
Topology and its Applications 339 (2023) 108586
Contents lists available at ScienceDirect

Topology and its Applications

journal homepage: www.elsevier.com/locate/topol

Geometry of SU(3)-character varieties of torus knots

Ángel González-Prieto a,b, Javier Martínez c,∗, Vicente Muñoz a

a Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad 
Complutense de Madrid, Plaza Ciencias 3, 28040 Madrid, Spain
b Instituto de Ciencias Matemáticas (CSIC-UAM-UCM-UC3M), C. Nicolás Cabrera 13-15, 28049 
Madrid, Spain
c Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología Electrónica, 
E.S. Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C. Tulipán 0, 28933 Móstoles, 
Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 July 2022
Received in revised form 15 
November 2022
Accepted 2 May 2023
Available online 16 May 2023

Dedicated to Prof. José Manuel 
Rodríguez Sanjurjo on the ocassion 
of his 70th birthday

MSC:
14M35
14D20
20G15

Keywords:
Torus knots
Character variety
Representation varieties
Unitary group

We describe the geometry of the character variety of representations of the knot 
group Γm,n = 〈x, y|xn = ym〉 into the group SU(3), by stratifying the character va-
riety into strata corresponding to totally reducible representations, representations 
decomposing into a 2-dimensional and a 1-dimensional representation, and irre-
ducible representations, the latter of two types depending on whether the matrices 
have distinct eigenvalues, or one of the matrices has one eigenvalue of multiplicity 
2. We describe how the closure of each stratum meets lower strata, and use this 
to compute the compactly supported Euler characteristic, and to prove that the 
inclusion of the character variety for SU(3) into the character variety for SL(3, C)
is a homotopy equivalence.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction

Let Γ be a finitely generated group a G a real or complex algebraic group. A representation of Γ into 
G is a group homomorphism ρ : Γ → G. Consider a presentation Γ = 〈γ1, . . . , γk|{rλ}λ∈Λ〉, where Λ is 
the (possibly infinite) indexing set of relations of Γ. The map ρ is completely determined by the k-tuple 
(A1, . . . , Ak) = (ρ(γ1), . . . , ρ(γk)) subject to the relations rλ(A1, . . . , Ak) = Id, for all λ ∈ Λ.
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In this way, the set of representations of Γ into G is in bijection with the set

R(Γ, G) = {(A1, . . . , Ak) ∈ Gk | rλ(A1, . . . , Ak) = Id, for all λ ∈ Λ } ⊂ Gk . (1)

Notice that when G is an affine algebraic group, even if the set of relations Λ is infinite, the set R(Γ, G) is 
defined by finitely many equations thanks to the noetherianity of the coordinate ring of Gk.

In this setting, two representations ρ and ρ′ are said to be equivalent if there exists g ∈ G such that 
ρ′(γ) = g−1ρ(γ)g, for every γ ∈ Γ. In the case that there is a faithful representation G ⊂ GL(V ), this 
means that ρ and ρ′ are the same representation up to a G-change of basis of V . The moduli space of 
representations can be thus obtained as the GIT quotient

X(Γ, G) = R(Γ, G)�G .

Recall that, by definition, the GIT quotient of the affine variety R(Γ, G) = Spec(A) under the action of a 
reductive group G is R(Γ, G) �G = SpecAG, where AG is the (finitely generated) k-algebra of G-invariant 
elements of A.

An important instance is G = GL(r, C), in which we recover the classical notion of a linear representation 
of Γ as a Γ-module structure on the vector space Cr. This case has been thoroughly studied in [9], among 
others. It is worth noticing that, when Γ is actually a finite group, the vector space Cr can be equipped 
with a Γ-invariant hermitian metric. Hence, any representation ρ : Γ → GL(r, C) descends to an U(r)-
representation

Γ
ρ

ρ̃

GL(r,C)

U(r)

In other words, this means that X(Γ, GL(r, C)) = X(Γ, U(r)). However, in the general case in which Γ
is only finitely generated, such an invariant metric may not exist so X(Γ, U(r)) is only a real subvariety 
of X(Γ, GL(r, C)). Similar considerations can be done in the case in which we fix the determinant of the 
representation, so we analyze the descending property of representations induced by the inclusion SU(r) ↪→
SL(r.C), which exhibits X(Γ, SU(r)) as a real subvariety of X(Γ, SL(r, C)).

The properties of these subvarieties have been widely studied in the literature, as in [1] or [3]. Furthermore, 
in [6] (see also [2,4,5]) the authors proved that, when Γ is a free product of nilpotent groups or a star-shaped 
RAAG (Right Angled Artin Groups), the inclusion X(Γ, U(r)) ↪→ X(Γ, SL(r, C)) is a deformation retract 
for any reductive group G (a property called flawed). On the contrary, for Γ = π1(Σg), the fundamental 
group of a compact orientable surface Σg of genus g ≥ 2, this inclusion is never a homotopy equivalence 
when G is reductive and non-abelian (it is said that Γ is a flawless group in the language of [6]). These 
character varieties have been extensively studied, as in [10] for g = 2 and G = SU(2) or in [7] regarding the 
ergodic properties of the action of the mapping class group of Σg.

However, the case in which Γ = π1(S3−K) is the fundamental group of the 3-dimensional complement of a 
knot K ⊂ S3 is not fully understood. The analyses of [12] and [14] prove that such inclusion is a deformation 
retract in the case SU(2) ↪→ SL(2, C) and Γ the torus knot group. However, despite the geometry of the 
SL(3, C)-character varieties of torus knots has been studied in [15] and the SL(4, C)-character varieties in 
[8], almost nothing is known for the compact counterparts SU(r) for r ≥ 3.

The goal of this paper is to give the first steps towards this aim and to study the geometry of the SU(r)-
character varieties of torus knots for r ≥ 3, with particular attention to the case r = 3. In Section 2 we 
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discuss some generalities about these character varieties, proving in particular that SU(r)-representations 
are always semi-simple.

This property allows us to stratify the SU(r)-character variety in a natural way depending on the dimen-
sions of the irreducible pieces appearing in its semi-simple decomposition, as discussed in Section 3. Two 
strata can be fully understood in this setting: the stratum of totally reducible representations (Section 3.1) 
and the one of irreducible representations (Section 3.2). In the former case, we show that the totally ir-
reducible representations form a fiber bundle over S1 with fiber a certain (r − 1)-dimensional simplex. In 
the latter, we characterize such irreducible representations as a particular subspace of the bi-orbit space 
(S1)r\ U(r) /(S1)r.

This description is exploited in Section 4 to describe the geometry of the U(2)-character variety of torus 
knots. However, the core of the work starts at Section 5. There, we provide explicit expression of each of 
the strata that comprise the SU(3)-character variety. To be precise, we obtain the following result.

Theorem. Let Γ be the (n, m)-torus knot group with n and m coprime. The SU(3)-character variety of Γ
decomposes into strata

X(Γ,SU(3)) = Y(1,1,1) � Y(3) � Y(2,1),

corresponding to totally reducible representations, irreducible representations and representations that de-
compose into the direct sum of a 2-dimensional representation and a 1-dimensional representation, respec-
tively. The closure of each statum is as follows:

• Y(1,1,1) is already a closed 2-dimensional triangle.
• Y(3) is the disjoint union of two spaces. The first one is made of 1

2 (n − 1)(m − 1)(n + m − 4) disjoint 
closed 2-dimensional triangles. The second one is a disjoint union of 1

12 (n − 1)(n − 2)(m − 1)(m − 2)
spaces which fiber over a closed 2-dimensional triangle, with fiber S2 over the interior. The fibration 
over the boundary of the triangle is isomorphic to a closed Möbius band.

• Y(2,1) is a disjoint union of 	1
2 (n − 1)
1

2 (m − 1) closed cylinders and, when n is even, 1
2 (m − 1) closed 

Möbius bands.

Furthermore, in Section 6 we provide an explicit description of how these strata intersect to form the 
CW-complex structure of X(Γ, SU(3)). From this information it is possible to extract some homological 
invariants, as done in Section 7, which give rise to the following result.

Theorem. Let Γ be the (n, m)-torus knot group with n and m coprime. The SU(3)-character variety of Γ
satisfies the following:

(1) For n, m odd, the Euler characteristic with compact support of X(Γ, SU(3)) is

χc(X(Γ,SU(3))) = 1 + (n− 1)(m− 1)
(
n + m− 4

2 + 5(n− 2)(m− 2)
12

)
.

(2) For n = 2 and odd m, the homology of X(Γ, SU(3)) is

Hk(X(Γ,SU(3))) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z if k = 0,
0 if k = 1,
Z

1
2 (m−1)(m−2) if k = 2,

0 if k ≥ 3.
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From this result and the ones of [15], we get that the homologies of the SU(3) and SL(3, C)-character 
varieties agree for n = 2, m odd. Moreover, we have the following result.

