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Weighted directed graph J. Algebra Comput. (2022) as well as it strengthens results 
due to Cǎlugǎreanu-Lam in J. Algebra Appl. (2016).
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

0. Introduction and fundamentals

The decomposition of matrices over an arbitrary field into the sum of some special 
elements, like nilpotent elements, idempotent elements, potent elements, units, etc., was 
in the focus of many researchers for a long time (see, e.g., [1], [2], [3], [4], [5], [6], [20], [22]
and [23] and the bibliography cited therewith). Specifically, concerning our own work on 
the subject, in [13] we found some necessary (and sufficient) conditions to assure that any 
square matrix over a field (finite or infinite) is expressible as a sum of a diagonalizable 
matrix and a nilpotent matrix of index less than or equal to two. In particular, we also 
obtained some results on the expression of square matrices into the sum of a potent 
matrix and a square-zero matrix over finite fields. Nevertheless, such a decomposition 
does not hold for fields of characteristic zero (see [13, Example 4.3]). Further insight in 
that matter over some special finite rings was achieved by us in [14]. We also refer the 
interested reader to [11] for some other aspects of the realization of matrices into the 
sum of specific elements over certain fields.

By combining the notions of invertibility and nilpotence, Cǎlugǎreanu and Lam in-
troduced in 2016 the notion of fine rings [7]: those in which every nonzero element can 
be written as the sum of an invertible element and a nilpotent one, proving in that work 
that every nonzero square matrix over a division ring is the sum of an invertible matrix 
and a nilpotent matrix. The rings whose nonzero idempotents are fine turned out to 
be an interesting class of indecomposable rings and were studied in [8] by Cǎlugǎreanu 
and Zhou. In 2021, the same authors focused on rings in which every nonzero nilpotent 
element is fine, which they called NF rings, and showed that for a commutative ring R
and n ≥ 2, the matrix ring Mn(R) is NF if and only if R is a field; see [9]. A slightly 
more general class of rings than fine rings was defined in [12] under the name nil-good 
rings (every element a can be expressed as the sum a = n + u where n is nilpotent and 
u is either zero or a unit); in [18] it is shown that the matrix ring Mn(Δ) over a division 
ring Δ is nil-good. In general, no restriction on the index of nilpotence is required in 
these decompositions.

In our work [15] we considered an endomorphism f of an n-dimensional vector space 
over an arbitrary field F , we fixed a bound k for the index of nilpotence, and studied when 
f could be expressed as the sum of an automorphism u and a nilpotent endomorphism m
with mk = 0. Here we will continue our study in this branch by replacing the invertibility 
condition on u by being a root of the unity. Recall that a root of the unity endomorphism 
t is the one for which there is a positive integer s such that ts is the identity. One 
elementarily sees that such an endomorphism is necessarily invertible as well as that it 
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is s + 1-potent, i.e., ts+1 = t. Canonical forms of roots of the unity endomorphisms were 
studied by D. Sjerve and a full classification over the rational numbers is presented in 
his paper [21].

The paper is organized as follows: in the first section we will show that the desired 
decomposition holds as soon as the characteristic polynomial of f is algebraic over its 
base field and its rank satisfies a certain bound, and we present several examples that 
show that the decomposition does not hold in general. In the second section, we focus on 
nilpotent endomorphisms and deal with the problem of finding a necessary and sufficient 
condition to decompose such endomorphisms as the sum of a root of the unity and a 
square-zero endomorphism (fixed nilpotence k ≤ 2). Since we solve this problem by 
dealing with the Jordan canonical form of the considered nilpotent endomorphism, our 
result also holds for nilpotent endomorphisms over division rings.

1. Decomposing endomorphisms into a sum of roots of the unity and endomorphisms 
of fixed nilpotence

As usual, the letter F will stand for an arbitrary field unless it is not specified some-
thing else. All other notations unexplained explicitly are standard and will be in an 
agreement with the book [19].

