
©Enrique Soriano-Salvador, Gorka Guardiola-Múzquiz

This work is openly licensed via Creative Commons CC-BY-NC-ND

How to cite this article: Enrique Soriano-Salvador, Gorka Guardiola-Múzquiz,
SealFS: Storage-based tamper-evident logging, Computers & Security, Volume

108, 2021, 102325, ISSN 0167-4048.

DOI: https://doi.org/10.1016/j.cose.2021.102325.

SealFS: Storage-Based Tamper-Evident
Logging

Enrique Soriano-Salvador,Gorka Guardiola-Múzquiz
Universidad Rey Juan Carlos

enrique.soriano@urjc.es, gorka.guardiola@urjc.es

Abstract

Log analysis is essential for a forensic investigation. Upon intru-
sion, log files are usually forged in order to hide or fake evidence. If
the system is completely compromised, malicious code can be exe-
cuted in kernel or hypervisor mode making even signed log files vul-
nerable. As a countermeasure, some systems archive the log files on
another system through the network. This solution is not always suit-
able or desirable and it just shifts the problem elsewhere. The log
files need to be preserved on another networked machine which may
itself be attacked. In this paper, we present a simple scheme to au-
thenticate local log files based on a forward integrity model. The
scheme is based on a realistic assumption: nowadays, storage is very
cheap. We can authenticate the logged data generated, starting from
boot time to the instant that the malicious code elevates privileges.
This tamper-evident scheme does not depend on special security hard-
ware or securing a distributed system. We also present a prototype
implementation of this scheme, SealFS. Our implementation, which
showcases this approach, is a novel stackable file system for Linux. It

1

enables tamper-evident logging to all existing applications, provides
backwards compatibility and instant deployability. Last, we present
a performance evaluation of this prototype that shows the viability of
this approach.

Keywords: Cybersecurity, logging, file system, tamper-evident, verification, authentication, foren-

sics.

1 Introduction

When a system is compromised, attackers usually try to forge the log files
in order to delete or counterfeit logged events that could provide evidence of
the attack (e.g. network addresses, vulnerable accounts, attack vectors and
so on). Tamper-evident logs are fundamental for digital forensic triage.

Most systems include components and libraries to log system and user
events. These mechanisms must be lightweight from two points of view:
space (RAM, disk) and time (CPU) [1]. Conventional operating systems
such as MS Windows and Linux include this kind of support. Moreover,
these components provide confidentiality and integrity of logged data. Nev-
ertheless, it is difficult to provide these guarantees if the attacker is able to
get administrator privileges. Once the elevation of privileges happens, the
attacker can modify the log files even if they are signed and/or encrypted.
As a user with administrator capabilities, the attacker is also able to debug
the memory (userspace and kernel) and find any key used to sign or encrypt
logs. Of these two properties, confidentiality and integrity, we will focus in
integrity. Confidentiality is out of the scope of our work.

The present work is focused on a forward integrity model [2] that assumes
that the adversary is able to run code at any privilege level. The main
features are:

• Simplicity. Some solutions found in the literature are considerably
complex [3, 2, 4, 5, 6, 7, 8, 9]. These solutions are old. As other
authors explain [10], it is surprising that commodity operating systems
offer no special protections for their logging frameworks. The intrinsic
complexity of these approaches may be the cause. In contrast, we
propose a simple scheme based on a realistic assumption: nowadays,
storage is very cheap. At the time of writing, a 32 GB USB flash drive
is less than $5.

• Local and autonomous operation. The system is designed for local
operation, therefore it is suitable for disconnected, loosely connected

2

and partitionable scenarios. Other approaches handle logs in a dis-
tributed fashion, sending the logged data to an independent system (i.e.
a logging server) or a cloud based service. In this case, the attacker
must control both the target system and the logging server/service to
compromise the evidence. Other solutions follow more complex dis-
tributed schemes (e.g. based on blockchain technology). The problem
is that distributed solutions are not suitable or desirable for many sce-
narios, for example, autonomous robots operating at isolated areas or
disconnected systems. Also, the attacker may cut the connection to the
log server, making it look like an accident or an unrelated attack. For
example by running a DoS attack on a nearby service and collapsing
the network.