Theorem. Let Γ be the (2, m)-torus knot group with m odd. The inclusion

X(Γ,SU(3)) ↪→ X(Γ,SL(3,C))

is a homotopy equivalence.

This is an indication that knot groups Γ = Γm,n are probably flawed, that is the inclusion X(Γ, K) ↪→
X(Γ, G) of the associated character variety to the maximal compact subgroup K ⊂ G is a deformation 
retract, for any G.

Acknowledgments The first author has been partially supported by Comunidad de Madrid R+D Project 
PID/27-29 and Ministerio de Ciencia e Innovación Project PID2021-124440NB-I00 (Spain), and the third 
author has been partially supported by Ministerio de Ciencia e Innovación Project PID2020-118452GB-I00 
(Spain).

2. SU(r)-representation varieties of torus knots

In this section, we discuss some properties of the U(r) and SU(r)-character varieties of torus knots. Recall 
that, given coprime natural numbers n, m, the (n, m)-torus knot group is the group

Γn,m = 〈a, b | an = bm 〉.

This group arises in low dimensional topology as the fundamental group of the knot complement R3 −K, 
where K is the so-called (n, m)-torus knot that gives n turns around the meridian and m turns around the 
parallel of the naturally embedded torus S1 × S1 ⊂ R3. In other words, K is the image in R3 of the skew 
line in the square representation of the torus with rational slope n/m.

In this way, the associated G-representation variety is

R(Γn,m, G) = {(A,B) ∈ G |An = Bm }.

These varieties have been previously studied in [8,12,14,15], among others.
If G = GL(r, C), SL(r, C), U(r) or SU(r), a representation ρ is reducible if there exists some proper linear 

subspace W ⊂ Cr such that for all γ ∈ Γ we have ρ(γ)(W ) ⊂ W ; otherwise ρ is irreducible. If ρ is reducible, 
then there is a flag of subspaces 0 = W0 � W1 � . . . � Wr = Cr such that ρ leaves Wi invariant, and it 
induces an irreducible representation ρi in the quotient Vi = Wi/Wi−1, i = 1, . . . , r. Then ρ and ρ̂ =

⊕
ρi

define the same point in the quotient X(Γ, G). We say that ρ̂ is a semi-simple representation, and that ρ
and ρ̂ are S-equivalent. The space X(Γ, G) parametrizes semi-simple representations [11, Thm. 1.28].

Now, let us suppose that G = U(r) and let (A, B) ∈ R(Γn,m, G). In that case, both A and B are 
diagonalizable in an orthonormal basis. So there exists Q ∈ U(r) such that Q−1AQ is diagonal, and the 
representation (A, B) is equivalent to a representation of the form

⎛
⎜⎜⎝A =

⎛
⎜⎜⎝
λ1 0 . . . 0
0 λ2 . . . 0
...

. . .
...

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝
b11 b12 . . . b1r
b21 b22 . . . b2r
...

. . .
...

⎞
⎟⎟⎠
⎞
⎟⎟⎠ . (2)
0 0 . . . λr br1 br2 . . . brr
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Here, the eigenvalues λ1, . . . , λr ∈ S1 and the column vectors of B, namely b1 = (b11, b21, . . . , br1), . . ., 
br = (b1r, b2r, . . . , brr) form an orthonormal basis of Cr. Note that this standard form of the representation 
is not unique.

In this way, the representation (A, B) is reducible if and only if it has a standard form (2) such that all 
bij = 0 for s < i ≤ r and 1 ≤ j ≤ r − s for some 1 < s < r, i.e. if the s × (r − s) left-bottom block of B
vanishes. However, the fact that A, B ∈ U(r) allows us to get a stronger result.

Proposition 1. Every U(r)-representation is semi-simple.

Proof. Let (A, B) be the standard form (2) of the representation with its s × (r−s) left-bottom block being 
zero. This means that 〈b1, . . . , br−s〉 = 〈e1, . . . , er−s〉. Hence, since bj ∈ 〈b1, . . . , br−s〉⊥ = 〈e1, . . . , er−s〉⊥ for 
j > r − s, we have that bij = 0 for i ≤ r − s. Therefore, also the (r − s) × s right-upper block vanishes and 
thus (A, B) is semi-simple. �
Remark 2. An alternative proof of Proposition 1 is the following. Recall that the U(r)-orbit of any repre-
sentation contains in its closure a semi-simple representation. As U(r) is a compact group, its orbits are 
closed and thus the limit semi-simple representation actually lies in the orbit.

We can diagonalize B and write it as

B = P

⎛
⎜⎜⎝
ν1 0 . . . 0
0 ν2 . . . 0
...

. . .
...

0 0 . . . νr

⎞
⎟⎟⎠P−1, P =

⎛
⎜⎜⎝
p11 p12 . . . p1r
p21 p22 . . . p2r
...

. . .
...

pr1 pr2 . . . prr

⎞
⎟⎟⎠ , (3)

for a matrix P whose column vectors p1 = (p11, p21, . . . , pr1), . . . , pr = (p1r, p2r, . . . , prr) form an orthonor-
mal basis of Cr, namely an orthonormal basis of eigenvectors of B, and some eigenvalues ν1, . . . , νr ∈ S1. 
Observe that, by Proposition 1, since a reducible representation is semi-simple, if (A, B) is reducible then 
there must exist a choice of eigenvectors that gives a block structure in P . In other words, the representation 
(A, B) is irreducible if and only if there exists no vanishing sub-minor in P in any possible expression as in 
(3).

Remark 3. Completely analogous descriptions can be done in the SU(r) case. In this setting, any repre-
sentation can also be put in the forms (2) and (3) but the eigenvalues must additionally satisfy 

∏
λi = 1

and det(B) = 1 (equivalently, 
∏

νi = 1). Moreover, since the U(r)-orbits are the same as the SU(r)-orbits, 
Proposition 1 also holds for SU(r)-representations.

The aim of this paper is to compare the GL(r, C) and SL(r, C)-character varieties with their counterparts 
for their maximal compact subgroups U(r) and SU(r). To shorten notation, we shall denote

Xr = X(Γm,n,SL(r,C)), X̃r = X(Γm,n,GL(r,C)),
Yr = X(Γm,n,SU(r)), Ỹr = X(Γm,n,U(r)).

Observe that the eigenvalues of A and B induce maps

H : Yr → Symr(S1) × Symr(S1), H̃ : Ỹr → Symr(S1) × Symr(S1). (4)

Here, Symr(X) denotes the symmetric product Symr(X) = Xr/Sr, where the symmetric group Sr acts 
by permutation of the factors. These maps assign H̃(A, B) = ({λ1, . . . , λr}, {ν1, . . . , νr}) and analogously 
for H. However, it is not a fibration and, indeed, H̃ is not even surjective since, as An = Bm, we must have 
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that {λn
1 , . . . , λ

n
r } = {νm1 , . . . , νmr }. However, we can stratify the base space Symr(S1) × Symr(S1) to get 

control of the maps H and H̃.

3. Stratification of the character variety

Consider a partition π = (r1, (a1). . . , r1, . . . , rs, (as). . . , rs) of r, that is, r = a1r1 + . . . + asrs, where r1 > r2 >

. . . > rs > 0 and ai ≥ 1. We can consider the locally closed subvariety Ỹπ ⊂ Ỹr of isomorphism classes of 
representations of the form

ρ =
s⊕

t=1

al⊕
l=1

ρtl, (5)

where ρtl : Γ → U(rt) is an irreducible representation. In particular, for π = (1, (r). . ., 1), Ỹπ corresponds to 
the totally reducible representations, which we shall denote by ỸTR

r ; whereas for π = (r), Ỹπ corresponds 
to the irreducible representations, which we shall denote by Ỹ∗

r .
By its very definition, for any partition π = (r1, (a1). . . , r1, . . . , rs, (as). . . , rs) of r, we have an isomorphism

Ỹπ =
s∏

t=1
Symat Ỹ∗

rt . (6)

Moreover, by Proposition 1, every U(r)-representation is semi-simple, so it can be written in the form (5)
for some partition π. Hence, we have a natural stratification

Ỹr = �
π∈Πr

Ỹπ = �
π∈Πr

s∏
t=1

Symat Ỹ∗
rt ,

where Πr is the set of all partitions of r.
A similar decomposition can be set for SU(r),

Yr = �
π∈Πr

Yπ,

where Yπ = Ỹπ ∩Yr are those representations from (5) with 
∏

t,l det(ρtl) = 1. However, observe that in this 
setting we no longer have an analogous decomposition (6).

As in the U(r)-case, for π = (1, (r). . ., 1), we get Yπ = YTR
r , the set of totally reducible representations, and 

for π = (r), we get Yπ = Y∗
r , the set of irreducible representations.

