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A B S T R A C T

This paper presents a spectral approach to the uncertainty management in epidemic models through the
formulation of chance-constrained stochastic optimal control problems. Specifically, a statistical moment-based
polynomial expansion is used to calculate surrogate models of the stochastic state variables of the problem
that allow for the efficient computation of their main statistics as well as their marginal and joint probability
density functions at each time instant, which enable the uncertainty management in the epidemic model.
Moreover, the surrogate models are employed to perform the corresponding sensitivity and risk analyses. The
proposed methodology provides the designers of the optimal control policies with the capability to increase the
predictability of the outcomes by adding suitable chance constraints to the epidemic model and formulating a
proper cost functional. The chance-constrained optimal control of a COVID-19 epidemic model is considered
in order to illustrate the practical application of the proposed methodology.
1. Introduction

The spectral approach to uncertainty propagation and quantifica-
tion in model-based systems is a powerful methodology that can be
employed for sensitivity analysis, uncertainty management, and risk
analysis [1].

The sensitivity analysis, usually based on the variance of the model
output, provides a useful decision support tool for system design and
optimization. It quantifies the variation of the system response around
a nominal value and allows for the characterization of the robustness of
the predictions as well as the controllability of the system. Moreover,
when the system is subject to multiple sources of uncertainty, the
sensitivity analysis can be used to quantify their relative influence on
the system response. This information is crucial in the determination
of uncertainty management strategies with the aim of reducing the
main sources of uncertainty. Furthermore, it is often useful to assess
the probabilities of a system output variable exceeding specific crit-
ical thresholds using the statistical properties of the random input
data. These probabilities can then be employed to undertake system
reliability or risk analyses.

This paper focuses on the optimal control approach to the uncer-
tainty management in epidemic models. More specifically, epidemic
disease transmission is assumed to be represented by means of com-
partmental models, in which the population is subdivided into com-
partments and several assumptions are made about the nature and time
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rate of transition between them. Compartmental epidemic models are
one of the main approaches to the mathematical modelling of epidemic
disease transmission, which have been used to analyse the specific
behaviour of various infections [2,3].

The mitigation and control of the spread of an epidemic disease
have the features of an Optimal Control Problem (OCP). More specif-
ically, the goal is to minimize some objective functional usually as-
sociated with the number of infected subjects or the cost of the con-
trol strategies against the disease transmission, which can be related
to both non-pharmacological and pharmacological measures. Further-
more, the disease transmission and its interactions with the control
policies are described by the underlying dynamical system and the
algebraic constraints imposed.

The solutions of an OCP may be affected by the presence of ex-
ternal disturbances and model uncertainties, which are not easy to
incorporate into a deterministic mathematical representation of the
system. In these cases, a Stochastic OCP (SOCP) must be formulated,
in which a set of stochastic differential equations describes the dy-
namical system. In particular, in this paper, the stochastic epidemic
models are assumed to be represented by sets of nonlinear Ordinary
Differential Equations (ODEs) with random parameters [4], namely
some of the parameters of the ODE system are supposed to be the
source of uncertainty of the SOCP. Hence, systems of stochastic Itô-type
differential equations [5] and Markovian differential equations [6], as
vailable online 24 May 2023
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well as systems of stochastic partial differential equations [7], are not
considered in this paper.

The deterministic optimal control approach has been extensively
applied to the control of epidemic diseases. For the sake of brevity,
only the following recent publications are featured. Different optimal
control strategies of a fractional order model for Zika virus infection
are presented in [8]. A dynamic model of the dengue strain is used
in [9] to formulate an OCP, in which the number of people infected is
minimized by applying mosquito removal measures. The optimal con-
trol of a HIV/AIDS-resistant model with behaviour change is proposed
in [10], which considers as controls the government’s intervention
in encouraging behaviour change, the intake of balanced nutritional
supplementation, and the antiretroviral therapy. The effectiveness of
antidotes and vaccination in restraining viral creation and decelerating
the production of new influenza infections is studied in [11], in which
a structured model based on urban and rural areas is considered. A Zika
control model is developed and optimized in [12], which incorporates
three different control measures, namely prevention through bed nets
and mosquito repellents, patients’ treatment, and insecticides. An OCP
is formulated in [13], employing a mathematical model of dengue
transmission, to quantify the impact of information-based behavioural
response and the segregation of the infected human population into de-
tected and undetected individuals. In [14], an optimal control approach
is used to analyse the transmission dynamics of HIV/AIDS by combining
two control measures, namely standard antiretroviral therapy and AIDS
treatments. The optimal allocation of vaccine and antiviral drugs for
influenza containment over a time-delayed two-stage epidemic model
is studied in [15]. The optimal control problem of a fractional-order
delayed epidemic model with a saturated incidence rate and satu-
rated treatment function is studied in [16], in which vaccination and
increasing treatment intensity are the control interventions.

Less research effort has been devoted to the stochastic optimal
control of epidemic diseases. The most recent articles on this topic
are surveyed. The optimal control of a stochastic mathematical model
with random transmission for the hepatitis B virus is studied in [17].
A state estimation-based robust optimal control strategy for influenza
epidemics in an interactive human society is presented in [18]. The
optimal control of the spread of the hepatitis B virus through the
strategy of vaccinating offspring is proposed in [19], which is based
on a stochastic model with random noise transmission. The optimal
control of a stochastic dengue model described by spatial diffusion
and Brownian motion is proposed in [20]. The robust optimal control
of a network-based epidemic system with an uncertain time delay is
investigated in [21], in which time-dependent and degree-dependent
vaccination controls are considered. The optimal vaccination strategy
for an hepatitis B epidemic model with the inclusion of white noise
and Markovian switching is analysed in [22]. Several OCPs for vari-
ous epidemic models with uncertainty are formulated in [23], which
are solved using deep reinforcement learning. A robust economic
model predictive controller for the management of stochastic epidemic
processes is developed in [24], which efficiently drives the epidemic
process to extinction while minimizing the use of control resources.

Optimal control-based works focused on the mitigation and control
of the COVID-19 pandemic deserve a special mention. Both determin-
istic and stochastic approaches have been proposed. The most relevant
articles on this topic are surveyed.

A model predictive approach for the constrained control of a nonlin-
ear compartmental model that captures the key dynamical properties
of COVID-19 is considered in [25], which is able to handle complex,
time-dependent constraints, logical relations between model variables,
and multiple predefined discrete levels of interventions. A nonlinear
Model Predictive Control (MPC) method for the mitigation of the
COVID-19 outbreak in a multi-region scenario is proposed in [26],
which minimizes the cost of non-pharmaceutical interventions. A
nonlinear MPC approach to optimally schedule the first and second
2

vaccination doses is presented in [27], which takes into account both
healthcare needs and socio-economic costs associated with the COVID-
19 pandemic. The suppression of the spread of COVID-19 by means of
rapid test intervention is analysed in [28]. The impact of isolation, vac-
cine efficacy, and treatment enhancement in controlling the COVID-19
outbreak is evaluated in [29].

A chance-constrained optimal control model of the COVID-19 pan-
demic spread is proposed in [30], in which the effects of isolation and
weather are investigated. Robust optimal nonpharmaceutical strategies,
based on a stochastic nonlinear model predictive controller, are pro-
posed in [31] to tackle the COVID-19 pandemic waves. The optimal
quarantine control of a stochastic reaction–diffusion epidemic model
for the COVID-19 infectious disease is presented in [32]. The mini-
mum average quarantine duration for uninfected people is determined
in [33], in which the constraint that the probability of symptom presen-
tation for COVID-19 infected people attains a given value is imposed.
A probabilistic MPC approach is proposed in [34], which allows social
distancing policies for the COVID-19 pandemic to be designed. The
optimal allocation of stockpiles of COVID-19 vaccines and tests to a set
of zones is presented in [35], in which different sources of uncertainty
are considered.

There are different approaches to the formulation and resolution
of Chance-Constrained Stochastic OCP (CCSOCP), such as Polynomial
Chaos Expansion (PCE) and subset simulation [36], kernel density
estimation [37], Hilbert space embedding [38], and second-order cone
programming [39]. In particular, this paper follows a data-driven PCE
approach to the chance-constrained optimal control of epidemic mod-
els. PCE is a spectral methodology for the uncertainty quantification
of computational models, which was introduced in [40], generalized
in [41], and further extended to arbitrary distributions in [42]. Given
a computational model, the PCE technique allows the model outputs
to be projected on a basis of orthogonal stochastic polynomials in
the random inputs, which provides an efficient representation of the
outputs’ variability in terms of the variability of the inputs. The PCE
approach has been successfully applied to a wide variety of research
areas, including the stability and control of both deterministic and
stochastic systems [43,44].

