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Abstract

This Letter presents a new approach to time-series modelling using the support vector

machines (SVM). Although the g-filter can provide stability in several time-series models, the
SVM is proposed here to provide robustness in the estimation of the g-filter coefficients.
Examples in chaotic time-series prediction and channel equalization show the advantages of

the joint SVM g-filter.
r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Support vector machines (SVM) are state-of-the-art tools for solving linear and
non-linear machine learning problems [12]. In addition, several signal-processing
problems have been specifically formulated from the SVM framework, such as
regression [7], non-parametric spectral analysis [10], and auto-regressive moving
average (ARMA) system identification [11]. The SVM allows us to control the
robustness of time-series modelling when outliers are present, when few data samples
see front matter r 2004 Elsevier B.V. All rights reserved.
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are available, or when the assumed model does not accurately match the underlying
system. However, a problem that can arise is that of ensuring that the obtained
model is stable, a common requirement for AR time-series prediction and ARMA
system identification.
A highly effective compromise between stability and simplicity of adaptation can

be provided by the g-filter, which was first proposed in [9]. The g-filter can be
regarded as a particular case of the generalized feed forward filter, an infinite impulse
response (IIR) digital filter with restricted feedback architecture. The g-structure
results in a more parsimonious filter, and has been used for echo cancellation [8],
time-series prediction [6], and system identification [9]. Two main advantages of the
g-filter are claimed: it provides stable models and it permits the study of the memory
depth of a model.
We propose the use of SVM to incorporate robustness in the estimation of the

g-filter coefficients. The combined strategy of the SVM and the g-filter structure is
motivated by the robustness and stability of each method. The SVM g-filter
presented here uses the robust cost function previously presented in [10], which
allows to deal with different kinds of noise simultaneously, and minimizes a
constrained, regularized functional by means of the method of Lagrange multipliers
to provide smoothness to the solution. Section 2 presents the SVM g-filter
formulation for linear parametric system identification and time-series modelling.
Section 3 includes several application examples, showing the capabilities of our
method. Finally, Section 4 provides some conclusions.
2. The SVM g-filter

The standard g-filter is defined by the following expressions:

yn ¼
XP

i¼1

wix
i
n; (1)

xi
n ¼

xn; i ¼ 1;

ð1� mÞxi
n�1 þ mxi�1

n�1; i ¼ 2; . . . ;P;

�
(2)

where yn is the filter output signal, xn is the filter input signal, xi
n is the signal present

at the input of the ith gamma tap, n is the time index, and m is a free parameter
(see Fig. 1). The error signal en is defined as the difference between the desired dn

and the output signal, en ¼ dn � yn: For m ¼ 1; this structure reduces to Widrow’s
adaline, whereas, for ma1; it has an IIR transfer function due to the recursion
in (2). In comparison to general IIR filters, the feedback structure in the g-filter
presents two complementary conditions: (a) locality, since the loops are kept
local with respect to the taps, and (b) globality, since all the loops have the same
loop gain 1� m: The stability is trivially obtained with 0omo1 for a low-pass
transfer function, and with 1omo2 for a high-pass transfer function. A proposed
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Fig. 1. The g-filter structure.
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measurement of the memory depth of a model, which allows us to quantify the past
information retained, is M ¼ P=m; and it has units of time samples [9].
The free parameters of the g-filter (m and wi; i ¼ 1; . . . ;P) can be updated using

the least mean squares (LMS) updating rules [9]. However, LMS algorithms
exhibit some limitations in conditions such as small-sized data sets and the pre-
sence of outliers, which preclude the use of the g-filter in many applications.
These problems can be alleviated by using the SVM methodology and a robust
cost function for estimating the filter coefficients [10]. In addition, the selection
of the optimal m parameter by means of LMS adaptation produces a hard
to optimize surface containing numerous local minima. This is still an unsolved
problem for the g-filter [8,6,2], and by extension, to the SVM version. For the
purpose of fair comparison, we perform an identical search of m in all the
experiments. The same procedure was followed to choose the best filter order P:
Therefore, the minimization of the functional is only done with regard to weights
and errors.
The SVM g-filter algorithm minimizes the sum of two terms: the L2—norm of the

model coefficients, and a robust cost function of the model errors, i.e.,

F ðwi; enÞ ¼
1

2

XP

i¼1

w2i þ
XN

n¼Pþ1

LðenÞ; (3)

where

LðenÞ ¼

0; jenjpe;
1
2d ðjenj � eÞ2; epjenjpeC ;

Cðjenj � eÞ � 1
2
dC2; jenjXeC ;