3.1. The totally reducible locus

In this section, we shall study the stratum of totally reducible representations, corresponding to the 
partition π = (1, (r). . ., 1). As we shall show, this space is strongly related to symmetric products of circles.

Lemma 4. Ỹ1 = Ỹ∗
1
∼= S1.

Proof. Given (λ, ν) ∈ X̃1, if λn = νm and m, n are coprime, there exists a unique t ∈ C∗ such that 
λ = tm, ν = tn, so that X̃1 ∼= C∗. If |λ| = |ν| = 1, then |t| = 1 and we get that Ỹ1 ∼= S1 ⊂ X̃1 ∼= C∗. �
Proposition 5. We have an isomorphism

ỸTR
r

∼= Symr(S1),
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where Symr(S1) is a fiber bundle Symr(S1) → S1 with fiber the (r − 1)-simplex

Δr−1 =
{

(u1, . . . , ur) ∈ Rr
∣∣ui ≥ 0,

r∑
i=1

ui = 1
}
,

and monodromy given by the map (u1, . . . , ur) �→ (ur, u1, . . . , ur−1).

Proof. We have Ỹ1 ∼= S1 by Lemma 4 and ỸTR
r

∼= Symr(S1) by (6), where a totally reducible representation 
is given by a pair (A, B), where A = diag(tm1 , . . . , tmr ) and B = diag(tn1 , . . . , tnr ), |ti| = 1, and the isomorphism 
is given by (A, B) �→ {t1, . . . , tn} ∈ Symr(S1). In other words, there is a unique unitary diagonal matrix 
D = diag(t1, . . . , tr) for any totally reducible pair (A, B) that is simultaneously an m-th root for A and an 
n-th root for B.

In order to describe Symr(S1), we can consider the map p : Symr(S1) → S1 given by the determinant of 
D, p({t1, . . . , tr}) = t1 · · · tr. When the pair is a SU(r)-representation so that (A, B) ∈ YTR

r , det(t1 · · · tr) = 1
so that p−1(1) = YTR

r ⊂ ỸTR
r .

We check now that YTR
r , the fiber over 1, is an (r− 1)-simplex. Given {t1, . . . , tr} ∈ Symr(S1) such that ∏

ti = 1, we can regard them as n unordered points on the circle and choose an initial point t1. After this 
choice, we can order the remaining points anticlockwise and also choose liftings s1, . . . , sr ∈ R so that, via 
the exponential map, e2πisi = ti and s1 ≤ s2 ≤ . . . ≤ sr, using the logarithm with branch cut at t1. If the 
multiplicity of the first point is greater than one, so that some of them are lifted in last position having 
gone once around the circle, the only consequence is that sr ≤ s1 + 1.

Since 
∏

ti = 1, we obtain that 
∑

si ∈ Z. In fact, any integer can be obtained as 
∑

si, choosing appro-
priately the first point (choosing the second point as the first and placing the first as last increases the sum 
by 1, if we keep the branch cut fixed) and the logarithm (the total sum changes by multiples of r), so we 
can assume that 

∑
si = 0. This determines uniquely the first point in the cyclic order, and hence uniquely 

determines the unordered set of points. Therefore the fiber p−1(1) is bijective to the set:

A := {(s1, . . . , sr) ∈ Rr |
∑

si = 0, si ≤ si+1, sr ≤ s1 + 1}. (7)

Define the map ϕ : A → Y TR
r , given by

ϕ(s1, . . . , sr) = {e2πis1 , . . . , e2πisr} ∈ (S1)r/Sr .

This map is continuous, the first space is compact, and the second is Hausdorff, hence it is an homeomorphism 
with its image, ϕ(A) ∼= Y TR

r . Now take ui = si+1 − si, i = 1, . . . , r − 1, ur = s1 + 1 − sr. Therefore, 
we have the conditions ui ≥ 0, 

∑r
i=1 ui = 1 and si = s1 + u1 + . . . + ui−1, i = 1, . . . , r. The sum is 

0 =
r∑

i=1
si = rs1 + (r − 1)u1 + . . . + ur−1, which uniquely determines s1 = − 

r−1∑
i=1

r−i
r ui.

To check that p defines a fiber bundle structure, note that Symr(S1) can be trivialized over any t ∈ S1

via the map φ : p−1(t) × (S1 − {−t}) −→ p−1(S1 − {−t}),

φ({t1, . . . , tr}, teiθ) = {eiθ/rt1, . . . , eiθ/rtr},

for θ ∈ (−π, π). In other words, the fiber over 1 and the fiber over t ∈ S1 can be identified by multiplying 
by a suitable r-th root of diag(t, . . . , t), well defined after taking a branch cut for the logarithm. The gluing 
map for this fiber bundle at the branch cut increases the total sum of the liftings si by 1, which results in 
a coordinate transformation

(s1, . . . , sr) �→
(
sr − 1 + 1

, s1 + 1
, s2 + 1

, . . . , sr−1 + 1
)
,

r r r r
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after normalizing so that 
∑

si = 0. Therefore

(u1, . . . , ur) �→ (ur, u1, . . . , ur−1),

since s1 − sr + 1 = 1 − u1 − . . .− ur−1. �
The description of the last gluing map provides the following.

Corollary 6. ỸTR
r is orientable for odd r, non-orientable for even r. For r = 2 it is a Möbius band.

From the proof of Proposition 5, that the fiber map Symr(S1) → S1 is exactly the determinant map. 
Hence, if we fix the determinant, we directly get the following description of the totally reducible SU(r)-
representations.

Corollary 7. We have an isomorphism YTR
r

∼= Δr−1.

Some results of this section are also proved in [13] and [4, pag. 467], where the latter makes use of the 
Lie algebra su(r).

3.2. The irreducible locus

Consider an irreducible representation (A, B) ∈ Ỹ∗
r . We can conjugate (A, B) into its standard form 

(2) so the eigenvalues of A are λ1, . . . , λr. Let ν1, . . . , νr be the eigenvalues of B so the map H̃ : Ỹr →
Symr(S1) × Symr(S1) is (A, B) �→ ({λ1, . . . , λr}, {ν1, . . . , νr}).

Proposition 8. Let (A, B) ∈ Ỹ∗
r with eigenvalues λi and νi, respectively. Then there exists � ∈ S1 such that 

An = Bm = � Id. Moreover, there exist unique t1, . . . , tr ∈ S1 such that tnmi = �, λi = tmi and νi = tni , for 
all 1 ≤ i ≤ r. If, in addition, (A, B) ∈ Y∗

r then there exist finitely many choices for the eigenvalues λi, νi.

Proof. Let (A, B) ∈ Ỹ∗
r . Since AnB = BmB = BBm = BAn we have that An is an U(r)-equivariant map. 

Hence, by Schur lemma we have An = � Id for some � ∈ C∗ and, a fortiori, since An ∈ U(r) also � ∈ S1. 
Obviously, we also have Bm = An = � Id.

As a consequence, if λ1, . . . , λr and ν1, . . . , νr are the eigenvalues of A and B, we have

λj = εjλ1, εj ∈ μn, j ≥ 2,

νj = εjν1, εj ∈ μm, j ≥ 2.

Here μs denotes the group of s-th roots of unity. In particular, λ1 = tm and ν1 = tn, for some t ∈ S1. As 
gcd(n, m) = 1, this t is unique. Clearly tnm = �.

If the representation is in Y∗
r , that is, an SU(r)-representation, then �r = det(An) = 1, so � ∈ μr. This 

implies that tnmr = �r = 1, thus t ∈ μnmr. This gives finitely many choices for the eigenvalues of A and 
B. �
Remark 9. The element t only depends on a given choice of λ1, ν1, that is, a given ordering of the eigenvalues.

We can stratify Symr(S1) according to the number of coincident eigenvalues. To be precise, given a 
partition τ = (r1, (a1). . . , r1, . . . , rs, (as). . . , rs) ∈ Πr, let us denote by Symr

τ (S1) the collection of sets {λ1, . . . , λr}
such that there are a1 groups of r1 equal eigenvalues, a2 groups of r2 equal eigenvalues and so on. In 
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particular, τ0 = (1, (r). . ., 1) corresponds to different eigenvalues. In this way, given partitions τ1, τ2 ∈ Πr, we 
set

Ỹτ1,τ2 = H̃−1(Symr
τ1(S

1) × Symr
τ2(S

1)),

and we similarly define Ỹ∗
τ1,τ2 = Ỹτ1,τ2 ∩ Ỹ∗

r for the irreducible locus. These are isomorphism classes of 
representations (A, B) such that A has coincident eigenvalues given by τ1 and B has coincident eigenvalues 
given by τ2. Each representation belongs to one of these sets, and the associated pair of partitions (τ1, τ2)
is called the type of the representation. Hence, we get a stratification

Ỹr = �
τ1,τ2∈Πr

Ỹτ1,τ2 . (8)

Notice that some of the strata Ỹτ1,τ2 may be empty in this decomposition. Moreover, this shows that the 
maximal component of Ỹr corresponds to the type (τ0, τ0).