This paper presents a spectral approach to the uncertainty man-
agement in epidemic models through the formulation of CCSOCPs,
which also allows the corresponding sensitivity and risk analyses to
be performed. More specifically, a statistical moment-based polynomial
expansion is used to calculate surrogate models of the stochastic state
variables of the problem, which enables the efficient computation of
their main statistics as well as their marginal and joint Probability
Density Functions (PDFs) at each time instant. These surrogate models
are used to reformulate the CCSOCPs as augmented deterministic opti-
mal control problems. Moreover, they are also employed to conduct
a global sensitivity analysis in terms of the so-called Sobol’ indices,
as well as a risk analysis based on Monte Carlo (MC) simulations and
kernel density estimations of the marginal and joint PDFs of the optimal
stochastic state variables. To the best knowledge of the authors, the
spectral approach to the uncertainty management in epidemic models
through chance-constrained optimal control has not been addressed yet
in the literature.

The paper is organized as follows. Section 2 presents the general
formulation of the CCSOCP, which is based on the definition of a SOCP.
The two main approaches to the formulation of a robust constrained
SOCP are described in Section 3. Section 4 introduces the statistical
moment-based spectral approach to the uncertainty propagation and
quantification in the CCSOCP. Section 5 outlines the computational
and statistical properties of the surrogate models of the state variables
represented by their aPC expansions, which allow the uncertainty
management to be performed as well as the sensitivity and risk analy-
ses. In Section 6, the reformulation of the CCSOCP as an augmented
deterministic OCP is presented. The practical implementation of the
proposed spectral approach is shown in Section 7, in which the chance-
constrained stochastic optimal control of a COVID-19 epidemic model
is described. The results of several numerical experiments are reported
and discussed in Section 8. Finally, some conclusions are drawn in

Section 9.
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2. Chance-constrained stochastic optimal control

This section presents the general formulation of the CCSOCP con-
sidered in this paper, which is based on the definition of a SOCP.

Optimal control is a research discipline that deals with finding the
controls that guide a dynamical system from an initial to a final state
while optimizing an objective functional. Controls are represented as
functions of time that characterize allowable external influences on
a system and cause a system response. Based on this response, the
objective functional is assessed and used as a measure of the system’s
performance.

As mentioned in Section 1, the presence of external disturbances and
model uncertainties leads to the formulation of SOCPs. The solutions of
a SOCP are required to be robust, namely the control system specifica-
tions must be fulfilled independently of the realization of the random
parameters. The robustness of the solutions implies the inclusion of
statistical moments or probabilities of events in the constraints and in
the objective functional of the SOCP. SOCPs in which the constraints
are expressed in terms of statistical moments are usually known as
Robust Constrained SOCPs (RCSOCPs), whereas they are referred to
as CCSOCPs when the constraints are represented as probabilities of
events.

2.1. Statement of the stochastic optimal control problem

Let (𝛺,𝛬, 𝛤 ) be a probability space, where 𝛺 is the space of events,
𝛬 is a 𝜎-algebra, and 𝛤 is a probability measure. Then, the SOCP
considered in this paper can be stated as follows:

min
u(𝑡)

 (x(𝑡, 𝝃),u(𝑡), 𝝃) = (x(𝑡𝐹 , 𝝃)) + ∫

𝑡𝐹

𝑡𝐼
(x(𝑡, 𝝃),u(𝑡), 𝝃) 𝑑𝑡, (1a)

subject to:
ẋ(𝑡, 𝝃) = f(x(𝑡, 𝝃),u(𝑡), 𝝃) a.s., (1b)
x(𝑡𝐼 , 𝝃) = x𝐼 , x(𝑡𝐹 , 𝝃) = x𝐹 a.s., (1c)

where 𝑡 denotes time, x(𝑡, 𝝃) = (𝑥1(𝑡, 𝝃),… , 𝑥𝑛(𝑡, 𝝃)) is the vector of
stochastic state variables, u(𝑡) = (𝑢1(𝑡),… , 𝑢𝑚(𝑡)) is the vector of control
variables, and 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ) ∈ 𝛺 is the vector of random parameters,
which describes the uncertainties of the SOCP. The components of
the vector of random parameters 𝝃 are assumed to be independent
random variables. Therefore, the joint PDF of 𝝃 can be obtained as
𝑔(𝝃) =

∏𝑁𝑈
𝑖=1 𝑔𝑖(𝜉𝑖), with 𝑔𝑖(𝜉𝑖) being the marginal PDF of each random

variable 𝜉𝑖, 𝑖 = 1,… , 𝑁𝑈 . The initial and final time instants are denoted
by 𝑡𝐼 and 𝑡𝐹 , respectively, whereas x𝐼 and x𝐹 are the vectors of initial
and final states, respectively.

In (1a), the objective functional  (⋅), which represents the cost
index related to the control strategies against the disease transmission,
is given in Bolza form, namely it is formulated as a combination of
the Mayer term (⋅) and the Lagrange term (⋅). The Mayer term
represents a terminal cost, whereas the Lagrange term represents a
running cost. Notice that, without loss of generality, the objective
functional (1a) can be expressed in Mayer form, since the Lagrange
term can be reformulated as a Mayer term by introducing a new state
variable and adding a new differential equation [45].

Eqs. (1b) and (1c), respectively, corresponds to the set of differential
equations and the boundary conditions that represent the dynamical
equations and the initial and final conditions of the stochastic epidemic
model.

Notice that, in (1), the objective functional and the differential
equations are stochastic functions. Moreover, the state variables x(𝑡, 𝝃)
are functions of both the time 𝑡 and the vector of random parameters
𝝃, and the stochastic relations are assumed to be satisfied almost
surely (a.s.). Conversely, the control variables u(𝑡) are assumed to be
3

deterministic functions of time t.
2.2. Statement of the chance-constrained stochastic optimal control problem

The CCSOCP considered in this work can be stated as follows:

min
u(𝑡)

𝜇 ( (x(𝑡, 𝝃),u(𝑡), 𝝃)) + 𝜅0 ⋅ 𝜎 ( (x(𝑡, 𝝃),u(𝑡), 𝝃)) , (2a)

ubject to:
̇ (𝑡, 𝝃) = f(x(𝑡, 𝝃),u(𝑡), 𝝃) a.s., (2b)
(a x(𝑡, 𝝃) ≤ b) ≥ 1 − 𝜼, (2c)
(

x(𝑡𝐼 , 𝝃)
)

= x𝐼 , 𝜎
(

x(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 ,
(

x(𝑡𝐹 , 𝝃)
)

= x𝐹 , 𝜎
(

x(𝑡𝐹 , 𝝃)
)

≤ 𝜀𝐹 , (2d)

here 𝜅0, 𝜀𝐼 , and 𝜀𝐹 are parameters, a = (𝑎1,… , 𝑎𝑛𝐶 ), b = (𝑏1,… , 𝑏𝑛𝐶 ),
nd 𝜼 = (𝜂1,… , 𝜂𝑛𝐶 ), with 1 ≤ 𝑛𝐶 ≤ 𝑛, are parameter vectors,
(⋅), 𝜇(⋅), and 𝜎(⋅) denote the probability, the expected value, and the

tandard deviation operators, respectively, and the remaining variables
nd functions are defined as in (1).

In the statement of the CCSOCP (2), the inequality (2c) corresponds
o a chance constraint on the vector of stochastic state variables, in
hich 1−𝜼 = (1− 𝜂1,… , 1− 𝜂𝑛𝐶 ), where the value 1− 𝜂𝑙 , 𝑙 = 1,… , 𝑛𝐶 , is
nown as guaranteed constraint satisfaction probability or chance con-
traint probability, and the parameter 𝜂𝑙 , 𝑙 = 1,… , 𝑛𝐶 , is referred to as
robability of violation or risk level. The chance constraint (2c) allows
tochastic algebraic constraints to be included in the formulation of the
OCP (1), which permits the uncertainty management in the optimal
ontrol of the stochastic epidemic model represented by Eqs. (1b) and
1c) to be conducted.

Notice that, for the sake of ease of notation, the formulation of the
CSOCP (2) is understood element-wise. Thus, the chance constraint
2c) actually denotes
(

𝑎1 𝑥1(𝑡, 𝝃) ≤ 𝑏1
)

≤ 1 − 𝜂1,… , 𝑃
(

𝑎𝑛𝐶 𝑥𝑛𝐶 (𝑡, 𝝃) ≤ 𝑏𝑛𝐶
)

≤ 1 − 𝜂𝑛𝐶 , (3)

ith 1 ≤ 𝑛𝐶 ≤ 𝑛, namely a chance constraint is imposed on at least
ne out of the 𝑛 components of the vector of stochastic state variables
(𝑡, 𝝃). Each chance constraint 𝑃

(

𝑎𝑙 𝑥𝑙(𝑡, 𝝃) ≤ 𝑏𝑙
)

≤ 1 − 𝜂𝑙, 𝑙 = 1,… , 𝑛𝐶 ,
ere is referred to as single chance constraint.