In our paper [15] we showed the following result, which is restated here in terms of 
endomorphisms instead of matrices. Recall that the rank of an endomorphism of a vector 
space is the dimension of its image.

Theorem 1.1. [15, Theorem 2.7] Let F be a field, consider a vector space V of dimension 
n ≥ 2 over F and let us fix k ≥ 1. Given a nonzero endomorphism f of V , there exists 
an automorphism u and a nilpotent endomorphism m with mk = 0 such that f = u +m

if and only if the rank of f is greater than or equal to nk .

Given a vector space V , we say that an endomorphism t of V is a root of the unity if 
there exists some s ∈ N such that ts is the identity endomorphism. Roots of unity are 
also called torsion endomorphisms. In this section, we will address the following query:

Problem: Given a fixed k ≥ 1, find necessary and sufficient conditions to decompose any 
non-zero endomorphism of an n-dimensional vector space over a field F as a sum of a 
root of the unity and a nilpotent endomorphism m with mk = 0.

Notice that the proposed Problem is already solved for vector spaces over finite fields 
by using Theorem 1.1 and the obvious fact that automorphisms over finite fields are 
always roots of the unity. Nevertheless, the rank condition is not enough to guarantee 
this decomposition when working over infinite fields. In the rest of this section, we will 
show some cases when this decomposition holds, and some counterexamples showing 
that the decomposition does not hold in general.
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Remark 1.2. Let f be an endomorphism of an n-dimensional vector space over F . If there 
exists a nilpotent endomorphism m (mk = 0) such that t = f −m satisfies ts = id for 
some s ∈ N, then the following three points are fulfilled:

• the trace of f coincides with the trace of t;
• the minimal polynomial of t divides Xs − 1 and therefore the eigenvalues of t (in 

some extension of F) are s-roots of the unity. Moreover, if Xs − 1 is separable, t is 
diagonalizable;

• the trace of t coincides with the sum of its eigenvalues, so it is an algebraic number 
over F .

For example, an endomorphism f , even of full rank, and whose trace is transcendent 
over its base field can never be decomposed into the sum t +m, where t is a root of the 
unity and m is nilpotent.

Let n ≥ 2. Recall that the trace of a polynomial p(x) = xn+bn−1x
n−1+· · ·+b0 ∈ F [x]

is the scalar −bn−1 and coincides with the trace of the companion matrix C(p(x)) ∈
Mn(F). Notice that the rank of a companion matrix is always greater than or equal to 
n − 1.

We can now give a partial solution to the Problem proposed above. Concretely, the 
following statements hold.

Proposition 1.3. Let n ≥ 2, let p(x) ∈ F [x] be a polynomial of degree n and let C(p(x)) ∈
Mn(F) be its companion matrix. If the trace of p(x) can be expressed as the sum of 
n different roots of the unity in some extension of F , then C(p(x)) can be decomposed 
(in some extension of F) into T + N , where T is a root of the unity and N2 = 0. In 
particular, this always holds if the trace of p(x) is either 1, or −1, or 0.

Proof. By hypothesis, the trace of p(x) = xn + bn−1x
n−1 + · · ·+ b0 can be expressed as 

α1 + · · ·+αn for some different roots of unity α1, . . . , αn in some extension of F . Let us 
consider the polynomial q(x) = (x − α1) · · · (x − αn) = xn + an−1x

n−1 + · · ·+ a0. Thus, 
we have

C(p(x)) =

⎛
⎜⎜⎜⎜⎝

0 0 . . . −b0

1 0
...

. . . . . .
0 1 −b

⎞
⎟⎟⎟⎟⎠
n−1
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=

⎛
⎜⎜⎜⎜⎝

0 0 . . . −a0

1 0
...

. . . . . .
0 1 −an−1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
C(q(x))

+

⎛
⎜⎜⎜⎜⎝

0 0 . . . a0 − b0

0 0
...