Theorem 10. The fiber of the map H̃ : Ỹτ0,τ0 → Symr
τ0(S

1) × Symr
τ0(S

1) is isomorphic to

F r := (S1)r\U(r) /(S1)r,

where the first (S1)r acts by row multiplication and the second one by column multiplication. Furthermore, 
there is a surjective map ϕ : F r → B, where B is the closed orthant Br−1 ⊂ Sr−1, defined as

Br−1 =
{
(b1, . . . , br) ∈ Rr

≥0
∣∣ b21 + . . . + b2r = 1

}
,

satisfying the following properties:

• Let B0 ⊂ B be the interior of the orthant. Then ϕ−1(B0) is solely composed of irreducible representa-
tions and ϕ|ϕ−1(B0) is a trivial fiber bundle with fiber CP r−2 �CP r−3 � . . .�CP 1 (that is, an iterated 
bundle of these spaces).

• The preimage of the boundary of the orthant contains both reducible and irreducible representations.

Proof. Consider (A, B) ∈ Ỹτ0,τ0 with fixed different eigenvalues and let us write it as in (2) where B is 
decomposed as in (3). There is an action of (S1)r on the eigenvectors of A, that rescales by S1 each of 
the rows of P (a left action by multiplication on U(r)), and an action of S1 on the eigenvectors of B, that 
rescales each column (a right action on U(r)). In this manner, we have that the fiber is contained in

(S1)r\U(r) /(S1)r. (9)

In this setup, the irreducible fiber Ỹ∗
τ0,τ0 is the collection of such classes of matrices where there exist no 

s × (r − s) zero minors in B, since otherwise the subspace generated by some of the eigenvectors of A and 
B would be invariant.

Let us describe the open set of this double quotient (S1)r\ U(r) /(S1)r where the first column vector has all 
its component non-zero. First, note that such representations will be irreducible by Proposition 1. Because of 
the left (S1)r-action we may assume that the first column (p11, p21, . . . , pr1) ∈ Rr

>0, with 
∑

p2
i1 = 1, defining 

an orthant B0 of Sr−1, homeomorphic to an open (r − 1)-ball. The second eigenvector is orthogonal to v1
and unitary, so it belongs to S2r−3 ⊂ Cr−1. It is uniquely determined up to the S1-action, hence it belongs 
to S2r−3/S1 ∼= CP r−2. The same construction shows that w3 ∈ S2r−5/S1 ∼= CP r−3, w4 ∈ CP r−4 up to 
wr, which is uniquely determined up to the S1-action on the last column. The real dimension of this set is 
(r − 1) + 2(r − 2) + . . . + 2 = (r − 1)2, which matches the dimension of (9). �
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Every reducible representation with eigenvalues of type (τ0, τ0) will appear as a representation that 
belongs to the boundary of the orthant. For instance, in any case, the vertices bi = 1 of B are reducible 
representations, since they correspond to the case in which the first eigenvector of B, p1, agrees with a 
canonical basis vector, that is, an eigenvector of A, hence providing a 1-dimensional invariant subspace. 
Moreover, the fiber over a vertex is actually isomorphic to the space F r−1 = (S1)r−1\ U(r − 1)/(S1)r−1. 
The set of totally reducible representations ỸTR

r appears at the corners bi of the orthant B.
In general, a reducible representation will occur when there is a k-dimensional invariant subspace H =

〈ea1 , . . . , eak
〉 = 〈pb1 , . . . , pbk〉, which gives rise to a identically zero sub-minor in P corresponding to the 

indices ({1, . . . , r} − {a1, . . . , ak}) × {b1, . . . , bk}. Because of Proposition 1, the induced representation on 
H⊥ will also determine an (r−k)-dimensional sub-representation. In the case that the representation is sum 
of two irreducible representations, that is corresponding to π = (k, r− k), then the corresponding subset of 
the fiber is given by

F k × F r−k . (10)

4. U(2)-character variety

For U(2), we have two possible partitions: (2) and (1, 1).

(1) The partition π = (2) corresponds to the irreducible representations. Observe that, in this case, both 
the eigenvalues of A and B must be different. Hence, by Theorem 10, we know that the fiber of the 
map H̃ : Ỹ∗

2 → Sym2(S1) × Sym2(S1) is contained in the orthant B0 = {p2
1 + p2

2 = 1 | p1, p2 > 0}, 
which is isomorphic to the segment (0, 1). Furthermore, in the closure of this orthant, the only reducible 
representations correspond to the endpoints of the orthant and thus, the fiber of the eigenvalue map is 
exactly the open segment (0, 1).
By the proof of Proposition 8, the eigenvalues of A are of the form (λ, λε) with

ε ∈ μ∗
n = μn − {1}.

As we can swap the eigenvalues, and this sends ε → ε−1, we can assume

ε ∈ μ+
n = {z ∈ μ∗

n| Im z ≥ 0}.

In the case that n is even and ε = −1, we still have an action by swapping the eigenvectors of A. 
Similarly, the eigenvalues of B are (ν, νε), with ε ∈ μ+

m. Again by Proposition 8, there exists a unique 
t ∈ S1 such that tm = λ and tn = ν, so we get that the image of the eigenvalue map is S1 × μ+

n × μ+
m.

In the case that n, m are both odd, we thus get that the eigenvalue map gives a trivial fibration 
H̃ : Ỹ∗

2 = (0, 1) ×S1 ×μ+
n ×μ+

m → S1 ×μ+
n ×μ+

m. Hence, we get 1
4 (n − 1)(m − 1) copies of the cylinder

C := (0, 1) × S1.

Now suppose n even and m odd (the reverse case is similar by swapping n, m). Then there are 	1
2 (n −

1)
1
2 (m − 1) components C = (0, 1) × S1 as before. However, for ε = −1, there is a residual action 

(λ, −λ) �→ (−λ, λ) with (p11, p21) → (p21, p11). This changes t �→ −t, ν = tn remains fixed, and 
p11 �→

√
1 − p2

11. Hence, we get a quotient of (0, 1) ×S1 under (p11, t) ∼ (1 − p11, −t), which is an open 
Möbius band

M := ((0, 1) × S1)/(p11, t) ∼ (1 − p11,−t).

There are 1 (m − 1) components like these.
2
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(2) The partition π = (1, 1) corresponds to totally reducible representations. In this case, we get by Propo-
sition 5 that ỸTR

2 = Sym2(S1) is an S1-bundle with fiber

Δ1 =
{
(u1, u2) ∈ R2 |u2 = −u1 + 1, u1, u2 ≥ 0

}
.

This is a closed segment parametrized by u1 ∈ [0, 1]. Analyzing the gluing map of Proposition 5 we get 
that ỸTR

2 is a closed Möbius band.

In this way, the global picture of Ỹ2 is the following. We have a Möbius band of totally reducible 
representations R. In the case of n and m odd, this band is intersected by 1

4 (n − 1)(m − 1) cylinders 
corresponding to the irreducible representations glued through their boundaries {0, 1} ×S1. If n is even, we 
get 	1

2 (n − 1)
 12(m − 1) cylinders, and also 1
2 (m − 1) Möbius bands, all glued to the base band R through 

their boundaries.
If we consider an irreducible representation in C for A ∼ (tm, tmε), B ∼ (tn, tnε), with ε ∈ μ+

n , ε ∈ μ+
m, 

then one of the two reducible representations at the boundary is given by {t, tα}, αm = ε, αn = ε, α ∈ μmn. 
This goes around the longitude of R, not the central one, and it goes around twice. This also applies to the 
other reducible representation at the boundary, given by {t, tα′}, where now (α′)m = ε, (α′)n = ε−1. Note 
that replacing α by α−1 or α′ by (α′)−1 yields the same pair of reducible representations.

As a consequence, the two circles of reducible representations at the boundary of C both inject into R and 
they do not intersect. Neither do circles that arise from different cylinders. When n is even, ε = −1 produces 
Möbius band components of type M . There is a single boundary circle {t, tα}, where now αm = −1, αn = ε, 
that also injects into C.

5. SU(3)-character variety

5.1. Geometric description of each stratum

For n = 3, we have three possible partitions: (3), corresponding to the irreducible representations; (2, 1), 
corresponding to sums of an irreducible 2-dimensional representation and a 1-dimensional representation; 
and (1, 1, 1), corresponding to the totally reducible representations.