Moreover, in the statement of the CCSOCP (2), a robust formulation
f the objective functional and the boundary values is considered.
pecifically, the robust formulation of the objective functional (2a)
onsists of a weighted sum of the expected value and the standard
eviation of the stochastic objective functional (1a), where 𝜅0 denotes
he weighting parameter. Conversely, the robustness of the boundary
alues (2d) is modelled by splitting the expected value and the standard
eviation of (1c). The expected values of the boundary conditions
re forced to satisfy the same requirements stated in (1c), whereas
he values of the standard deviation of these boundary conditions are
orced to satisfy specific upper bounds denoted by 𝜀𝐼 and 𝜀𝐹 .

Notice that the weight 𝜅0, the probabilities 𝜂𝑙 , 𝑙 = 1,… , 𝑛𝐶 , and the
pper bounds 𝜀𝐼 and 𝜀𝐹 must be set by the designers of the CCSOCP.

.3. Joint chance constraints

Suppose that, in the formulation of the CCSOCP (2), instead of the
nequality constraint (2c), which is composed of a set of single chance
onstraints, the following constraint is considered:
(

𝑎1 𝑥1(𝑡, 𝝃) ≤ 𝑏1,… , 𝑎𝑛𝐶 𝑥𝑛𝐶 (𝑡, 𝝃) ≤ 𝑏𝑛𝐶
)

≥ 1 − 𝜂, with 1 ≤ 𝑛𝐶 ≤ 𝑛,

(4)

hich will be referred to as joint chance constraint. Then, using Bonfer-
oni’s inequality [46], the joint chance constraint (4) can be expressed
n terms of a set of single chance constraints as follows:
(

𝑎 𝑥 (𝑡, 𝝃) ≥ 𝑏
)

≤ 𝜂 ,… , 𝑃
(

𝑎 𝑥 (𝑡, 𝝃) ≥ 𝑏
)

≤ 𝜂 , (5)
1 1 1 1 𝑛𝐶 𝑛𝐶 𝑛𝐶 𝑛𝐶
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where
𝑛𝐶
∑

𝑙=1
𝜂𝑙 = 𝜂. (6)

hus, the Bonferroni’s inequality allows the joint chance constraint (4)
o be split into multiple constraints of the form (5), in which the risk
evel is split among the 𝑛𝐶 single chance constraints, according to the
isk allocation (6).

. Robust constrained optimal control

In the literature, there are two possible statements of a RCSOCP,
hich differ in the way the robust constraints are represented in terms
f the expected value and standard deviation of the stochastic variables
o be incorporated into the SOCP (1). The objective functional, the
et of differential equations, and the boundary conditions are usually
ormulated as in the CCSOCP (2).

Let 𝐶(𝑡, 𝝃) ≤ 0 be an arbitrary stochastic constraint. In the first
pproach, the robustness of the constraint is expressed in terms of the
ollowing single constraint:

(𝐶(𝑡, 𝝃)) + 𝜅𝐶 ⋅ 𝜎(𝐶(𝑡, 𝝃)) ≤ 0, (7)

here 𝜅𝐶 is a constant parameter that must be specified by the de-
igners of the RCSOCP in order to adjust the probability of constraint
atisfaction [47].

In the second approach, in which the stochastic constraint must be
atisfied in the mean sense, the robustness is expressed in terms of two
eparate constraints as follows:

(𝐶(𝑡, 𝝃)) ≤ 0, 𝜎(𝐶(𝑡, 𝝃)) ≤ 𝜀𝐶 , (8)

here 𝜀𝐶 is a constant parameter that must be set by the designers
f the RCOCP, which allows the dispersion of the constraint to be
djusted [48].

Similarly to chance constraints, robust constraints enable stochastic
lgebraic constraints to be included in the formulation of the SOCP (1),
hich permits the uncertainty management in the optimal control of

tochastic epidemic models to be conducted. The effects of chance con-
traints and robust constraints on the solutions of SOCPs are compared
nd discussed in Sections 8 and 9.

. Moment-based arbitrary polynomial chaos expansion

This section outlines the spectral technique employed to repre-
ent the propagation of the uncertainties, described by the random
arameters 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ), through the CCSOCP formulated in (2).

As explained in [49], multi-dimensional polynomial expansions can
e computed, which represent surrogate models of the stochastic state
ariables x(𝑡, 𝝃) of the CCSOCP stated in (2). More specifically, each
omponent 𝑥𝑙(𝑡, 𝝃), 𝑙 = 1,… , 𝑛, of the vector of stochastic state variables
(𝑡, 𝝃) can be approximated by a linear combination of 𝑁𝑃 stochastic
ultivariate orthonormal polynomials 𝜳 𝑙

𝑘(𝝃) with deterministic coeffi-
cients 𝛼𝑙𝑘(𝑡) as follows:

𝑥𝑙(𝑡, 𝝃) = 𝑥𝑙(𝑡; 𝜉1,… , 𝜉𝑁𝑈 ) ≈
𝑁𝑃
∑

𝑘=1
𝛼𝑙𝑘(𝑡) ⋅ 𝜳

𝑙
𝑘(𝜉1,… , 𝜉𝑁𝑈 ), 𝑙 = 1,… , 𝑛, (9)

where 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ) is assumed to be a vector of 𝑁𝑈 independent
random variables in the probability space (𝛺,𝛬, 𝛤 ) introduced in Sec-
tion 2.1. Notice that each multivariate orthonormal polynomial 𝜳 𝑙

𝑘(𝝃),
𝑘 = 1,… , 𝑁𝑃 , 𝑙 = 1,… , 𝑛, in (9) is computed as a product of univariate
orthonormal polynomials 𝜓 𝑖𝑗 (𝜉𝑖), 𝑖 = 1,… , 𝑁𝑈 , 𝑗 = 1,… , 𝑝, where index
𝑖 refers to the components of the random vector parameter and index
𝑗 refers to the order of the univariate orthonormal polynomial.

As a result of the orthonormality of the polynomials, the coefficients
𝛼𝑙𝑘(𝑡), 𝑘 = 1,… , 𝑁𝑃 , 𝑙 = 1,… , 𝑛, of the expansions (9) can be computed
as

𝛼𝑙𝑘(𝑡) = 𝑥𝑙(𝑡, 𝝃)𝛹 𝑙𝑘(𝝃)𝑑𝛤 (𝝃). (10)
4

∫𝝃∈𝛺
In practice, different approaches can be followed in order to solve the
integral (10), such as Galerkin projection, collocation, or numerical
integration [50]. A Gaussian quadrature rule based on the statistical
moments of 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ) is used is this paper.

The full tensor product quadrature formula for a given multivariate
function  (𝝃) can be expressed as

∫

𝑑1

𝑐1
⋯∫

𝑑𝑁𝑈

𝑐𝑁𝑈

 (𝝃) 𝑑𝛤 (𝝃) ≈
𝑝1
∑

𝑖1=1
⋯

𝑝𝑁𝑈
∑

𝑖𝑁𝑈 =1

(

𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

×
(

𝜔𝑖1 ⊗⋯⊗𝜔𝑖𝑁𝑈

)

, (11)

where 𝜁 𝑖𝑗 and 𝜔𝑖𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑁𝑈 , respectively, are the nodes
and weights of the numerical integration derived from the statistical
moments of the random variables 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ) [49]. Notice that,
from a computational point of view, the full tensor Gaussian quadrature
rule (11) becomes expensive when the number of random variables 𝑁𝑈
grows. However, this drawback can be overcome by considering sparse
grid quadrature rules, such as the Smolyak quadrature rule [51].

Polynomial expansions in which the optimal choices of the nodes
and weights and the construction of the corresponding orthonormal
polynomials are based on the statistical moments of the random vari-
ables are known as arbitrary Polynomial Chaos (aPC) expansions. The
aPC approach provides a general framework that allows both random
variables with known parametric probability distributions, such as
continuous PDFs and discrete probability mass functions, and data sets
with unknown parametric probability distributions to be taken into
account [42].