• No need for specialized hardware. Some other approaches need
specialized hardware, for example printers (continuous hard copy print-
ing of the logs), WORM (Write Once Read Many) devices or secure
hardware (e.g. TPM [7] or secure enclaves [11, 12, 10]) to provide
tamper-evident logs. Non-conventional systems, such as robots, mobile
and embedded systems, may be unable to use this kind of hardware.

• Backwards compatibility, instant deployability and log avail-
ability. Our implementation authenticates the written data at oper-
ating system level. Thus, applications and logging components do not
need to be aware of the new feature. Unmodified programs can use
the standard operating system interface to write to the system logs, as
usual. They can also read the logs normally (for inspection, backups,
etc.).

• Good performance for logging and verification. The system
provides fine-grained audits and fast verification for independent log
files. In addition, the implementation is lightweight enough to be run on
limited machines. The keys used by our system (keystream, described
later) could also be preserved encrypted in the same machine with the
logs. It is after all only a file. It could be protected by a password or
a key or any other way. As it is not needed for regular functioning,
physically removing it by means of an authentication device is one
posible solution which prevents many attacks, but by no means the
only one. The authentication device is, by design, sparingly used. Its
only purpose is a forensic audit of the logs. It is not unmanageable to
keep it inside a secure place, like a safe or in an office under lock and
key. The auditor will take it out only when it needs to be used. Again,
the trade-offs have been explored extensively in the literature.

3

• Password-free Our system verifies the logs by using a USB portable
device (i.e. a “something you have” method) in order to avoid pass-
words. This property is discussed further in 4.4.2.

In our approach, the administrator generates a long random key (which
we call keystream) at the time of configuration. The keystream is duplicated
in an external storage device that will be physically disconnected from the
system (e.g. a USB pen drive). encrypted (e.g. stored on an encrypted file
system) and/or signed by third parties (e.g. auditing authorities).

At execution time, the data appended to the logs is authenticated using
a portion of the keystream. Then, this portion is burnt, i.e. it is deleted
from the keystream and the memory. The authentication data generated
using this portion is stored in a new log, together with other metadata. To
verify the logs, the auditor has to use the duplicated keystream (stored in
the external device), the authentication data and the metadata.

We present SealFS as an implementation of this idea. SealFS is a Linux
kernel module that implements a stackable file system. When it is mounted
on top of another file system, it protects all the files under the mount point. It
only allows append-only write operations and authenticates the data written
to the underlying files (served by other file system). Appending is the only
important mutating operation for a log, so there is not need to support
authentication for other operations. Forbidding any other modification of
the log improves security without any real loss in functionality.

1.1 Use Case

We can distinguish three phases when a system is attacked:

1. The system is functioning normally, not compromised in any way. In
this phase, the attacker probes the system for weaknesses and tries
different remote or local exploits depending on the vector of the attack.
Hopefully, log files capture information of the kind of attack and the
attacker during this phase.

2. The second phase starts when the system is compromised and the at-
tacker is inside the system, but does not have full control. In this phase,
the attacker is trying to elevate privileges. The logs may capture some
traces of this phase, though it may be easier for the attacker to hide
malicious actions.

3. The attacker elevates privileges and is in full control of the machine.
The attacker is able to delete and manipulate the logs in order to make
the traces of the attack disappear.

4

When a system administrator is trying to pore over the logs and binaries
of a machine, she does not know in what phase of attack the system may be or
indeed if there has been an attack. Being able to, either trust the content of
the logs or check whether they have been manipulated, can be a valuable and
time saving tool. This is what SealFS provides. With SealFS, an attacker in
the third phase of an attack will not be able to delete all traces of the attack
in the logs. Specifically, the attacker cannot manipulate or forge logs made
in the past (first and second phase) without trace. This enables the system
administrator to detect it. SealFS means to provide two features:

• A yes or no answer to the question: “Have parts of the log files gener-
ated in phases 1 and 2 been deleted or manipulated in any way?”.