(1) For π = (1, 1, 1), we deal with YTR
3 , which is given by {t1, t2, t3} ∈ Sym3(S1) such that t1t2t3 = 1. By 

Proposition 5, the space is isomorphic to the simplex:

Δ3 =
{
(u1, u2, u3) ∈ R3 |u1 + u2 + u3 = 1, ui ≥ 0

}
,

which is a triangle T with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).
(2) For π = (2, 1), we have Ỹπ = Ỹ∗

2 × Ỹ∗
1 . The determinant condition can be put in one of the factors, for 

instance in the second one, thus Yπ
∼= Ỹ∗

2 . The description of this space was given in Section 4.
(3) For π = (3), we deal with irreducible SU(3)-representations (A, B). Let {λ1, λ2, λ3} be the eigenvalues 

of A, and {ν1, ν2, ν3} be the eigenvalues of B. We know that

λn
1 = λn

2 = λn
3 = νm1 = νm2 = νm3 = � ∈ μ3 .

We stratify according to the type of the representation as in (8). If the three eigenvalues of A (or of B) 
are equal, then the representation is automatically reducible. If two eigenvalues of A are equal, and also 
two eigenvalues of B are equal, then intersecting the two eigenplanes we get a common eigenvector for 
A and B; and hence (A, B) is reducible. Therefore we have two cases:
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(3a) All eigenvalues of A are different, and all eigenvalues of B are different. Fix one choice of eigenvalues, 
and focus on the corresponding space of irreducible representations. By Theorem 10, this is an open 
subset of F 3. There is a map F 3 → B2, the 2-dimensional orthant defined as B = {(b1, b2, b3) ∈
R3 | bi ≥ 0, b21 + b22 + b23 = 1}, which is a triangle. Over the interior, we have the fiber CP 1, 
defined by the second column of the matrix P in (3), which is a projective point [p21, p22, p23], 
with b1p21 + b2p22 + b3p23 = 0.
Over a vertex bi = 1, we only have reducible representations, in particular the totally reducible 
representations plus some reducible representations of type (2, 1). Over a side of the orthant, say 
(0, b2, b3), we get some reducible representations of type (2, 1), and some irreducible ones. The space 
of irreducible representations is parametrized by the second column of P , given by (p21, p22, p23)
with b2p22 + b3p23 = 0. Therefore it is of the form (p, −qb3, qb2). It must be q �= 0 and p �= 0 by 
irreducibility (in the first case a column would have two zeroes, in the second case a row would 
have two zeroes). Using the S1-action on this vector, we can assume q ∈ R>0. Moreover, using the 
S1-action on the first row, we can take p ∈ R>0. Finally p2 + q2 = 1, so the fiber is parametrized 
by an open interval (0, 1).

(3b) Two eigenvalues of A are equal. Then, the three eigenvalues of B are different (it can be the other 
way round, and this case should be counted as well). Now we look at a given component (fixing 
the eigenvalues). We fix an orthonormal basis so that B = diag(ν1, ν2, ν3). The eigenspaces of A
are a vector v = (a, b, c) and the plane P = {ax + by+ cz = 0} perpendicular to v. The coordinate 
vectors should not be v or lie in P , hence a �= 0, b �= 0 and c �= 0. Moving with S1 × S1 × S1 as 
before we can suppose a, b, c > 0 with a2 + b2 + c2 = 1. This produces an open orthant B2

0.

5.2. Closure of each stratum

In this section, we shall study the closure of each of the strata analyzed in the previous section.

Case (1). Representations of type (1, 1, 1) This is a closed triangle T and thus no further representations 
appear in its closure.

Case (2). Representations of type (2, 1) As described in Section 5.1 and 4, each of the components of 
Y(2,1) corresponds to a cylinder C = S1 × [0, 1] or to a closed Möbius band M , depending on whether the 
eigenvalues λi1 = −λi2 or not. In particular, no Möbius bands appear if n and m are odd. In both cases, 
the boundary of the fibers corresponds to totally reducible representations (Case (1)).

Case (3a). Irreducible representations with different eigenvalues Let us recall the eigenvalue map

H : Y3 → Sym3(S1) × Sym3(S1),

and let us set Fλ,ν = H−1(λ, ν), where λ = {λ1, λ2, λ3} and ν = {ν1, ν2, ν3} are the respective eigenvalues 
for A and B, all pairwise different.

In this case, by Theorem 10, we have that the fiber of the eigenvalue map is

Fλ,ν = (S1)3\U(3)/(S1)3.

Consider the map ϕ : (S1)3\ U(3)/(S1)3 → B2 of Theorem 10, corresponding to fixing the first eigenvector 
of P , where B = B2 is a 2-dimensional orthant. As described in Section 5.1, on the interior of B, the 
component Fλ,ν is a trivial bundle with fiber CP 1. On the edges of the orthant, the intersection of the fiber 
with the irreducible representations is the interval (0, 1), as depicted in Fig. 1.
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Fig. 1. A maximal dimensional component of irreducible representations.

Let us study the closure of this set to understand the whole component Fλ,ν . First of all, the three 
vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) of the triangle B are respectively defined by the eigenvector condition 
p1 = ei, i = 1, 2, 3, so they correspond to reducible representations. On any of them, for example (1, 0, 0), 
the quotient by the S1 × S1 actions on the second and third row allows us to assume p2

22 + p2
32 = 1, where 

p22, p32 ∈ R>0, hence providing reducible representations of type (2, 1) isomorphic to an open interval (0, 1). 
Note that the closure of this interval, defined by the two limit cases p22 = 0 and p32 = 0, provides two 
totally reducible representations in YTR

3 , which correspond to p2 = e2, p3 = e3 and p2 = e3, p3 = e2, as 
pictured in Fig. 1. The description is identical on any other given vertex.

Secondly, on any side of B, the set of irreducible representations for fixed a, b > 0 was described in 
Section 5.1 as an open interval (0, 1) of equation p2 + q2 = 1, where p, q > 0. For instance, for the side 
(0, b2, b3), the second column is of the form p2 = (p, −qb3, qb2), and the other sides are similar. The cases 
p = 0 or q = 0 lead again to reducible representations of type (2, 1), defined by the conditions p3 = ei
and p2 = ei respectively, for the i-th side. Therefore, the closure over any side of the triangle B are two 
open intervals (0, 1) of type (2, 1). Their closures provide four totally reducible representations, which were 
already accounted for over the vertices.

Furthermore, when we take into account all sides of B, the global compactification over the boundary 
is isomorphic to a closed Möbius band, as shown in Fig. 2. To check it, the condition pi = ej , i, j = 1, 2, 3
that defines each of the nine partially reducible strata, follows the intersection pattern described in Fig. 2, 
connecting the 6 totally reducible representations over the vertices of B. Equivalently, we observe that the 
boundary of the fibers is a connected set, since we can interpolate from any permutation matrix to another 
through representations of type (2, 1). Since the only connected cover of degree 2 over S1 is the boundary 
of a Möbius band, we get the result.

Notice that this picture agrees with the expected number of reducible representations to be found with 
eigenvalues λ = {λ1, λ2, λ3} and ν = {ν1, ν2, ν3} of (A, B). There is an action of S3 ×S3 on these sets of 
eigenvalues by permutation. We may decompose this action as the composition of the S3 free action on the 
eigenvalues of A and the S3 simultaneous action on both sets of eigenvalues, so that the latter coincides 
with the S3 action on YTR

3 . Therefore, for any fixed set of distinct eigenvalues {λ1, λ2, λ3} and {ν1, ν2, ν3}
we get:
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Fig. 2. Intersection pattern of (2, 1) and totally reducible representations. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article).

• 6 non-isomorphic totally reducible representations, which correspond to 6 points in YTR
3 , since the 

second S3 action is trivial on YTR
3 .

• 9 components of reducible representations of type (2, 1), defined by the conditions λi = νj , i, j = 1, 2, 3
(or equivalently, by the eigenvector condition pi = ej , i, j = 1, 2, 3). Any of these representations will 
set pij = 1, forcing that pil = 0 for l �= j and plj = 0 when l �= i.

Case (3b). Irreducible representations with coincident eigenvalues Finally, any non-maximal dimensional 
irreducible stratum was characterized in Section 5.1 by two coincident eigenvalues for either A or B. In that 
case, the space is isomorphic to an open disc and it is described by the equation a2 + b2 + c2 = 1 where 
v = (a, b, c) is the eigenvector perpendicular to the eigenplane P and a, b, c > 0. The closure is given by 
the three vertices (1, 0, 0), (0, 1, 0), (0, 0, 1), which provide 3 totally reducible representations, and the three 
sides of the disc, which provide reducible representations of type (2, 1). Moreover, any point on the interior 
of a given side, say (a, b, 0), determines a single reducible representation, since in that case (0, 0, 1) belongs 
to P and defines a common eigenvector for A and B. The compactification is isomorphic to a closed disc.

5.3. Component counting

Let us count the number of components that each of the strata of the previous section.

(1) Y(1,1,1) = YTR
3 is a connected space, homeomorphic to a triangle.