5. Uncertainty management

The surrogate models represented by the polynomial expansions (9)
provide a computational efficient approach to calculate the statistics
of the stochastic vector of state variables x(𝑡, 𝝃) of the CCSOCP (2). In
particular, the expected value and variance of 𝑥𝑙(𝑡, 𝝃), 𝑙 = 1,… , 𝑛, can
be formulated in terms of the coefficients 𝛼𝑙𝑘(𝑡) as

𝜇𝑥𝑙 = 𝛼𝑙1(𝑡) and 𝜎2𝑥𝑙 =
𝑁𝑃
∑

𝑘=2
𝛼𝑙𝑘(𝑡)

2, (12)

which can be efficiently calculated by means of scalar products of
vectors using the quadrature rule (11) as follows:

𝜇𝑥𝑙 = 𝑥𝑙
(

𝑡; 𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

⋅𝝎 and 𝜎2𝑥𝑙 =
(

𝑥𝑙
(

𝑡; 𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈
)

− 𝜇𝑥𝑙
)2

⋅𝝎,

(13)

where 𝝎 =
(

𝜔𝑖1 ,… , 𝜔𝑖𝑁𝑈

)

denotes the vector of Gaussian quadrature
weights, with 𝑖 = 1,… , 𝑝. Moreover, data smoothing problems can
be formulated employing the surrogate models (9), which permit to
compute kernel density estimations [52] of the marginals and joint
PDFs and Cumulative Density Functions (CDFs) of the components
of the stochastic vector of state variables x(𝑡, 𝝃), at each time instant
𝑡 ∈

[

𝑡𝐼 , 𝑡𝐹
]

, with low computational cost.
Notice that, as explained in Section 6, the CCSOCP (2) can be

reformulated through the surrogate models (9) by using the nodes
and weights associated with the statistical moments of the random
variables 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ). In particular, the chance constraints (2c)
can be reformulated in terms of 𝜇𝑥𝑙 and 𝜎2𝑥𝑙 , 𝑙 = 1,… , 𝑛, which allow the
uncertainty management and risk analysis in the SOCP (1) to be carried
out. Furthermore, a global sensitivity analysis, based on the variance
of the optimal state variables x(𝑡, 𝝃), can be conducted by means of the
so-called Sobol’ indices, which can also be computed in terms of the

coefficients of the expansion (9) as described in [53,54].
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6. Reformulation of the chance-constrained stochastic optimal
control problem

The numerical resolution of the CCSOCP stated in (2) is based
on the reformulation of the objective functional (2a), the stochastic
differential Eqs. (2b), the chance constraint (2c), and the boundary
conditions (2d), using the computational and statistical properties de-
scribed in Sections 4 and 5 and provided by the surrogate models of
the state variables represented by the aPC expansions (9).

The expected value and standard deviation of the objective func-
tional (2a), which is assumed to be formulated in Mayer form by
introducing a new state variable 𝑥(𝑡, 𝝃), are expressed in terms of the
coefficients of the polynomial expansion of 𝑥(𝑡, 𝝃) using (12).

The stochastic differential equations (2b) are reformulated as a
set of deterministic differential equations. Each of these deterministic
differential equations is obtained by substituting the random parameter
vector 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ) with each combination of the multivariate aPC
nodes 𝜁 𝑖𝑗 , 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑁𝑈 .

In regard to the chance constraint, using the Chebyshev–Cantelli’s
inequality [55], it can be shown that the chance constraint (2c) is
equivalent to the deterministic constraint

a2 𝝁x + 𝜿𝜼 a 𝝈x ≤ b, (14)

with 𝝁x = (𝜇𝑥1 ,… , 𝜇𝑥𝑛𝐶 ), 𝝈x = (𝜎𝑥1 ,… , 𝜎𝑥𝑛𝐶 ), and 𝜿𝜼 = (𝜅𝜂1 ,… , 𝜅𝜂𝑛𝐶 ),
here the scalar parameter 𝜅𝜂𝑙 =

√

(1 − 𝜂𝑙)∕𝜂𝑙, 𝑙 = 1,… , 𝑛𝐶 , is referred
to as safety parameter [56]. Therefore, according to (14), the chance
constraints (3) can be algebraically rewritten in terms of the risk levels
𝜂𝑙 , 𝑙 = 1,… , 𝑛𝐶 , which are specified by the designers of the CCSOCP,
and the first two moments of the state variables 𝑥𝑙(𝑡, 𝝃), 𝑙 = 1,… , 𝑛,
which can be efficiently computed using (13). Moreover, notice that
these reformulations of the chance constraints, which are expressed in
terms of the expected value and the standard deviation of the state
variables as in (7), are usually referred to as distributionally robust
chance constraints [57].

Therefore, the chance constraints (2c) can be expressed in terms
of the coefficients of the polynomial expansions of the state variables
x(𝑡, 𝝃) using (12). Similarly, the expected value and standard deviation
of the boundary conditions (2d), can be expressed in terms of the
coefficients of the polynomial expansions of the state variables using
(12).

Let 𝜁 𝑖1 , 𝜁 𝑖2 ,… , 𝜁 𝑖𝑁𝑈 , 𝑖 = 1,… , 𝑝, be the set of nodes provided by
the aPC expansions of order 𝑝 of the stochastic state variables x(𝑡, 𝝃)
with respect to the random vector 𝝃 = (𝜉1,… , 𝜉𝑁𝑈 ). Then, the CCSOCP
defined in (2) can be rewritten as follows:

min
u(𝑡)

𝛼1
(𝑡𝐹 ) + 𝜅0 ⋅

(𝑁𝑃
∑

𝑘=2
𝛼2𝑘

(𝑡𝐹 )

)1∕2

, (15a)

subject to:

ẋ1(𝑡, 𝝃1) = f(x(𝑡, 𝝃1),u(𝑡), 𝝃1), (15b)

ẋ2(𝑡, 𝝃2) = f(x(𝑡, 𝝃2),u(𝑡), 𝝃2), (15c)
⋯

ẋ𝑝(𝑡, 𝝃𝑝) = f(x(𝑡, 𝝃𝑝),u(𝑡), 𝝃𝑝), (15d)

a2 𝜶1(𝑡) + 𝜿𝜼 a
(𝑁𝑃
∑

𝑘=2
𝜶2
𝑘(𝑡)

)1∕2

≤ b, (15e)

𝜶1(𝑡𝐼 ) = x𝐼 ,
(𝑁𝑃
∑

𝑘=2
𝜶2
𝑘(𝑡𝐼 )

)1∕2

≤ 𝜀𝐼 , 𝜶1(𝑡𝐹 ) = x𝐹 ,
(𝑁𝑃
∑

𝑘=2
𝜶2
𝑘(𝑡𝐹 )

)1∕2

≤ 𝜀𝐹 ,

(15f)

where 𝝃𝑖 = (𝜁 𝑖1 ,… , 𝜁 𝑖𝑁𝑈 ), 𝑖 = 1,… , 𝑝, 𝜶𝑘(𝑡) = (𝛼1𝑘(𝑡),… , 𝛼𝑛𝑘(𝑡)), 𝑘 =
1,… , 𝑁𝑃 , and 𝛼𝑘

(𝑡), 𝑘 = 1,… , 𝑁𝑃 , are the coefficients of the aPC
expansion of the state variable 𝑥(𝑡, 𝝃) introduced to represent the
5

objective functional (1a) in Mayer form. t
Notice that the terms 𝛼1
(𝑡𝐹 ),

∑𝑁𝑃
𝑘=2 𝛼

2
𝑘

(𝑡𝐹 ), 𝜶1(𝑡), and ∑𝑁𝑃
𝑘=2 𝜶

2
𝑘(𝑡)

re deterministic functions of time 𝑡. Therefore, according to (15b)–
15d), the CCSOCP (2) is converted into an augmented deterministic
CP, in which particular instances of the ODE system, corresponding

o the nodes of the random variables, are combined into a single
CP. Thus, (15) is a deterministic OCP, which can be solved using

raditional numerical techniques for the resolution of deterministic
ontinuous OCPs. In particular, in this paper, the Hermite–Simpson
irect collocation method is used [58].

. Application to the COVID-19 pandemic

To illustrate the practical implementation of the proposed approach,
he chance-constrained optimal control of a COVID-19 epidemic model
as been considered in this paper.

.1. Mathematical model of COVID-19 transmission

The considered epidemic model, denoted as SEIsIaQRS, has 6 com-
artments. It is schematically shown in Fig. 1 and represented by the
ollowing set of ODEs:

𝑆̇(𝑡) = − 𝜃
𝑇𝑖𝑛𝑓

(1 − 𝜀𝑣(𝑡))
𝐼𝑠(𝑡) + 𝛼𝐼𝑎(𝑡)

𝑁(𝑡)
𝑆(𝑡) − 𝜀𝑣(𝑡)𝑆(𝑡) + 𝛿𝑅(𝑡), (16a)

𝐸̇(𝑡) = 𝜃
𝑇𝑖𝑛𝑓

(1 − 𝜀𝑣(𝑡))
𝐼𝑠(𝑡) + 𝛼𝐼𝑎(𝑡)

𝑁(𝑡)
𝑆(𝑡) −

𝐸(𝑡)
𝑇𝑙𝑎𝑡

, (16b)

𝐼̇𝑠(𝑡) = (1 − 𝛽)
𝐸(𝑡)
𝑇𝑙𝑎𝑡

−
(

𝜅𝑠 +
1
𝑇𝑖𝑛𝑓

)

𝐼𝑠(𝑡), (16c)

̇𝑎(𝑡) = 𝛽
𝐸(𝑡)
𝑇𝑙𝑎𝑡

−
(

𝜅𝑎(𝑡) +
1
𝑇𝑖𝑛𝑓

)

𝐼𝑎(𝑡), (16d)

𝑄̇(𝑡) = 𝜅𝑠𝐼𝑠(𝑡) + 𝜅𝑎(𝑡)𝐼𝑎(𝑡) −
𝑄(𝑡)
𝑇𝑠𝑒𝑟

, (16e)

𝑅̇(𝑡) =
𝐼𝑠(𝑡) + 𝐼𝑎(𝑡)

𝑇𝑖𝑛𝑓
+
𝑄(𝑡)
𝑇𝑠𝑒𝑟

+ 𝜀𝑣(𝑡)𝑆(𝑡) − 𝛿𝑅(𝑡). (16f)

The state variables 𝑆(𝑡), 𝐸(𝑡), 𝐼𝑠(𝑡), 𝐼𝑎(𝑡), 𝑄(𝑡), and 𝑅(𝑡) of the ODE
ystem (16) correspond to the number of susceptible, exposed, symp-
omatic, asymptomatic, isolated, and recovered subjects, respectively,
hereas the state variable 𝑁(𝑡) corresponds to the total population.
oreover, the mass conservation property is assumed, namely

(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼𝑠(𝑡) + 𝐼𝑎(𝑡) +𝑄(𝑡) + 𝑅(𝑡), for all 𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ].