. . . . . .
0 0 an−1 − bn−1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
N

,

where T := C(q(x)) is a diagonalizable root of the unity and N2 = 0, because an−1 −
bn−1 = 0, as required. In view of these arguments, the last claim follows now at once. �

As an immediate consequence, we obtain:

Corollary 1.4. Let f be an endomorphism of an n-dimensional vector space over a field 
F and let p1(x), . . . , pk(x) be the elementary divisors of f (respectively, the invariant 
factors of f). If each pi(x) has degree ni and its trace is a sum of ni different roots of 
the unity in some extension of F , then f can be decomposed (in some extension of F) 
into t + m, where t is a root of the unity and m2 = 0.

Proof. If p1(x), . . . , pk(x) are the elementary divisors (respectively, the invariant factors) 
of f , then there exists a basis such that the associated matrix A of f is the direct sum 
of the companion matrices of each pi(x). Then, utilizing Proposition 1.3, we can express 
the companion matrix of each pi(x) as the sum Ti + Ni, where Ti is a root of the unity 
and N2

i = 0, as needed. �
The next two curious comments are worthwhile.

Remark 1.5. Not every endomorphism of an n-dimensional vector space whose trace is 
a sum of n roots of the unity can be written as t +m, where t is a root of the unity and 
m2 = 0 (even if those roots are different and f satisfies the rank condition). Indeed, let 
n ≥ 2 and let us consider an element a ∈ F such that na is a sum of roots of unity, but 
a itself is not a root of the unity (notice that such an element a always exists and can 
be easily constructed, so we leave out the details). Then f = a id ∈ End(Fn) cannot be 
written as a sum t +m where t is a root of the unity and m2 = 0; otherwise there would 
exist s ∈ N such that ts = id; but then id = ts = (f −m)s = as id − sas−1m, so that 
(as − 1)2 id = ((as − 1) id)2 = (sas−1m)2 = 0, a contradiction.

For example, the matrix A =
(

1
2 0
0 1

2

)
cannot be expressed as T +N even if its trace 

is the sum of two (different) 6th-roots of unity: 1
2 +

√
3

2 i and 1
2 −

√
3

2 i.

Remark 1.6. Let F be a field of characteristic 0. When n ≥ 3, if p(x) is a polynomial 
of degree n and the trace of p(x) is the sum of n equal roots of unity, then the matrix 
C(p(x)) can never be written as T + N where Tm = Id for some m ∈ N and N2 = 0. 
Indeed, let α be a root of the unity, and consider a degree n polynomial p(x) whose trace 
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is nα. Suppose now that C(p(x)) = T + N where T satisfies Tm = Id for some m ∈ N

and N2 = 0. Since the minimal polynomial of T divides Xm − 1 and this polynomial 
has no multiple roots, T is diagonalizable and its eigenvalues are all roots of unity whose 
sum coincides with the trace of T (which, on the other side, coincides with the trace of 
p(x)), so it is exactly nα. The only solution to nα = α1 + · · ·+ αn, α, α1, . . . , αn being 
roots of unity, is α = α1 = · · · = αn. Therefore, the eigenvalues of T are all equal to 
α and thus T = α Id. But then N = C(p(x)) − α Id should have square zero, which is 
manifestly untrue (the rank of C(p(x)) − α Id is at least n − 1).

For example, the matrix

C((x− 1)3) =

⎛
⎜⎝ 0 0 1

1 0 −3
0 1 3

⎞
⎟⎠

cannot be expressed as T + N , where T is a root of the unity matrix and N2 = 0.

Nevertheless, when we focus on fields of prime characteristic, we can partially solve 
the Problem. Let F be a field of prime characteristic p and let us denote by Fp its base 
field.

Lemma 1.7. Let n ≥ 2. If F is a field of characteristic p and we fix k ≥ 1, for every 
endomorphism f of rank greater than or equal to n

k and having an associated matrix 
A ∈ Mn(F) with respect to some basis whose entries are algebraic over Fp there exists a 
nilpotent endomorphism m with mk = 0 such that f −m is a root of the unity.