• If the answer is yes, SealFS lets the system administrator verify which
parts of the log files were manipulated and which can still be trusted.

The common use case of SealFS is:

1. The administrator configures SealFS in machine A. To do so, the ad-
ministrator connects an external USB pen drive and runs a configura-
tion command. A long keystream is created and stored on machine A
(e.g. on a conventional disk). It is also copied to the USB pen drive
(optionally encrypted and/or signed).

2. Once SealFS is configured, the administrator disconnects the USB pen
drive and keeps one or several copies of this device in a safe place.

3. Machine A starts its normal execution. Applications and services ap-
pend data to the log files normally. Note that SealFS is mounted at
boot time by the init process (systemd is the most common implemen-
tation these days). Note also that the USB pen drive is not needed for
normal execution.

4. When the administrator needs to perform the forensic analysis and
audit these log files, she mounts machine A’s disk in a trusted machine
B. Then, the administrator connects the USB pen drive and runs the
verification command, which provides the yes or no answer detailed
above.

5. If the verification is successful, the administrator looks for evidence in
the log entries generated in phases 1 and 2.

Note that while the attacker may forge new logs and this can go unde-
tected, old logs cannot be changed without trace.

5

1.2 Organization of the Paper

The paper is organized as follows: section 2 discusses the state of the art,
section 3 states the threat model, section 4 presents our approach, section 5
describes the implementation of SealFS, section 6 shows its evaluation and
section 7 presents conclusions and future work.

2 Related Work

There are too many related works (products and publications) for us to cite
them all here. In this section we only highlight a few representative works.
Comparing our system with those should be enough to understand the place
our system occupies within the literature.

Conventional operating systems implement different schemes to manage
logs. Zeng et al. [1] published a survey that describes the most common
approaches (conventional logging, WORM devices, signed logs [13], etc.) and
the logging scheme of Linux and Windows operating systems. None of the
software solutions described in that survey provide tamper-evident logs for
the threat model explained in section 3.

Zeng et al. [14] also proposed a non-cryptographic model for accounting.
In this model, all system administrators can be accounted for, even if they
are untrustworthy. It adds new user policies that are implemented in the
kernel, which must be trusted. In our threat model, the kernel is not trusted
after the exploitation. Moreover, any malicious code running in kernel or
hypervisor mode can access the storage devices directly (or the memory)
and change the logs. Last, this approach may require deep changes in the
system’s user model (affecting backwards compatibility).

Integrity checkers like I3FS [15] checksum some files (e.g. binaries) and
define policies of what to do when the files do not match. Again, I3FS does
not protect against our threat model. The attacker only needs to isolate the
network (or do it while the system is disconnected or out of range if it is a
robot), elevate privileges, rewrite the logs and regenerate the checksums. It
does not provide forward integrity if the attacker can run kernel code (by
elevating privileges). Its implementation is similar to ours in that it is a
stackable file system.

Other solutions are based on virtualization (jails/containers and VMs),
for example the one proposed by Chou et al. [16]. Again, these approches
do not work if the attacker is able to run code in hypervisor mode or break
isolation.

There are many distributed approaches and commercial products for re-

6

mote logging. The common solution is to follow a client/server scheme to
send the logs to a remote server (Linux’s syslog and Windows’ event log can
do that) or the cloud (see for example [17, 18]). Some systems based on
history trees and randomised binary search trees (hash treaps) [19, 20] also
depend on remote servers. Self-securing storage like S4 [21] separates stor-
age moving it to a different system providing a RPC interface. This second
storage system is simpler and better audited and logs all interactions. This
audit log is exported read-only to the RPC interface.

As stated in the introduction, distributed solutions are not suitable for
disconnected or loosely coupled systems (e.g. autonomous robots). Moreover,
sending the logs to a remote server does not solve the problem because the
server can be attacked to remove evidence of the attack. Note that logging
servers can also take advantage of our approach to protect the logs of their
clients.

Recently, several distributed schemes and products based on blockchain
have been proposed [22, 23, 24, 25]. These schemes are intrinsically dis-
tributed, so they are not viable for disconnected scenarios.