(2) As described in Section 5.1, Y(2,1) is the disjoint union of 	1
2 (n − 1)
1

2 (m − 1) cylinders C and, in the 
case when n is even, 1

2 (m − 1) Möbius bands M .
(3a) As in [15], the action of S3 on the {λ1, λ2, λ3} and the action of S3 on the {ν1, ν2, ν3} are free, and 

the total number of possible eigenvalues is

3
(

1
)2

(n− 1)(n− 2)(m− 1)(m− 2) = 1 (n− 1)(n− 2)(m− 1)(m− 2).
6 12
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(3b) When the eigenvalues of A are repeated, say of the form {λ, λ, λε}, with ε ∈ μ∗
n and λ3 = ε−1, we 

have λ ∈ μ3n − μ3, which are 3n − 3 points. The eigenvalues of B are of the form {ν1, ν2, ν3} with 
νm1 = νm2 = νm3 = λn and ν1ν2ν3 = 1. These are (m −1)(m −2) points, and we have to quotient by the 
action of S3. The total number of components is thus 1

2 (n − 1)(m − 1)(m − 2), as described in [15]. 
Symmetrically, when B has repeated eigenvalues, we find another 1

2 (n − 1)(n − 2)(m − 1) components 
(disjoint to the previous ones).

Recall that there are 1
12 (n −1)(n −2)(m −1)(m −2) components of type (3a), and each of these components 

contains 6 totally reducible representations in their closure. This gives rise to a total of 1
2 (n −1)(n −2)(m −

1)(m − 2) intersection points with the set of totally irreducible representations. However, we can provide a 
different count of the number of totally reducible representations that appear in the closure of each of the 
strata (3a) and (3b) that will be useful for Section 6.

These intersection points were already characterized in Proposition 8 for r = 3 as those satisfying

λj = εjλ1, εj ∈ μ∗
n, j = 2, 3, ε2 �= ε3,

νj = εjν1, εj ∈ μ∗
m, j = 2, 3, ε2 �= ε3,

and λn
1 = νm1 = � ∈ μ3. Both triples of eigenvalues correspond to a single triple {t1, t2, t3} ∈ Sym3(S1)

such that

t1 ∈ μ3nm, t2 = t1e
2πik
mn t3 = t1e

2πik′
mn

where k, k′ �≡ 0, k �≡ k′ (mod m), k, k′ �≡ 0, k �≡ k′ (mod n), since all eigenvalues are different. Under the 
identifications made in Proposition 5, we get that these points are defined by pairs:

u1 = k

mn
, u2 = k′ − k

mn
, k′ > k

inside the simplex Δ2 of equation u1 + u2 + u3 = 1, ui ≥ 0. If we forget about the condition k′ > k, we are 
left with (n − 1)(m − 1) choices for k and also (n − 1)(m − 1) choices for k′, from which we may substract 
from the latter n − 1 and m − 2 points from the conditions k ≡ k′ (mod m), k ≡ k′ (mod n) respectively. 
Thus, the total count equals (n − 1)(m − 1)(n − 2)(m − 2) points. Since k′ > k, we only need to consider 
half of them, giving a total of 1

2(n − 1)(n − 2)(m − 1)(m − 2), as expected.
Furthermore, if we solely fix one of the three conditions k ≡ 0, k′ ≡ 0 or k ≡ k′ (mod n), we are left with 

1
2 (n − 1)(m − 1)(m − 2) choices for such k, k′ pairs, giving a total of 3

2 (n − 1)(m − 1)(m − 2) points. They 
correspond to the totally reducible representations that appear as the 3 vertices of the closure of each of 
the 1

2 (n − 1)(m − 1)(m − 2) components of type (3b) for coincident eigenvalues for A. Analogously, the case 
of coincident eigenvalues for B is similar and provides 3

2(m − 1)(n − 1)(n − 2) points, and thus in total we 
get 3

2 (n − 1)(m − 1)(n + m − 4) intersection points.

6. Intersection with totally reducible representations

In this section, we shall consider again the eigenvalue map

H : Y3 → Sym3(S1) × Sym3(S1).

The fiber of this map depends on the arithmetic of the eigenvalues λ = {λ1, λ2, λ3} of A and ν = {ν1, ν2, ν3}
of B. As in Section 5.2, set Fλ,ν = H−1(λ, ν). We may distinguish three (not necessarily disjoint) cases:
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(1) Fλ,ν only contains totally reducible representations i.e. of type π = (1, 1, 1).
(2) Fλ,ν contains representations of type π = (2, 1). In that case, there must exist different indices 1 ≤

i1, i2 ≤ 3 and 1 ≤ j1, j2 ≤ 3 such that λn
i1

= λn
i2

= νmj1 = νmj2 . Hence, we have λi2 = λi1ε and νj2 = νj1ε

for ε ∈ μ∗
n and ε ∈ μ∗

m, as well as λi1 = tm and νj1 = tn for some t ∈ S1. Since the value of the third 
eigenvalue is determined, this provides finitely many copies of circles in Sym3(S1) × Sym3(S1), maybe 
containing points of case (1).

(3) Fλ,ν contains irreducible representations. In that case, there must exists � ∈ μ3 such that λn
i = νmj = �

for all i, j. These are finitely many points in the base which can be also subdivided into:
(3a) All the eigenvalues λi are pairwise different, and also all the eigenvalues νj . This corresponds to 

type π = (3), case (3a), of Section 5.1.
(3b) Two of the eigenvalues νj are equal (or two of the eigenvalues λi are equal, but not the two 

conditions simultaneously). This corresponds to type π = (3), case (3b), of Section 5.1.

Recall from Section 5.1 that the set of totally reducible representations is a 2-dimensional triangle T . 
The fiber under the eigenvalue map

H : T → Sym3(S1) × Sym3(S1)

is up to 6 points, depending on how many eigenvalues are repeated. This triangle T intersects with the 
other representations as follows:

• 1
2 (n −1)(n −2)(m −1)(m −2) points of T are mapped into strata (3a) under H. Each of the components 
of case (3a) intersects exactly 6 of these points of T through their vertices.

• 3
2 (n − 1)(m − 1)(m − 2) points of T are mapped to strata (3b) under H, corresponding to repeated 
eigenvalues in A, and another 3

2(m − 1)(n − 1)(n − 2) points correspond to repeated eigenvalues in 
B. The components of case (3b), which are triangles, intersect T in 3 points (the 3 totally reducible 
representations they contain).

• There are 1
2 (n − 1)(m − 1) circles in T which are mapped to strata (2). In that case, the components of 

case (2) intersect these circles through their boundary (two different circles in the case of cylinders C
and one circle in the case of Möbius bands M).

• The circles corresponding to strata (2) may contain points of strata (3a) and (3b). To be precise, let us 
consider the case when m, n are odd. The eigenvalues of each of the circles of strata (2) are of the form

{tm, tmε, t−2mε−1}, {tn, tnε, t−2nε−1},

for A and B respectively, where ε ∈ μ+
n and ε ∈ μ+

m are fixed (t ∈ S1 is varying). Hence, we get that 
(t−2mε−1)n = tnm if and only if t ∈ μ3nm. Therefore, the circle contains points of strata (3a) and (3b). 
Removing the cases in which the third eigenvalue coincides with the first or the second one, this gives 
3mn − 6m − 6n + 12 points of case (3a) on each of these circles. There are also 6m + 6n − 24 points of 
case (3b).
These circles can be explicitly described in T as follows: taking α = e

2πik
mn ∈ μmn so that αm = ε, αn = ε, 

each circle is given by

{t, tα, t−2α−1} ∈ Sym3(S1),

where t ∈ S1. As t varies, we can consider that t and tα travel once counterclockwise around S1

whereas t2α−1 winds S1 twice in the opposite direction. Taking into account the identifications made 
in Proposition 5 for t and tα, either u1, u2 or u3 will be constant and equal to k or 1 − k . More 
mn mn
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Fig. 3. Circles in T that are mapped to strata (2).

Fig. 4. Circles in T for n = 3,m = 5.

concretely, the circle in T is a piecewise linear path that meets the sides of T at 6 points, which are 
precisely those where t−2α−1 equals either t or tα, which happens three times as t, tα and t−2α−1

move around S1. At these points the lifts of t, tα and t−2α−1 are permuted to satisfy the normalization 
condition described in Equation (7). Starting at u1 = u2 = k

mn when t = 1, the curve is described in 
Fig. 3.
There are 3mn rational points of the form ( k

mn , 
k′

mn ) on each of these circles, and 6 of them always 
correspond to reducible representations lying on the sides of T . Inside, we obtain points of cases (3a) 
and (3b) (Fig. 4), the latter taking place when only one of the 6 equations:

k ≡ 0, k′ ≡ 0, k + k′ ≡ 0 (mod m), (mod n)

is satisfied. Reducible representations appear when more than one equation is true for the pair (k, k′).
When n is even, 1

2 (m − 1) of these circles from strata (2) correspond to boundaries of Möbius bands 
that appear in the even case. They are also given by {t, tα, t−2α−1} ∈ Sym3(S1), where now αm = −1, 
αn = ε ∈ μ∗

m.
• From the previous description, observe also that the circles of strata (2) are not disjoint: they may be 

connected to another through one of these points of cases (3a) and (3b). In fact, any point corresponding 
to case (3a) or (3b) is shared by exactly 3 circles (the 3 possible choices of getting a (2, 1)-representation 
from them).
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• Each time that one of these circles of strata (2) contains a pair of points of type (3b), the corresponding 
fiber [0, 1] of the cylinder/Möbius band is glued with the edge of a triangle of type (3b). Observe that 
then each triangle of type (3b) is attached to 3 cylinders/Möbius bands corresponding to different circles.