Proof. The subfield K of F generated by the base field Fp and by the entries of the 
matrix A is a finite field, and A ∈ Mn(K). Apply Theorem 1.1 to decompose A as 
U + N , where U ∈ Mn(K) is invertible and N ∈ Mn(K) satisfies Nk = 0. Since U is an 
invertible matrix over a finite field, being invertible is equivalent to being a root of the 
unity matrix, as wanted. �

The conditions on the entries of the matrix can be translated to the coefficients of 
the characteristic polynomial of the endomorphism f . We will say that a polynomial is 
algebraic over Fp if all its coefficients are algebraic over Fp.

Theorem 1.8. Let F be a field of characteristic p, let us fix an index of nilpotence k ≥ 1
and let f be an endomorphism of Fn of rank greater than or equal to nk . If the charac-
teristic polynomial of f is algebraic over Fp, then f can be written as t +m, where t is a 
root of the unity and mk = 0. In particular, this decomposition always holds for nilpotent 
endomorphisms of rank greater than or equal to nk .

Proof. Let us consider the primary rational canonical form C of f , whose characteristic 
polynomial is algebraic over Fp. The eigenvalues of C (roots in some extension of F of 
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the characteristic polynomial) are algebraic over Fp and, therefore, all the elementary 
divisors of f are algebraic polynomials over Fp. Consequently, the entries of C are all 
algebraic over Fp and we can apply Lemma 1.7 to get the proof. �
Open Question: Given a fixed index of nilpotence k ≥ 1, find a suitable criterion for the 
decomposition of an arbitrary endomorphism of Fn where F is a field of characteristic 
zero into the sum of a root of the unity and a nilpotent endomorphism of index of 
nilpotence ≤ k.

In the following section we will answer this question for k ≤ 2 and nilpotent endo-
morphisms of rank at least n

2 . Since our arguments are quite technical, we leave open 
the question of decomposing nilpotent endomorphisms of rank at least nk into roots of 
the unity and nilpotent endomorphisms of index less than or equal to k.

2. Decomposing nilpotent endomorphisms into a sum of roots of the unity and 
square-zero endomorphisms

Let V be a left n-dimensional vector-space over an arbitrary division ring Δ. Recall 
that an endomorphism u of V is nilpotent if uk = 0 for some k. It is well known (see, 
for example, [10], [16] or [17]) that every nilpotent endomorphism over a division ring is 
similar to its Jordan form, i.e., it is a direct sum of Jordan cells, all of them associated 
to the (left) eigenvalue 0.

The main goal of this section is to show that every nilpotent endomorphism u can be 
written as the sum of a root of the unity in EndΔ(V ) and a square-zero endomorphism 
if and only if the rank of u is greater than or equal to n2 .

Let us first deal with a particular situation: a nilpotent endomorphism u consisting 
of one big Jordan cell of size k > 1 followed by s Jordan cells of size 1, 0 ≤ s ≤ k − 2. 
The proof of the following result, much shorter and clearer than the original one, was 
suggested by the anonymous referee.

Proposition 2.1. Let V be an n-dimensional left vector space over a division ring Δ and 
let us suppose that u is a nilpotent endomorphism of V consisting of one big Jordan 
cell of size k and s Jordan cells of size 1, with 0 ≤ s ≤ k − 2. Then u = v + m where 
v ∈ EndΔ(V ) is a root of the unity and m2 = 0.