More closely related to our work, several authors have proposed the use
of cryptographic ratchets [3, 26] (e.g. hash chains or linear Merkle trees) to
generate the keystream to authenticate the logs and provide forward integrity.
After the exploitation, the adversary is not able to reverse the ratchet and
recover the keys used to authenticate the logs. The only way to regenerate a
ratchet is by using the key (i.e. the seed) and it is not stored in the system.
The administrator must provide the key when the system is configured and
when the logs are verified. This approach was proposed a long time ago [2,
4, 5, 6]. Logcrypt [27] evolved the scheme to support concurrent logging and
provide third-party verifiability through public key cryptography. Section
4.4.1 further compares our approach and ratchets.

Ma et al. proposed a scheme to provide forward-secure stream integrity [8]
that combines the authentication tags (signatures or MACs) to generate a
single aggregate tag. Therefore, it is more efficient in terms of storage. Yavuz
et al. proposed similar approaches [9, 28]. Hartung et al. also proposed an
scheme to aggregate signatures [29]. Our proposal is based on the assumption
that current storage devices are huge and cheap, so storing keystreams and
integrity metadata is not a problem. Moreover, some of these systems have
security issues [30].

Sinha et al. [7] also evolved the ratchet approach to address some of
the issues of previous proposals. In addition, this work uses secure hard-
ware (TPM 2.0) to store the keys and also uses a monotonic counter. Our
approach provides the same advantages as this proposal: disconnected opera-
tion, autonomous reboot, log rotation, modular verification and good enough

7

performance for tamper-evident logging without depending on specialized se-
cure hardware. Moreover, it can be integrated in a regular Linux kernel.

There are other proposals that use secure enclaves with sealing and un-
sealing primitives to ensure integrity and confidentiality of log data [11, 12,
10]. These systems depend on specialized hardware. For example, SGX-
log [12] depends on Intel SGX hardware. Another recent example is CUS-
TOS [10]. This system is based on a tamper-evident logger and a decentral-
ized auditing protocol. The tamper-evident logger runs on a TEE (Trusted
Execution Environment) so it requires it to protect its code. This kind of
hardware has been subverted in the past see, for example, [31]. The presented
prototype also depends on Intel SGX [10]. As stated before, SealFS does not
require any specialized hardware to provide tamper-evident logging.

There are multiple security schemes that depend on portable devices like
USB, NFC and Bluetooth tokens based on the U2F protocol [32, 33, 34],
smart cards, etc. These devices are normally used to provide single or multi
factor authentication. As far as we know, no other system uses a portable
device to provide tamper-evident logging.

3 Threat Model

The asset is the logging data generated by the the applications, which will
be used to perform a forensic analysis.

We focus on the forward integrity model [2]. It ensures that the logs
generated before the exploitation are tamper-evident. In this case, we focus
on a strong variant of this model: once the system has been compromised
(phase 3), the adversary controls the whole system (software and hardware).

3.1 Threats

• The attack may be local or remote. The attacker may have physical
access to the hardware.

• Upon exploitation, the adversary is able to execute code in any privilege
level (from Ring 3 to Ring1 -3) and control all the hardware.

• The attacker can delete or modify any data created before or after the
attack.

1We are using here the commonplace conventions where: Ring −1 is hypervisor mode,
Ring −2 is the SMM (system management mode) and Ring −3 is the Management Engine.

8

3.2 Dependencies

There is only one dependency: secondary internal and external storage de-
vices must be big enough to store a keystream for long time operation. The
system’s hardware is standard (e.g. a conventional Intel or ARM based com-
puter with common storage devices).

3.3 Assumptions

• The system may be online or disconnected. The software and hardware
are working normally and are trustworthy until the adversary exploits
the system, corrupts its processes or executes malicious code.

• The cryptographic algorithms used by the system are correct. We
assume that the HMAC algorithm [35] used by our approach is secure:
the attacker cannot forge authentication data or recover the keys used
to generate it.

• The attacker is not able to deactivate or bypass our system in phases
1 and 2 (administration privileges are required to do that) but is able
to do anything in phase 3.