• At each of the circles of strata (2) that contain a pair of points of type (3a), the corresponding fiber 
[0, 1] of the cylinder/Möbius band is glued with a segment between two totally reducible representations 
of the boundary over the edges of a component of type (3a) (the blue segments in Fig. 2). Each of these 
components of type (3a) contains 9 such segments, so the component is glued with 9 cylinders/Möbius 
bands.

7. Homological invariants

From the descriptions of Sections 5 and 6, it is possible to compute several homological invariants of the 
SU(3)-character variety.

7.1. Euler characteristic with compact support

In this section, we shall compute the Euler characteristic with compact support of Y3 in the case that 
both n and m are odd. Recall that given a topological space X, its Poincaré polynomial with compact 
support is

Pc(X) =
∑
k

dimRHk
c (X;R) tk ∈ Z[t],

from which we can form the Euler characteristic with compact support as the integer

χc(X) = Pc(X)(−1) =
∑
k

(−1)k dimRHk
c (X;R) ∈ Z.

For our purpose, we shall exploit that this Euler characteristic is additive, that is,

χc(X) = χc(U) + χc(X − U)

for any open subset U ⊂ X. It is noticeable that it is also multiplicative for products χc(X × Y ) =
χc(X)χc(Y ).

Now, let us compute the Euler characteristic for each stratum of Y3.

(1) For representations of type π = (1, 1, 1) we have Y(1,1,1) = YTR
3 , which has Pc(YTR

3 ) = 1 so χc(YTR
3 ) = 1.

(2) For representations of type π = (2, 1), we have that they are the open cylinders C and Möbius bands M . 
Both have compactly-supported Poincaré polynomials Pc(C) = Pc(M) = t2+t so χc(C) = χc(M) = 0. 
Hence, this stratum provides no contribution.

(3) For representations of type π = (3), we have two possibilities:
(3a) In the case (3a), we have that each component of Y(3) is F 3 − YTR

3 − Y(2,1). Let us decom-
pose the orthant triangle B into its interior B0 and its boundary ∂B = B − B0. The fibration 
ϕ : F 3|ϕ−1(B0) → B0 is trivial with fiber S2, so χc(ϕ−1(B0)) = χc(B0)χc(S2) = 2. Regarding 
the stratum ϕ−1(∂B), this is a closed Möbius band so it has vanishing Euler characteristic with 
compact support. We have to remove the reducible representations of this set, which is the bound-
ary of the Möbius band and three segments, with Euler characteristics χc(∂M) = χc(S1) = 0
and χc((0, 1)) = −1. Hence χc(ϕ−1(∂B0) ∩ Y(3)) = 0 − 0 − 3 · (−1) = 3 and in total 
χc(F 3 − YTR

3 − Y(2,1)) = 5 and χc(Y a ) = 5 (n − 1)(n − 2)(m − 1)(m − 2).
(3) 12
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(3b) In the case (3b), we have that, for each component, the irreducible representations form an open 
2-dimensional triangle, with Euler characteristic 1. Taking into account that there are 12(n −1)(m −
1)(n +m −4) of these triangles, this gives a total contribution of χc(Y b

(3)) =
1
2 (n −1)(m −1)(n +m −4).

Adding up all these contributions, we finally get

χc(Y3) = 1 + (n− 1)(m− 1)
(
n + m− 4

2 + 5(n− 2)(m− 2)
12

)
.

Remark 11. This Euler characteristic coincides with the one of X3 = X(Γn,m, SL(3, C)), as obtained by 
setting L = 1 in the formula of its motive [15, Theorem 8.3].

7.2. Homology for n = 2 and m odd

In this section, we shall compute the homology of Y3 for n = 2 and m > 2 odd. In that case, from the 
counting of Section 5.3, we find that some strata are simplified:

• In case (1), we get a triangle YTR
3 , which is a contractible space.

• In case (2), there are no cylinders, and we find N1 = 1
2 (m −1) closed Möbius bands M attached to YTR

3
through copies of S1, one per component. When collapsing YTR

3 , the Möbius bands get their boundaries 
collapsed.

• There are no strata of case (3a) (irreducible with different eigenvalues).
• There are N2 = 1

2 (m − 1)(m − 2) components of case (3b), which are triangles with edges attached to 
meridians of corresponding components M .

Let us take X = YTR
3 ∪ Y(2,1), that is, a disc with N1 Möbius bands attached through their boundaries. 

Collapsing the boundary of a Möbius band is equivalent to attaching a disc to it, which converts it into a 
real projective plane. Hence, contracting YTR

3 we get that X is homotopically equivalent to a bouquet of 
N1 real projective planes, so its homology is H0(X) = Z, H1(X) = ZN1

2 and H2(X) = 0.
Now, let Y be the union of the closures of the N2 triangles of case (3b). We have that Y is a disjoint 

union of N2 closed discs, so H0(Y ) = ZN2 , H1(Y ) = H2(Y ) = 0. The intersection X ∩ Y is the collection of 
edges of the triangles (3b) so they are a disjoint union of N2 circles. Hence H0(X ∩Y ) = H1(X ∩Y ) = ZN2

and H2(X ∩ Y ) = 0.
Therefore, using the Mayer-Vietoris long exact sequence and observing that X ∪ Y is homotopically 

equivalent to Y3, we get

0 H2(X ∩ Y ) = 0 H2(X) ⊕H2(Y ) = 0 H2(Y3)

H1(X ∩ Y ) = ZN2 H1(X) ⊕H1(Y ) = ZN1
2 H1(Y3)

H0(X ∩ Y ) = ZN2 H0(X) ⊕H0(Y ) = ZN2+1 H0(Y3) = Z 0

f

Notice that the map f sends each boundary of a triangle to the three meridians of the Möbius bands it 
intersects. A key fact is the following.

Lemma 12. The map f is surjective.
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Proof. There are N2 = (m −1)(m −2)/2 triangles. Each triangle corresponds to representations of the form 
(A, B), with A ∼ diag(λ, λ, −λ) and B ∼ diag(ν, νε, νε′) where ν ∈ μ3m and λ2 = νm, and ε, ε′ ∈ μm with 
ε �= 1, ε′ �= 1, ε �= ε′, satisfying that ν3 = (εε′)−1. Call T ν,ε,ε′ one of these triangles.

There are N1 = (m − 1)/2 collapsed Möbius bands, corresponding to representations with A1 ∼
diag(λ, −λ), B1 ∼ diag(ν, εν), where ε ∈ μ∗

m. And each of them is parametrized by ε±1, namely the 
ratio of the two eigenvalues of B1. Call �k the meridian of the Möbius band corresponding to εk = e2πik/m, 
k �≡ 0 (mod m). Note that �−k = �k.

When looking at the boundary of T ν,ε,ε′ , we get three segments, corresponding to choosing two of the 
three eigenvalues of B and taking their ratio. The map f is nothing but seeing this boundary as part of the 
homology of H1(X), so it is given by

f (∂T ν,εa,εb) = [�a] + [�b] + [�a−b],

where the coefficients on the right are understood modulo 2. Here a, b, a − b �≡ 0 (mod m). Observe that

f (∂T ν,ε2a,εa) = [�2a] + [�a] + [�a] = [�2a].

Since m is odd, any element of Zm can be written as 2a for some a ∈ Zm, showing that the map f is 
surjective. �

By the previous lemma, since f is surjective we get H1(Y3) = 0 and H2(Y3) = Ker f = ZN2 . In this way, 
we get that the homology of Y3 is

H0(Y3) = Z, H1(Y3) = 0, H2(Y3) = Z
1
2 (m−1)(m−2), Hk(Y3) = 0 for k ≥ 3. (11)

Furthermore, the previous computations give us something a bit stronger.

Corollary 13. The character variety Y3 is simply-connected.