The control variables 𝑣(𝑡) and 𝜅𝑎(𝑡) of the ODE system (16) cor-
espond to the vaccination rate for the immunization of susceptible
ubjects and the testing rate for the identification and isolation of
symptomatic infected subjects, respectively. The control variable 𝑣(𝑡)
anges from 0 to 𝑣𝑈 , whereas the control variable 𝜅𝑎(𝑡) ranges from
to 𝜅𝑈 , where 𝑣𝑈 and 𝜅𝑈 are upper bounds that must be set by the

esigners of the CCSOCP.
The meaning of the parameters of the ODE system (16) and their

orresponding values are summarized in Table 1.
According to [59], the ratio between infectiousness of asymptomatic

nd symptomatic subjects has been set to 𝛼 = 1, whereas, according
o [60], the population ratio that remains asymptomatic has been set
o 𝛽 = 0.8. Following [45,59], the isolation rate of symptomatic subjects
as been set to 𝜅𝑠 = 0.95. According to [65,66], the mean serial time
nterval, the mean incubation period, and the infectious period have
een set to 𝑇𝑠𝑒𝑟 = 7.5, 𝑇𝑙𝑎𝑡 = 5.2, and 𝑇𝑖𝑛𝑓 = 2.3 days, respectively.

It has been assumed that the social distancing measures have been
arely applied. Therefore, following [54] and according to the sensi-
ivity analysis conducted in [60], the replication factor, 𝜃, has been
upposed to be a random variable centred at 3.5. More specifically, the
andom parameter 𝜃 has been modelled using a gamma distribution
(3500, 0.001). Moreover, according to the vaccine efficacy reported

n [64,67,68] and following the sensitivity analysis conducted in [45],

he vaccine efficacy, 𝜀, has been assumed to be a random variable
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Fig. 1. Schematic representation of the SEIsIaQRS compartmental model with immunity loss and vaccination and testing strategies.
Table 1
Values of the parameters of the SEIsIaQRS model used in the numerical experiments.
Parameter Meaning Value Units Source

𝛼 Asymptomatic over symptomatic subjects ratio 1.000 dimensionless [59]
𝛽 Population ratio that remains asymptomatic 0.800 dimensionless [60]
𝛿 Immunity loss Random days−1 [61–63]
𝜀 Vaccine efficacy Random dimensionless [45,64]
𝜅𝑠 Isolation rate of symptomatic subjects 0.950 dimensionless [45,59]
𝜃 Replication factor Random dimensionless [54,60]
𝑇𝑠𝑒𝑟 Mean serial time interval 7.500 days [65]
𝑇𝑙𝑎𝑡 Mean incubation period 5.200 days [65,66]
𝑇𝑖𝑛𝑓 Mean infectious period 2.300 days [66]
centred at 0.95. More specifically, the random parameter 𝜀 has been
modelled using a beta distribution B(160, 10). Finally, according to
different works, which have reported a duration of the immunity rang-
ing from 6 months [61] to 3 years [62], and following the sensitivity
analysis conducted in [63], the immunity loss, 𝛿, has been assumed to
be a random variable centred at 0.0028. More specifically, the random
parameter 𝛿 has been modelled using a beta distribution B(160, 10).

Notice that, in model (16), the term 𝜀𝑣(𝑡)𝑆(𝑡) represents the vac-
cination policy, with parameter 𝜀 being the vaccine efficacy level.
Only the susceptible subjects are assumed to be vaccinated. Moreover,
the term 𝜅𝑎(𝑡)𝐼𝑎(𝑡) represents the testing strategy for the detection of
asymptomatic infected subjects.

Thus, in this application, a CCSOCP based on the ODE system (16)
is formulated, in which the effects on the transmission of the disease
of the uncertainty on the replication factor, the immunity loss, and the
vaccine efficacy represented by parameters 𝜃, 𝛿, and 𝜀, respectively, are
quantified and managed.

7.2. Chance-constrained stochastic optimal control of COVID-19 transmis-
sion

Different strategies to control the spread of COVID-19 represented
by the model (16) can be obtained depending on the objective func-
tional and the constraints considered.

Assume that the objective functional to be minimized is a combi-
nation of the number of infectious subjects and the overall cost of the
6

vaccination and testing during a fixed time period [𝑡𝐼 , 𝑡𝐹 ], namely

 (𝐼𝑠(𝑡), 𝐼𝑎(𝑡), 𝑣(𝑡), 𝜅𝑎(𝑡)) =

∫

𝑡𝐹

𝑡𝐼

(

𝐶1 ⋅ 𝐼𝑠(𝑡) + 𝐶2 ⋅ 𝐼𝑎(𝑡) + 𝐶3 ⋅ 𝑣
2(𝑡) + 𝐶4 ⋅ 𝜅

2
𝑎 (𝑡)

)

𝑑𝑡, (17)

where 𝐶𝑖, 𝑖 = 1, 2, 3, 4, are weighting parameters that must be set by the
designers of the CCSOCP. Additionally, for all 𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ], assume that
the following constraint is considered:

𝐼𝑎(𝑡) ≤ 𝐼𝑎𝑈 , (18)

where parameter 𝐼𝑎𝑈 denotes an upper bound on the number of daily
asymptomatic infected subjects. Then, the chance-constrained stochas-
tic optimal control of the SEIsIaQRS compartmental model (16) with
objective functional (17) and algebraic constraint (18) is stated as
follows:

min
𝑣(𝑡),𝜅𝑎(𝑡)

𝑀 (𝑡, 𝝃) + 𝜅0 ⋅ 𝛴 (𝑡, 𝝃) (19a)

subject to:

𝑆̇(𝑡, 𝝃) = − 𝜃
𝑇𝑖𝑛𝑓

(1 − 𝜀𝑣(𝑡))
𝐼(𝑡, 𝝃)
𝑁

𝑆(𝑡, 𝝃) − 𝜀𝑣(𝑡)𝑆(𝑡, 𝝃) + 𝛿𝑅(𝑡, 𝝃) a.s., (19b)

𝐸̇(𝑡, 𝝃) = 𝜃
𝑇𝑖𝑛𝑓

(1 − 𝜀𝑣(𝑡))
𝐼(𝑡, 𝝃)
𝑁

𝑆(𝑡, 𝝃) −
𝐸(𝑡, 𝝃)
𝑇𝑙𝑎𝑡

a.s., (19c)

𝐼̇𝑠(𝑡, 𝝃) = (1 − 𝛽)
𝐸(𝑡, 𝝃)
𝑇𝑙𝑎𝑡

−
(

𝜅𝑠 +
1
𝑇𝑖𝑛𝑓

)

𝐼𝑠(𝑡, 𝝃) a.s., (19d)

𝐼̇𝑎(𝑡, 𝝃) = 𝛽
𝐸(𝑡, 𝝃)

−
(

𝜅𝑎(𝑡) +
1

)

𝐼𝑎(𝑡, 𝝃) a.s., (19e)

𝑇𝑙𝑎𝑡 𝑇𝑖𝑛𝑓
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𝑄

𝜇

𝜇

Fig. 2. PDFs of the random parameters 𝝃 = (𝜃, 𝜀, 𝛿) of the CCSOCP (19).
̇ (𝑡, 𝝃) = 𝜅𝑠𝐼𝑠(𝑡, 𝝃) + 𝜅𝑎(𝑡)𝐼𝑎(𝑡, 𝝃) −
𝑄(𝑡, 𝝃)
𝑇𝑠𝑒𝑟

a.s., (19f)

𝑅̇(𝑡, 𝝃) =
𝐼𝑠(𝑡, 𝝃) + 𝐼𝑎(𝑡, 𝝃)

𝑇𝑖𝑛𝑓
+
𝑄(𝑡, 𝝃)
𝑇𝑠𝑒𝑟

+ 𝜀𝑣(𝑡)𝑆(𝑡, 𝝃) − 𝛿𝑅(𝑡, 𝝃) a.s., (19g)

