It is
based on a publish-subscriber architecture to incorporate the data and
an interactive dashboard where DR and ML algorithms are applied.

The data analysis pipeline is subject to user decisions. It is also up to
users to decide whether to train a new model to preserve their mental
map. We have shown that the methodology developed can be useful for
identifying and tracking a possible worsening. It can also be useful for
extracting a global and historical perspective on different settings.

In the particular case study presented in this paper, we analyzed
MDR bacteria in ICU patients. With our prototype, it is possible to
identify in the visualization the warning regions for records associated
with patients with multi-resistant bacteria. These regions can be used
to generate alerts for new records projected through out-of-sample
approaches. Even with the presence of false positives in this area, clin-
icians tracked patients during their ICU stay and exploit the temporal
evolution of the records.

As a future work, our approach can be adapted to solve challenging
problems. If the problem requires large-scale datasets, it may be inter-
esting to migrate the management of ML algorithms and visualization
to other alternatives that rely on GPU-based paradigms. Similarly,
we plan to include other classification machine learning methods be-
yond 𝑘-NN, such as decision trees, support vector machines or neural
networks (Bishop, 2006) that can complement our visual analytics
approach. Also of interest is the consideration of A-tSNE (Pezzotti et al.,
2017), an implementation of t-SNE for progressive visual analysis. The
use of A-tSNE may be interesting as an alternative to UMAP. In this
line of work, it also would be interesting to migrate the dimension-
ality reduction algorithms included in the framework to incremental
algorithms in order to deal with the heterogeneous nature of streaming
data.
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