8><
>: (4)

and where eC ¼ eþ dC; e is the insensitive parameter, and d and C control the trade-
off between the L2—norm regularization of the coefficients and the losses. The
proposed cost function adapts itself automatically to the noise nature in three
different tracts: super-Gaussian, Gaussian, and sub-Gaussian [10]. Therefore, the
estimation of the SVM g-filter coefficients reduces to the minimization of the primal
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(Lagrange) functional
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with respect to fwig and fxð�Þn g;1 constrained to
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Here, fxð�Þn g are slack variables or losses, and are introduced to deal with committed
errors. I1; I2 are the sets of samples for which losses are required to have a quadratic
or a linear cost, respectively. Note that these sets are not static during the
optimization procedure.
We can obtain the dual problem by including linear constraints (6) into (5) by means

of Lagrange multipliers að�Þn associated to each constraint. The dual functional obtained
has to be minimized with respect to primal variables (wi and xð�Þn ) and maximized with
respect to dual variables (að�Þn ), which corresponds to the maximization of
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with tXN and sX1; and denotes the time-local Pth order sample estimator of the
autocorrelation function of the gamma-filtered versions of the input signal. Derivations
of the dual functional in similar problems can be found in [10,11]. The optimization of
the dual problem (7) can be solved through quadratic programming (QP), but
substantial computational advantage is obtained by using the iterative re-weighted least
squares (IRWLS) procedure [10]. Finally, the SVM g-filter is expressed as

yn ¼ f ðxnÞ ¼
XN

s¼Pþ1

ðas � a�s Þ
XP

i¼1

xi
nxi

s; (8)

where only samples with non-zero að�Þs count in the solution and are called support

vectors. Moreover, note that the second summation can be conveniently expressed
as a dot product involving the delayed and gamma-filtered versions of the input time-
series, which allows the non-linear extension of the model in a natural way by means
of Mercer kernels [3]. In this paper, nevertheless, we focus on analysing the linear SVM
g-filter.
1Hereafter, fxng and fx�ng will be denoted with fxð�Þn g for notation simplicity.
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3. Experiments

The SVM g-filter is benchmarked to the original g-filter and other related methods
in time-series prediction and channel equalization problems, which illustrate
robustness capabilities to model mismatch and to low-sized data sets, respectively.

3.1. Iterated prediction

In this experiment, we evaluated the SVM g-filter for one-step ahead prediction of
the classical high-dimensional chaotic system generated by the Mackey–Glass
differential equation x0ðtÞ ¼ �0:1xðtÞ þ ð0:2xðt � tDÞÞ=ð1þ x10ðt � tDÞÞ; with delay
tD=17 [5]. We considered 1000 training samples and used the next 500 for free
parameter selection with cross-validation. We used an embedding dimension d=6
and a step size t=6, as proposed in the literature [1]. We compared the performance
of g-filters to the best linear model (AR) reported in [1]. The best model parameters
were: AR (P ¼ 66), LS g-filter (P ¼ 78; m ¼ 0:65), and SVM g-filter (P ¼ 73; m ¼

0:55; e ¼ 0; dC ¼ 145:20). Therefore, a higher memory depth (M) was obtained by
our method.
Model robustness was assessed by examining iterated prediction performance,

i.e., models only receive predicted values for posterior prediction from a certain time
instant [5]. Iterated predictions were made from 1000 different starting points. The
log root normalized MSE is shown in Fig. 2(a). The linear slope illustrates the
exponential divergence of errors. After 80 iterations, the nMSE for the AR method
became greater than 0, thus indicating a prediction worse than that given by just the
constant mean value. The g-filters diverged similarly, and their iterated predictions
deteriorated slower than the AR model. The mean and standard deviation of the
iterated log average errors demonstrated that the SVM implementation of the g-filter
performs better than the LS-based one.
Fig. 2. Experiments. (a) Log-averaged root nMSE vs. number of iterations (solid) and standard deviations

(dotted). (b) BER vs. averaged SNR for LS (dotted) and SVM (solid) g-filter equalizers.
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3.2. Channel equalization

This experiment consisted of equalizing a binary pulse amplitude modulation
signal at the output of a dispersive channel, whose low-pass model was a tapped-
delay line with hn ¼ dn þ 0:6dn�1 þ 0:2dn�2 � 0:1dn�3 þ 0:1dn�4: This impulse re-
sponse can represent a minimum-phase dispersive channel, which is common in
suburban and hilly terrain environments [4]. A set of 128 randomly generated
samples was transmitted; 64 samples were used to find the coefficients (training data
set) and the remaining samples (validation set) were used to choose the value of the m
parameter. In order to measure the bit error rate (BER), an independent test burst
of 105 samples was also used, which provides a reasonable confidence margin for
the least measured BER. Gaussian noise was added. The experiment was done
1000 times for each SNR from 11 to 18 dB (1 dB steps), which represents a
reasonable confidence margin for the least measured BER. We used dC ¼ 104 and
hence C ¼ 105; although lower values produced similar results. In this sense, note
that the linear section of the cost function was not used with these values. For both
LS and SVM g-filters, P ¼ 15 assured that the filter order was high enough, and
e ¼ 0 allowed us not to have to discard any of the training samples.
BER is depicted in Fig. 2(b). The LS g-filter performance was poorer than

the SVM-based one. The low number of samples used to train the filter generate
a channel output which does not have enough information to estimate the
statistical distribution of the process, and thus, was not enough to train the g-filter
with the LS criterion. The SVM g-filter procedure appears to be a better choice
for dealing with small training data sets, as experiments show a difference of at
least 1.5 dB.
4. Conclusions and future work

A new approach to time series modelling and system identification using the
g-filter has been introduced. More confident models can be obtained whenever either
low-sized training data sets are available or there exists disagreement between the
true system and the assumed model. Further work will attempt to extend the SVM
g-filter to the non-linear case by using non-linear kernels. Details on the optimization
issues, source code, and more application examples can be found at
http://gpds.uv.es/svmgamma/.
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