𝑃
(

𝐼𝑎(𝑡, 𝝃) ≤ 𝐼𝑎𝑈
)

≥ 1 − 𝜂𝑎, (19h)
(

𝑆(𝑡𝐼 , 𝝃)
)

= 𝑆𝐼 , 𝜇
(

𝐸(𝑡𝐼 , 𝝃)
)

= 𝐸𝐼 , 𝜇
(

𝐼𝑠(𝑡𝐼 , 𝝃)
)

= 𝐼𝑠𝐼 , (19i)
(

𝐼𝑎(𝑡𝐼 , 𝝃)
)

= 𝐼𝑎𝐼 , 𝜇
(

𝑄(𝑡𝐼 , 𝝃)
)

= 𝑄𝐼 , 𝜇
(

𝑅(𝑡𝐼 , 𝝃)
)

= 𝑅𝐼 , (19j)

𝜎
(

𝑆(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 , 𝜎
(

𝐸(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 , 𝜎
(

𝐼𝑠(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 , (19k)

𝜎
(

𝐼𝑎(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 , 𝜎
(

𝑄(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 , 𝜎
(

𝑅(𝑡𝐼 , 𝝃)
)

≤ 𝜀𝐼 , (19l)

where 𝐼(𝑡, 𝝃) = 𝐼𝑠(𝑡, 𝝃) + 𝛼𝐼𝑎(𝑡, 𝝃), 𝑀 (𝑡, 𝝃) = 𝜇
(

 (𝐼𝑠(𝑡, 𝝃), 𝐼𝑎(𝑡, 𝝃), 𝑣(𝑡),
𝜅𝑎(𝑡), 𝝃)

)

, and 𝛴 (𝑡, 𝝃) = 𝜎
(

 (𝐼𝑠(𝑡, 𝝃), 𝐼𝑎(𝑡, 𝝃), 𝑣(𝑡), 𝜅𝑎(𝑡), 𝝃)
)

, with 𝑣(𝑡) ∈
[0, 𝑣𝑈 ], 𝜅𝑎(𝑡) ∈ [0, 𝜅𝑈 ], 𝝃 = (𝜃, 𝜀, 𝛿), and  (⋅) defined as in (17).

8. Numerical experiments

To show the practical application of the proposed approach to the
uncertainty management in epidemic models, based on the formulation
of CCSOCPs, various numerical experiments have been carried out, in
which the mathematical model of COVID-19 transmission introduced
in Section 7.1 has been used.

In all these experiments, it has been assumed that 𝑁(𝑡) = 1,
namely a non-dimensionalized version of the SEIsIaQRS model (16) has
been employed, so that all the state variables have the same order of
magnitude. This scaling of variables allows computational issues that
could arise when numerically solving the CCSOCP (19) to be prevented.
Moreover, following [45], the initial conditions at time instant 𝑡 = 0
have been set to:

(𝑆0 = 0.84908, 𝐸0 = 0.00102, 𝐼𝑠0 = 0.0002,

𝐼𝑎0 = 0.0008, 𝑄0 = 0, 𝑅0 = 0.1489).

Furthermore, as mentioned above, it has been assumed that the replica-
tion factor 𝜃 follows a gamma distribution G(3500, 0.001), the vaccine
efficacy 𝜀 follows a beta distribution B(160, 10), and the immunity
7

loss rate 𝛿 follows a beta distribution B(20, 6000), as shown in Fig. 2.
These random parameters have been modelled using an aPC expansion
of order 𝑝 = 4 and the upper bound for the standard deviations
in the boundary conditions (19k)–(19l) has been set to 𝜀𝐼 = 10−6.
Additionally, the upper bounds on the vaccination and testing rates
have been set to 𝑣𝑈 = 0.007 and 𝜅𝑈 = 0.5, respectively, whereas the
weighting parameters of the objective functional (17) have been set to
𝐶1 = 0.15, 𝐶2 = 0.095, 𝐶3 = 0.75, and 𝐶4 = 0.005.

Notice that the values of the parameters considered in these exper-
iments are not intended to represent a specific current scenario. They
have been chosen with the aim of illustrating the practical application
of the proposed methodology for academic purposes only.

8.1. Experiment 1: Single chance constraint

In this experiment, the CCSOCP (19) is solved for 𝐼𝑎𝑈 = 0.006
and 𝜂𝑎 = 0.05. Fig. 3 shows in green lines the expected values of the
obtained optimal state variables, together with their 2-sigma confi-
dence envelopes. The corresponding optimal control variables, which
represent the vaccination and testing rates, are represented in Fig. 4.
The proportions of susceptible vaccinated subjects and asymptomatic
tested subjects, namely 𝑣(𝑡)𝑆(𝑡) and 𝜅𝑎(𝑡)𝐼𝑎(𝑡), respectively, are shown
for every 𝑡 ∈

[

𝑡𝐼 , 𝑡𝐹
]

in Fig. 5. These will be referred to as the vaccina-
tion and testing policies. For the sake of comparison, Figs. 3 and 4 also
show in red lines the optimal state and control variables obtained when
the chance constraint (19h) is removed. The corresponding proportions
of susceptible vaccinated subjects and asymptomatic tested subjects are
represented in Fig. 5 as well.

As it can be seen in Fig. 3, the development of the outbreak of
the infectious disease changes considerably when the single chance
constraint (19h) is imposed. More specifically, as shown in Fig. 3c,
around day 48 the 2-sigma confidence envelope for the proportion of
symptomatic infected subjects represented in green reaches a peak of
(0.0004, 0.0007)%, whereas this peak rises to (0.0007, 0.0011)% for
the envelope represented in red, which means a significant increase
in the proportion of symptomatic infected subjects when the chance
constraint (19h) is not taken into account. Similar differences can be
noticed in the evolution of the 2-sigma confidence envelopes for the
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Fig. 3. Experiment 1. Expected values of the proportions of subjects in each compartment, together with their 2-sigma confidence envelopes. The curves corresponding to the
solutions obtained with and without the single chance constraint are shown in green and red, respectively. The 2-sigma confidence envelope for the proportion of asymptomatic
subjects represented in green clearly remains below the preset threshold of 0.006, due to the effect of the chance constraint (19h). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Experiment 1. Optimal vaccination and testing rates. The curves corresponding to the solutions obtained with and without the single chance constraint are shown in green
and red, respectively. The effect of the chance constraint (19h) is mainly achieved through the increase in the testing and isolation of asymptomatic subjects during the first 60
days. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
proportion of exposed and isolated subjects, as shown in Fig. 3b and
e, respectively. The effect of these differences can be observed in the
behaviour of the 2-sigma confidence envelope for the proportion of
both susceptible and recovered subjects between day 50 and day 100,
as shown in Fig. 3a and f, respectively.

The direct effect of the chance constraint (19h) can be seen in
Fig. 3d, in which the 2-sigma confidence envelope for the proportion
of asymptomatic subjects clearly remains below the preset threshold
of 0.006. This effect is mainly due to the increase in the testing and
isolation of asymptomatic subjects during the first 60 days, as shown
in Fig. 4b, which, as mentioned before, turns into a greater reduction of
the proportion of exposed, symptomatic, and isolated subjects, as can
be seen in Fig. 3b, c, and e, respectively. Therefore, a greater screening
8

of asymptomatic subjects ultimately results in a greater reduction of
the disease transmission.

8.2. Experiment 2: Single robust constraint

In this experiment, the single chance constraint (19h) is replaced by
the single robust constraint

𝜇(𝐼𝑎(𝑡, 𝝃)) + 𝜅𝑎𝐶 ⋅ 𝜎(𝐼𝑎(𝑡, 𝝃)) ≤ 𝐼𝑎𝑈 , (20)

with 𝐼𝑎𝑈 = 0.006 and 𝜅𝑎𝐶 = 2, whereas the rest of the expressions are
the same as in Experiment 1. The presence of this constraint converts
the CCSOCP (19) into a RCSOCP, with a single robust constraint of the
form (7), as described in Section 3.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 172 (2023) 113560A. Olivares and E. Staffetti
Fig. 5. Experiment 1. Expected values of the proportion of susceptible vaccinated subjects and asymptomatic tested subjects, together with their 2-sigma confidence envelopes.
The curves corresponding to the solutions obtained with and without the single chance constraint are shown in green and red, respectively. The chance constraint (19h) implies
an overall increase in the vaccination policy and a decrease in the testing policy during the first 60 days. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
Fig. 6. Experiment 2. Expected values of the proportions of subjects in each compartment, together with their 2-sigma confidence envelopes. The curves corresponding to the
solutions obtained with the single robust constraint and the single chance constraint are shown in blue and green, respectively. The 2-sigma confidence envelope for the proportion
of asymptomatic subjects in the RCSOCP reaches the preset threshold of 0.006, namely the single robust constraint (20) is saturated, meaning that the threshold violation probability
is greater when the single robust constraint is considered. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Fig. 6 shows in blue lines the expected values of the optimal state
variables, together with their 2-sigma confidence envelopes, obtained
in the solution of this RCSOCP. The associated optimal control variables
are represented in Fig. 7, whereas the corresponding vaccination and
testing policies are shown in Fig. 8. For the sake of comparison, Figs. 6,
7, and 8 also show in green lines the optimal state and control vari-
ables, as well as the corresponding vaccination and testing strategies,
obtained in the solution of the CCSOCP considered in Experiment 1.