Proof. The key idea of the proof consists in representing endomorphisms in a basis by 
weighted directed graphs, where the vertices of the graph are the elements of the basis, 
there is at most one arrow from a given vertex to another, and the weights of the arrows 
are elements of Δ. When an arrow is unlabeled, it is understood that its weight is one. 
The image of a given vertex vi by the endomorphism is 

∑
αijvj where vj are all the 

vertices with incoming arrows from vi to vj and αij is the weight of such edges.
If u has no Jordan cells of size 1, then v consists of one big Jordan cell of size n and 

it can be represented by the following directed graph:
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e1 e2 · · · en

Let us consider the square-zero endomorphism m given by m(ei) = 0, i = 1, . . . , n − 1, 
and m(en) = −e1. Clearly, v = u −m is a root of the unity (it is a cycle of length n):

e1 e2 · · · en

Suppose from now on that u has s ≥ 1 Jordan cells of size 1. Our proof consists of 
several steps.
1. Let 0 < r ≤ n − 2s − 1 be an arbitrary parameter and define t = n − 2s − r. We claim 
that there exists a basis B of V

B = {e1, . . . , es} ∪ {f1, . . . , fs} ∪ {g1, . . . , gr} ∪ {h1, . . . , ht}

such that u can be represented by the following directed weighted graph:

g1 · · · gr f1 f2 · · · fs h1 · · · ht

e1 e2 · · · es

Indeed, the chain

g1 · · · gr f1 f2 · · · fs h1 · · · ht

represents a Jordan cell of size r + s + t = n − s = k, while each {ei − fi}, i = 1, . . . , s, 
corresponds to a Jordan cell of size one (it is easy to see that the image of each ei − fi
in the graph is always 0). Therefore, seen in the basis

B′ = {g1, . . . , gr} ∪ {f1, . . . , fs} ∪ {h1, . . . , ht} ∪ {e1 − f1, . . . , es − fs}

the previous graph represents an endomorphism consisting of a Jordan cell of size k and 
s Jordan cells of size 1, i.e., it is similar to the endomorphism u.
2. Let us define in the previous basis B the endomorphism m represented by the following 
weighted directed graph:
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g1 · · · gr f1 f2 · · · fs h1 · · · ht

e1 e2 · · · es

−1

Since there are no directed paths of length greater than or equal to 2, m2 = 0.
3. Let us consider the endomorphism v := u −m, which is represented on the basis B by 
the following weighted directed graph:

g1 · · · gr f1 f2 · · · fs h1 · · · ht

e1 e2 · · · es

−1 −1 −1

−1

We claim that we can choose the parameter r so that v is a root of the unity. In order 
to study the dynamics in this graph, let us isolate three parts in it:

• the tunnel is the central part, with vertices e1, . . . , es, f1, . . . , fs and the correspond-
ing arrows;

• the first backloop is made of g1, . . . , gr and the corresponding arrows;
• the second backloop is made of h1, . . . , ht and the corresponding arrows.

The behavior of the tunnel is the following: for each i ∈ {1, . . . , s − 1}, v maps 
Span(ei, fi) to Span(ei+1, fi+1) and it is a cycle of order 6 on the bases {ei, fi} and 
{ei+1, fi+1}. In particular, v maps {±ei, ±fi, ±(ei − fi)} into {±ei+1, ±fi+1, ±(ei+1 −
fi+1)} and vs−1 maps {±e1, ±f1} into {±es, ±fs, ±(es − fs)}, with the signs depending 
on the congruence of s modulo 6.

There are essentially three cases: s ≡ 0 mod 3, s ≡ 1 mod 3, and s ≡ 2 mod 3
depending on the behavior of {±e1, ±f1} in the tunnel.

Case 1 (s ≡ 0 mod 3): if we begin with e1, vs−1(e1) = μ(es−fs) (where μ = 1 if s ≡ 0
mod 6, and μ = −1 if s ≡ 3 mod 6); then vs(e1) = μg1, and following the first backloop 
we arrive at vs+r(e1) = μf1; going again through the tunnel we get v2s+r(e1) = h1, and 
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then the vector is routed through the second backloop obtaining v2s+r+t(e1) = e1. We 
have obtained a cycle of length n starting with e1, so v is annihilated by the polynomial 
Xn − 1.