Proof. Take U, V ⊂ Y3 open sets slightly bigger than the closed sets X, Y ⊂ Y3 respectively, such that 
U retracts to X, V retracts to Y , and U ∩ Y retracts to X ∩ Y . We collapse the set of totally reducible 
representations YTR

3 ⊂ Y3 and we use it as basepoint for the fundamental groups. By the proof above, U
is equivalent to a bouquet of N1 real projective planes, so π1(U) = ZN1

2 . In the same vein, V is simply-
connected. The intersection has π1(U ∩ V ) = ZN2 and the map induced by the inclusion is precisely 
f : π1(U ∩ V ) = ZN2 → π1(U) = ZN1

2 . By Lemma 12, the morphism f is surjective so the fibered product 
π1(U) �π1(U∩V ) π1(V ) vanishes, which agrees with π1(Y3) by Seifert-van Kampen theorem. �
7.3. The inclusion Y3 ↪→ X3

Now we compare the SU(3)-character variety Y3 = X(Γn,m, SU(3)) with the SL(3, C)-character variety 
X3 = X(Γn,m, SL(3, C)). From [15], we observe that X3 admits an analogous stratification to the one of Y3
presented in Section 5. With the same notation as in Section 5, for X3 these strata are the following:

(1) This corresponds to totally reducible representations. By [15, Proposition 8.1], this stratum in X3 is 
isomorphic to C. In particular, it is contractible and thus homotopically equivalent to YTR

3 .
(2) This corresponds to partially reducible representations. There are two cases:

• The analogues of the cylinders C. By [15, Proposition 8.1], in X3 they correspond to (C−{0, 1}) ×C∗. 
This space is not homotopically equivalent to C since H2((C − {0, 1}) × C∗) = H1(C − {0, 1}) ⊗
H1(C∗) �= 0 but H2(C) = 0.
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• The analogues of the Möbius bands M . By [15, Proposition 8.1], in X3 they correspond to C2 −
{y = 0} − {y = x2}. Using the Mayer-Vietoris exact sequence we find that this later space has 
H2(C2 − {y = 0} − {y = x2}) �= 0 but H2(M) = 0, showing that they are not homotopically 
equivalent.

(3a) This is the space of irreducible representations with different eigenvalues. By [15, Proposition 8.3], 
in X3 this corresponds to the quotient M/(T ×D T ). Here, M ⊂ GL(3, C) is the stable locus of the 
action of T ×D T on GL(3, C), where T = (C∗)3 is the set of diagonal matrices, the first factor acts 
on GL(3, C) by multiplication on the left, and the second by multiplication on the right. The subset 
D = {(λ Id, λ−1 Id) | λ ∈ C∗} ⊂ T × T is the subgroup of multiples of the identity acting trivially. 
Notice that, by setting L = 1 in its motive [15, Proposition 8.3], we get that its Euler characteristic 
with compact support agrees with the one of the stratum (3a) of Y3.

(3b) This corresponds to irreducible representations with a coincident eigenvalue. By [15, Proposition 8.2], 
in X3 they correspond to a (C∗)2 −{x + y = 1}. Using the Mayer-Vietoris exact sequence, H2((C∗)2 −
{x + y = 1}) �= 0. But the corresponding strata in Y3 are contractible, so they are not homotopically 
equivalent.

This analysis evidences that, for n, m > 2, not all the strata are homotopically equivalent. However, it 
may happen that the inclusion Y3 ↪→ X3 is still a homotopy equivalence, even though such homotopy does 
not preserve the stratification by type of the representation. We show that this is indeed the case when 
n = 2.

Theorem 14. For n = 2 and odd m, the inclusion Y3 ↪→ X3 is a homology equivalence.

Proof. Let us compute the homology of X3 for n = 2 and m odd, following the strategy of Section 7.2. As 
there, we take X̂ = XTR

3 ∪X(2,1), which in this case is C2 with N1 = 1
2 (m −1) copies of C2−{y = 0} −{y =

x2} attached through the one of the missing lines. The closure of a component is C2 − {y = 0} = C ×C∗, 
and we glue to XTR

3 along D = C∗ = {y = x2}. When we collapse XTR
3 , we get (C×C∗)/D whose homology 

is given by Hk((C × C∗)/D) = Hk(C × C∗, D), for k ≥ 1. Using the exact sequence of the pair, and that 
the inclusion H1(D) = Z → H1(C×C∗) = Z is multiplication by 2 (this follows from the fact that the loop 
x = e2πit goes to (x, y) = (e2πit, e4πit) that winds twice around y = 0), we get

H1((C ×C∗)/D) = Z2, Hk((C ×C∗)/D) = 0, k ≥ 2

Therefore H1(X̂) = ZN1
2 and Hk(X̂) = 0 for k ≥ 2.

Now, let Ŷ be the union of the closures of the N2 = 1
2 (m − 1)(m − 2) strata of case (3b). These are N2

copies of C2, and each copy is attached to X̂ through three lines intersecting pairwise at three different 
points. Therefore H0(Ŷ ) = ZN2 and Hk(Ŷ ) = 0 for k ≥ 1. The intersection X̂∩Ŷ is the collection of the 3N2

(complex) lines intersecting in triplets. Each of these arrangements L of three (complex, affine) lines retracts 
to a triangle, hence it has H2(L) = 0, H1(L) = Z and H0(L) = Z. Thus H0(X̂ ∩ Ŷ ) = H1(X̂ ∩ Ŷ ) = ZN2 , 
and Hk(X̂ ∩ Ŷ ) = 0 for k ≥ 2.

Now, applying the Mayer-Vietoris long exact sequence we get a long exact sequence

0 H2(X̂ ∩ Ŷ ) = 0 H2(X̂) ⊕H2(Ŷ ) = 0 H2(X3)

H1(X̂ ∩ Ŷ ) = ZN2 H1(X̂) ⊕H1(Ŷ ) = ZN1
2 H1(X3)

H0(X̂ ∩ Ŷ ) = ZN2 H0(X̂) ⊕H0(Ŷ ) = ZN2+1 H0(X3) = Z 0
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Let ι : Y3 ↪→ X3 be the inclusion map. Observe that, if we restrict to the stratum ι : X ∩ Y ↪→ X̂ ∩ Ŷ , the 
induced map in homology is an isomorphism since both spaces are homotopically equivalent to N2 copies 
of S1 and X ∩ Y are precisely the generators of the homology of X̂ ∩ Ŷ . Also, regarding the inclusion 
ι : X → X̂, we recall that the parameter y of X̂ parametrizes the eigenvalue λ modulo λ ∼ −λ, hence the 
generators of H1(X) map to generators of H1(X̂) producing an isomorphism. In this manner, we get the 
two long exact sequences

0 H2(X3) H1(X̂ ∩ Ŷ ) = ZN2 H1(X̂) = ZN2
2 H1(X3) 0

0 H2(Y3)

ι∗

H1(X ∩ Y ) = ZN2

∼=

H1(X) = ZN2
2

∼=

0

This proves that ι∗ is an isomorphism, and H1(X3) = 0. Therefore ι is a homology equivalence. �
Corollary 15. The character variety X3 is simply-connected.

Proof. Notice that π1(X̂) = ZN1
2 since π1((C×C∗)/D) = Coker (π1(D) = H1(D) → π1(C×C∗) = H1(C×

C∗)) = Z2. Similarly π1(Ŷ ) = 0, since each connected component is contractible, and π1(X̂ ∩ Ŷ ) = ZN2 . 
Moreover, since H1(X3) = 0, the map π1(X̂ ∩ Ŷ ) = ZN2 → π1(X̂) = ZN1

2 is surjective. At this point, the
proof works verbatim to the one of Corollary 13. �
Corollary 16. For n = 2 and odd m, the inclusion Y3 ↪→ X3 is a homotopy equivalence.

Proof. This is a standard consequence of Hurewicz and Whitehead theorems. We spell out the details here 
for completeness. In homology, we have a long exact sequence for k ≥ 0 for the relative homology

. . . Hk+1(X3,Y3) Hk(Y3)
ι∗

Hk(X3) Hk(X3,Y3) . . .

Since ι∗ is an isomorphism for all k ≥ 0, we get that Hk(X3, Y3) = 0 for all k. By Hurewicz theorem, 
this implies that the relative homotopy πk(X3, Y3) = 0 for k ≥ 2. Recall that the relative version requires 
f# : π2(Y3) → π2(X3) to be surjective, which is automatic by the absolute Hurewicz theorem using that 
both X3, Y3 are simply-connected. Now, using the long exact sequence in homotopy

. . . πk+1(X3,Y3) = 0 πk(Y3)
ι#

πk(X3) πk(X3,Y3) = 0 . . .

we get that the induced map in homotopy ι# is an isomorphism for all k ≥ 0. Thus ι is a weak homotopy 
equivalence and a fortiori also a homotopy equivalence by Whitehead theorem. �

Motivated by this result, we predict that the inclusion Y3 ↪→ X3 is also a homotopy equivalence for 
n, m > 2.
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