As in the case of the single chance constraint, the effect of the single
robust constraint can be clearly seen in Fig. 6. However, as shown
in Fig. 7, there are slight differences in the behaviour of the optimal
control variables, mainly in the testing and isolation of asymptomatic
9

subjects during the first 60 days, in which the testing rate is lower when
the single robust constraint is considered. These differences lead to a
noticeable change in the evolution of the proportion of asymptomatic
subjects, as can be seen in Fig. 6d. More specifically, unlike in the case
of the solution of the CCSOCP, the 2-sigma confidence envelope for
the proportion of asymptomatic subjects in the RCSOCP reaches the
preset threshold of 0.006, namely the single robust constraint (20) is
saturated, meaning that the threshold violation probability is greater
when the single robust constraint is considered.

It is well known that a significant percentage of the realizations of
a random variable is not included in a 2-sigma confidence interval. For
instance, this percentage is approximately 5% for a Gaussian random
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Fig. 7. Experiment 2. Optimal vaccination and testing rates. The curves corresponding to the solutions obtained with the single robust constraint and the single chance constraint
are shown in blue and green, respectively. There are slight differences in the behaviour of the optimal control variables, mainly in the testing and isolation of asymptomatic
subjects during the first 60 days, in which the testing rate is lower when the single robust constraint is considered. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 8. Experiment 2. Expected values of the proportion of susceptible vaccinated subjects and asymptomatic tested subjects, together with their 2-sigma confidence envelopes.
The curves corresponding to the solutions obtained with the single robust constraint and the single chance constraint are shown in blue and green, respectively. The vaccination
policies are similar, whereas the testing policy during the first 60 days is slightly higher when the single robust constraint is considered. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Experiment 2. MC simulations of the proportion of asymptomatic subjects obtained with the single robust constraint (left) and the single chance constraint (right). In the
case of the single chance constraint, the threshold is violated in 0.10% of the samples, whereas this percentage rises to 4.15% in the case of the single robust constraint.
variable. However, each optimal state variable observed at an arbitrary
time instant 𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ] can have an arbitrary PDF. Therefore, if the
single robust constraint (20) is saturated in the solution of the RCSOCP,
then the actual threshold violation probability is not known. Notice
that, although the chance constraint (19h) is not saturated, the actual
threshold violation probability is not known either in the case of the
CCSOCP, since the chance constraint only provides a lower bound for
the constraint satisfaction probability at each time instant.

The surrogate model provided by the aPC expansion (9) allows the
actual threshold violation probability to be estimated by means of a MC
simulation. In particular, MC simulations with 10 000 runs have been
done using the surrogate models of the optimal proportion of asymp-
tomatic subjects obtained in the solutions of both the CCSOCP and the
RCSOCP as shown in Fig. 9, in which, for the sake of clarity, only the
results of 100 runs are reported. According to the MC simulations, in
the CCSOCP, the threshold is violated in 0.10% of the samples, whereas
this percentage rises to 4.15% in the RCSOCP.

Moreover, as explained in Section 5, the surrogate model (9) also
allows the PDF of the optimal state variables at each time instant
𝑡 ∈ [𝑡𝐼 , 𝑡𝐹 ] to be estimated. The availability of these PDFs enables a
wide range of statistical analyses to be conducted. In particular, the
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threshold violation probability can be computed at each time instant for
the proportion of asymptomatic subjects. More specifically, the PDFs
of 𝐼𝑎(𝑡, 𝝃) at time instants 𝑡 = 30, 𝑡 = 40, 𝑡 = 50, 𝑡 = 60, and 𝑡 = 70
days have been estimated using a Gaussian kernel estimator, which are
shown in Fig. 10 for both the CCSOCP and the RCSOCP. For instance,
at time instant 𝑡 = 50 days, the threshold violation probability in the
CCSOCP is 𝑃 (𝐼𝑎(50, 𝝃) > 0.006) = 0.00004, whereas in the RCSOCP this
probability rises to 0.03628.

8.3. Experiment 3: Separate robust constraints

In this experiment, the single chance constraint (19h) is replaced by
the separate robust constraints

𝜇(𝐼𝑎(𝑡, 𝝃)) ≤ 𝐼𝑎𝑈 , 𝜎(𝐼𝑎(𝑡, 𝝃)) ≤ 𝜀𝑎𝐶 , (21)

with 𝐼𝑎𝑈 = 0.006 and 𝜀𝑎𝐶 = 0.0002, whereas the rest of the expressions
are the same as in Experiment 1. The presence of these constraints
converts the CCSOCP (19) into a RCSOCP, with two separate robust
constraints of the form (8), as described in Section 3.
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Fig. 10. Experiment 2. PDFs of the proportion of asymptomatic subjects at time instants 𝑡 = 30, 𝑡 = 40, 𝑡 = 50, 𝑡 = 60, and 𝑡 = 70 days. The PDFs corresponding to the solutions
obtained with the single robust constraint and the single chance constraint are shown in blue and green, respectively. At time instant 𝑡 = 50 days, the threshold violation probability
in the case of the single chance constraint is 0.00004, whereas in the case of the single robust constraint, this probability rises to 0.03628. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Experiment 3. Expected values of the proportions of subjects in each compartment, together with their 2-sigma confidence envelopes. The curves corresponding to the
solutions obtained with the separate robust constraints and the single chance constraint are shown in orange and green, respectively. The 2-sigma confidence envelopes for the
proportion of exposed, symptomatic, asymptomatic, and isolated subjects are clearly lower when the separate robust constraints are considered. However, this result is achieved
at the cost of increasing significantly the needed vaccine and testing supplies. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 12. Experiment 3. Optimal vaccination and testing rates. The curves corresponding to the solutions obtained with the separate robust constraints and the single chance
constraint are shown in orange and green, respectively. The effect of the separate robust constraints is achieved through an overall increase in the testing and isolation of
asymptomatic subjects. Moreover, the maximum daily vaccination rate must be scheduled almost during the whole time period under consideration. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Experiment 3. Expected values of the proportion of susceptible vaccinated subjects and asymptomatic tested subjects, together with their 2-sigma confidence envelopes.
The curves corresponding to the solutions obtained with the separate robust constraints and the single chance constraint are shown in orange and green, respectively. The separate
robust constraints imply an overall increase in the vaccination policy and a decrease in the testing policy during the first 90 days. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
Fig. 11 shows in orange lines the expected values of the optimal
state variables, together with their 2-sigma confidence envelopes, ob-
tained in the solution of this RCSOCP. The associated optimal control
variables are represented in Fig. 12, and the corresponding vaccination
and testing policies are shown in Fig. 13. For the sake of comparison,
Figs. 11, 12, and 13 also show in green lines the optimal state and
control variables, as well as the corresponding vaccination and test-
ing strategies, obtained in the solution of the CCSOCP considered in
Experiment 1.

It can be seen in Fig. 12 that the behaviour of the optimal con-
trol variables obtained in the solution of the RCSOCP with separate
robust constraints noticeably differ from the optimal control variables
obtained in the solution of the CCSOCP, which leads to considerable
differences in the evolution of the optimal state variables represented
in Fig. 11. More specifically, compared to the CCSOCP solved in Ex-
periment 1, the 2-sigma confidence envelopes for the proportion of
exposed, symptomatic, asymptomatic, and isolated subjects are clearly
lower when the separate robust constraints are considered, meaning
a better outcome from the point of view of the control of the disease
transmission. However, this result is achieved at the cost of increasing
significantly the needed vaccine and testing supplies. Indeed, accord-
ing to the optimal control variables, the maximum daily vaccination
rate should be scheduled almost during the whole time period under
consideration, as shown in Fig. 12a.