Case 2 (s ≡ 1 mod 3): if we begin with e1, vs−1(e1) = μes (where μ = 1 if s ≡ 1
mod 6, and μ = −1 if s ≡ 4 mod 6), so vs(e1) = μh1, and following the second backloop 
we end up with vs+t(e1) = μe1; now we mod out the subspace Δ[v]e1 and we obtain an 
endomorphism of the quotient space V/Δ[v]e1 that, starting with f1, produces a cycle 
whose minimal polynomial is Xs+r + μ (notice that, after going through the tunnel 
and the first backloop, vs+r(f1) = −μf1). Then v is annihilated by the polynomial 
(Xs+t − μ)(Xs+r + μ).

Case 3 (s ≡ 2 mod 3): if we begin with f1, vs−1(f1) = μ(fs − es) (where μ = 1 if 
s ≡ 2 mod 6, and μ = −1 if s ≡ 5 mod 6); then vs(f1) = −μg1, and following the first 
backloop we end up with vs+r(f1) = −μf1; we mod out Δ[v]f1 and we obtain a cyclic 
endomorphism beginning in e1 in the quotient space V/Δ[v]f1 with minimal polynomial 
equal to Xs+t −μ (notice that, after going through the tunnel and the second backloop, 
we get vs+t(e1) = μe1). Then v is annihilated by the polynomial (Xs+r + μ)(Xs+t − μ).

When n is even, in Cases 2 and 3 we choose r = t = n
2 − s and obtain that an 

annihilating polynomial of v (X n
2 − 1)(X n

2 + 1) = Xn − 1. Therefore, if we are in Case 
1 (for any n) or if we are in Cases 2 or 3 and an even n we obtain an annihilating 
polynomial of the form Xn − 1, which implies that vn = id.

In general, v is annihilated by polynomial either of the form Xn − 1 or (Xs+r +
μ)(Xs+t − μ), μ = ±1. When the characteristic of Δ is prime, v is an invertible en-
domorphism that is annihilated by a polynomial whose roots are all roots of the unity, 
implying that v is a root of the unity itself.

We still need to manage Cases 2 and 3 when the characteristic of Δ is zero and n is 
odd. The idea is to adequately choose r so that v is annihilated by a polynomial with 
no multiple roots. Let us distinguish two cases:

• if n = 4k + 1 for some k ≥ 0, we choose

r, t ∈ {n− 1
2 − s,

n + 1
2 − s} = {2k − s, 2k + 1 − s}, r �= t,

such that an annihilating polynomial of v is (X2k + 1)(X2k+1 − 1);
• if n = 4k + 3 for some k ≥ 0, we choose

r, t ∈ {n− 1
2 − s,

n + 1
2 − s} = {2k + 1 − s, 2k + 2 − s}, r �= t,

such that an annihilating polynomial of v is (X2k+2 + 1)(X2k+1 − 1).

In both cases we have obtained an annihilating polynomial of v with no multiple roots, 
so v is diagonalizable and all its eigenvalues are (different) roots of the unity hence there 
exists some k ∈ N with vk = id. �
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Now we can prove the main theorem of this section.

Theorem 2.2. Let V be a left Δ-vector space of dimension n and let u be a nilpotent 
endomorphism of V . Then u can be written as the sum of a root of the unity in EndΔ(V )
and a square-zero endomorphism if and only if the rank of u is greater than or equal to 
n
2 .

Proof. Since every root of the unity endomorphism is invertible (it has full rank) and 
square-zero endomorphisms have rank at most 2, the necessity condition is obvious.

In order to prove the sufficiency, let us suppose that, under an appropriate change 
of basis, u is written in its Jordan form. Since the rank of u is greater than or equal 
to n2 we can organize its Jordan cells such that its Jordan cells of size 1, if any, always 
appear after big Jordan cells of bigger size. In particular, we can suppose that each big 
Jordan cell of size k > 1 is followed by s Jordan cells of size 1, 0 ≤ s ≤ k − 2. Then the 
decomposition follows by Proposition 2.1. �
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