It is important to point out the lack of predictability of the evolution
of the optimal state variables when the separate robust constraints are
considered. Unlike in the previous experiments, due to the constraint
on the standard deviation 𝜎(𝐼𝑎(𝑡, 𝝃)) ≤ 𝜀𝑎𝐶 , it is not possible to know in
advance an estimate of the threshold violation probability. Indeed, for
larger values of 𝜀𝑎𝐶 , the threshold can be clearly violated by the 2-sigma
confidence envelope, since only the expected value of the proportion of
asymptomatic subjects is assumed to remain below the threshold.
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8.4. Experiment 4: Joint chance constraint

In this experiment, the single chance constraint (19h) is replaced by
the joint constraint

𝑃
(

𝐼𝑠(𝑡, 𝝃) ≤ 𝐼𝑠𝑈 , 𝐼𝑎(𝑡, 𝝃) ≤ 𝐼𝑎𝑈
)

≥ 1 − 𝜂, (22)

with 𝐼𝑠𝑈 = 0.0006 and 𝐼𝑎𝑈 = 0.006, whereas the rest of the expressions
are the same as in Experiment 1. The joint chance constraint (22)
included in the formulation of the CCSOCP (19) is of the form (4). As
described in Section 2.3, the Bonferroni’s inequality allows the joint
chance constraint (22) to be split into the single chance constraints

𝑃
(

𝐼𝑠(𝑡, 𝝃) ≥ 𝐼𝑠𝑈
)

≤ 𝜂𝑠, 𝑃
(

𝐼𝑎(𝑡, 𝝃) ≥ 𝐼𝑎𝑈
)

≤ 𝜂𝑎, (23)

where 𝜂𝑠 + 𝜂𝑎 = 𝜂. In particular, in this experiment, the risk level is
equally split between the two single chance constraints, according to
the naive risk level allocation 𝜂𝑠 = 𝜂𝑎 = 0.025.

Fig. 14 shows in purple lines the expected values of the optimal state
variables, together with their 2-sigma confidence envelopes, obtained
in the solution of this CCSOCP. The associated optimal control variables
are represented in Fig. 15, and the corresponding vaccination and
testing policies are shown in Fig. 16. For the sake of comparison,
Figs. 14, 15, and 16 also show in green lines the optimal state and
control variables, as well as the corresponding vaccination and test-
ing strategies, obtained in the solution of the CCSOCP considered in
Experiment 1.

The effect of the joint chance constraint (22) can be clearly seen
in Fig. 14c and d, in which the 2-sigma confidence envelopes for the
proportion of both symptomatic and asymptomatic subjects remain be-
low the preset thresholds of 0.0006 and 0.006, respectively. Moreover,
compared to the CCSOCP solved in Experiment 1, both confidence
envelopes take lower values. These differences are mainly due to the
increase in the testing and isolation of asymptomatic subjects during
the first 50 days, as shown in Fig. 15b. Furthermore, in this case, it
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Fig. 14. Experiment 4. Expected values of the proportions of subjects in each compartment, together with their 2-sigma confidence envelopes. The curves corresponding to the
solutions obtained with a single chance constraint and a joint chance constraint are shown in green and purple, respectively. The 2-sigma confidence envelopes for the proportion
of both symptomatic and asymptomatic subjects represented in purple clearly remain below their corresponding preset thresholds due to the effect of the joint chance constraint
(22). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 15. Experiment 4. Optimal vaccination and testing rates. The curves corresponding to the solutions obtained with a single chance constraint and a joint chance constraint
are shown in green and purple, respectively. There is a slight difference in the behaviour of the testing rate, whereas a more significant difference is observed in the testing and
isolation of asymptomatic subjects during the first 50 days, in which the testing rate is higher when the joint chance constraint is considered. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
can be concluded that the fulfilment of the chance constraint on the
proportion of symptomatic subjects is the main responsible for the
increase in the testing rate, which also implies a significant reduction
in the proportion of asymptomatic, exposed, and isolated subjects, as
can be seen in Fig. 14b, d, and e, respectively.

The surrogate models provided by the aPC expansion (9) not only
allow for the estimation of the marginal PDFs of the optimal state
variables at each time instant 𝑡 ∈ [𝑡𝑖, 𝑡𝐹 ], but also the estimation of
their joint PDFs, which enable a great variety of multivariate statistical
analyses to be conducted. For instance, given two time instants 𝑡 and
13

1

𝑡2, with 𝑡2 > 𝑡1, conditional probabilities of the form

𝑃
(

𝐼𝑠(𝑡2, 𝝃) ≥ 𝐼𝑠𝑈 ∣ 𝐼𝑎(𝑡1, 𝝃) ≥ 𝐼𝑎𝑈
)

can be computed. Therefore, the threshold violation probability for the
proportion of symptomatic subjects at time instant 𝑡2 can be updated ac-
cording to the proportion of asymptomatic subjects previously observed
at a given time instant 𝑡1.

In particular, the joint PDF and CDF of 𝐼𝑠(𝑡, 𝝃) and 𝐼𝑎(𝑡, 𝝃) at time
instants 𝑡 = 70 days and 𝑡 = 40 days, respectively, have been estimated
using a Gaussian kernel estimator, which are shown in Fig. 17, and the
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Fig. 16. Experiment 4. Expected values of the proportion of susceptible vaccinated and asymptomatic tested subjects, together with their 2-sigma confidence envelopes. The curves
corresponding to the solutions obtained with a single chance constraint and a joint chance constraint are shown in green and purple, respectively. The joint chance constraint
(22) implies a slight increase in the vaccination policy and a decrease in the testing policy during the first 70 days. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 17. Experiment 4. Joint PDF and CDF of variables 𝐼𝑠 and 𝐼𝑎 obtained in the solution of the CCSOCP at time instants 𝑡 = 40 days and 𝑡 = 70 days, respectively.
following conditional probability has been calculated:

𝑃
(

𝐼𝑠(70, 𝝃) ≥ 0.0004 ∣ 𝐼𝑎(40, 𝝃) ≥ 0.003
)

= 0.9561.

Since 𝑃
(

𝐼𝑠(70, 𝝃) ≥ 0.0004
)

= 0.1897, it can be concluded that the
threshold violation probability for the proportion of symptomatic sub-
jects on day 70 will considerably increase if one month before the
proportion of asymptomatic subjects exceeds 0.003.

Finally, Fig. 18 shows the Sobol’ indices associated with all the op-
timal state variables obtained in the solution of the CCSOCP with both
the single chance constraint and the joint chance constraint represented
in dashed and solid lines, respectively. The corresponding Sobol’ indices
for the random parameters 𝜃, 𝜀, and 𝛿 are plotted in blue, orange, and
green colours, respectively.

It can be seen that the variance of the proportion of exposed,
symptomatic, asymptomatic, and isolated subjects, due to the variance
of parameter 𝜀 is almost negligible, whereas the variance of the propor-
tion of susceptible and recovered subjects reaches small but significant
values during the first 30 days. Besides, the relative influence of the
variance of the parameters 𝜃 and 𝛿 on the variance of the proportion
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of exposed, symptomatic, asymptomatic, and isolated subjects changes
along the time period considered. Specifically, the variance of 𝜃 has
the most influence on the variance of these state variables during the
first 80 days, whereas the influence of the variance of 𝛿 becomes pre-
dominant the following 100 days. Moreover, no significant differences
are observed between the Sobol’ indices computed from the CCSOCP
with the single chance constraint and the joint chance constraint, which
show similar patterns along the whole time period considered.

9. Conclusions

In this paper, a spectral approach to the uncertainty management
in epidemic models, based on the formulation of chance-constrained
stochastic optimal control problems, has been presented, in which
the inclusion of both single and joint chance constraints has been
addressed. Moreover, a general procedure has been proposed to refor-
mulate these chance-constrained stochastic optimal control problems
as augmented deterministic optimal control problems, which can be
solved using traditional numerical methods.
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Fig. 18. Experiment 4. Sobol’ indices for the random parameters 𝜃 (blue), 𝜀 (orange), and 𝛿 (green). The curves corresponding to the solutions obtained with a single chance
constraint and a joint chance constraint are shown in dashed and solid lines, respectively. No significant differences are observed between the Sobol’ indices computed from
the CCSOCP with the single chance constraint and the joint chance constraint, which show similar patterns along the whole time period considered. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
The arbitrary polynomial chaos expansion technique has been em-
ployed for the computation of surrogate models of the optimal stochas-
tic state variables, whose main statistics can be efficiently computed.
Then, applying the Chebyshev–Cantelli’s inequality, the expected value
and variance of these surrogate models have been used to reformulate
single chance constraints. Moreover, joint chance constraints have been
represented in terms of sets of single chance constraints by means of
the Bonferroni’s inequality. Furthermore, the surrogate models have
also been employed to conduct a global sensitivity analysis in terms
of the Sobol’ indices, as well as a risk assessment analysis based on
Monte Carlo simulations and kernel density estimations of the marginal
and joint probability density functions of the optimal stochastic state
variables at each time instant.

The practical application of the proposed methodology has been
illustrated through several numerical experiments in which a COVID-
19 epidemic model has been considered. Specifically, various stochastic
optimal control problems have been solved, which include single and
joint chance constraints as well as single and separate robust con-
straints. The effects of chance constraints and robust constraints on
the solutions of the stochastic optimal control problems have been
compared and discussed. The numerical results show that the inclusion
of suitable chance constraints in the formulation of stochastic optimal
control problems gives the designers of the optimal control strategies
an efficient tool to quantify and manage the uncertainty in epidemic
models. In addition, the proposed methodology, which is based on
the use of chance constraints, provides the capability to increase the
predictability of the outcomes in comparison with the results obtained
when robust constraints are imposed.
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