• The deletion procedure used by the system is secure. Once data is
deleted from a device, it cannot be recovered (from memory, cache or
disk). This is arguably the weakest point of the system. It is difficult
with modern hardware to guarantee safe deletion of data in a hard
disk, but mitigation procedures can be put in place to deter but the
most-resourced adversaries, see section 5.1.3 for more details.

• The auditor verifies the logs in an independent, correct and trustworthy
system that mounts (as read-only) the original storage device or a copy.
The hardware used by the auditor is standard.

3.4 Mitigation

The auditor can verify if the log entries generated in phases 1 and 2 have
been tampered with. If the attacker modifies or removes any logging data
generated in phases 1 and 2 (or the corresponding metadata), the auditor can
detect it. Note that the attacker may forge new logs in an undetectable way
in phase 3 of the attack. By that phase, the unburnt parts of the keystream
are available to the attacker. Past logs, though, are still protected, the secrets
to manipulate them are not available any more.

9

Note also that, even if the system is compromised, the logging data may
still be correct (that is, the attack may not have manipulated the logs). In
this case, the auditor can state that the system is compromised only if the
logs provide evidence about the exploitation.

4 Our approach

As stated before, our approach is simple. It uses two different storage devices:
α and β. β is an external storage device that will be used to verify the logs
in the future.

4.1 Configuration

1. A random keystream K is generated.

2. K is stored in both devices (in a file in a binary format which includes
a header). Kα is the keystream stored in α and Kβ is the keystream
stored in β.

3. Kα and Kβ headers are initialized. They have two fields: Kαheader.id
is an id number for the keystream which both Kα and Kβ will share to
pair them; Kαheader.off is the current offset of the keystream, which
is initialized to zero on both α and β.

4. β is physically disconnected from the system and kept in a safe place.

5. The system creates a file, SEALlog, to store the authentication data
and metadata for the logs.

4.2 Writing the log files

HMAC(key,msg) is a secure keyed-hash message authentication code algo-
rithm [35]. The input of the function is a key and a message. The output is
a secure digest of the message that depends on the key.

Only append write operations are allowed (i.e. write operations at the
end of the log). When some data Di of size Dszi has to be appended to a
log file L at offset Loffi, the following operations are executed:

1. The data is appended to the log.

2. The current offset of Kα is read from its header.

10

3. A chunk (Ci) of Kα is read. The chunk size, which determines the
length of key consumed per write is constant (Csz) and independent
of the size of the write to the log.

4. The corresponding zone of Kα is burnt.

5. The updated offset of Kα is written to its header.

6. The HMAC of the concatenation of the log id (L), which identifies
uniquely the log file, the offset in the log (Loffi), the data length
(Dszi), the offset in Kα for Ci (Coffi) and the data (Di) is calculated.
The chunk Ci is used as the key.

7. The chunk is removed from memory.

8. A record R with fields L,Loffi, Dszi, Coffi and the HMAC is created.

9. The record R is appended to SEALlog.

Algorithm 1 Write algorithm

1: append Di to L at offset Loffi
2: Coffi ← Kαheader.off
3: Ci ← Kα[Coffi . . . Coffi + Csz − 1]
4: Kα[Coffi . . . Coffi + Csz − 1]← RANDOM()
5: Kαheader.off ← Coffi + Csz
6: Hi ← HMAC(Ci, L||Loffi||Dszi||Coffi||Di)
7: remove Ci from memory
8: R← (L,Loffi, Dszi, Coffi, Hi)
9: append R to SEALlog

Operations 2-9 must be executed atomically to preserve the integrity of
Kαheader.off and the order of SEALlog. This is from the perspective of
the concurrency of the algorithm. If this invariant failed to be preserved, it
would still be detected in an audit.

The system needs extra space to store four integer values and an HMAC
digest per write operation (independently of the number of bytes written to
the log file by each append operation).

4.3 Verification

When the auditor needs to verify a log L, to see if it has been manipulated,
she has to attach the β device and execute algorithm 2.

11

First, the keystreams are checked: their size and id numbers must match
and the burnt area must end at Kαheader.off . Then, all the records of
SEALlog are verified sequentially. Note that:

• The keystream is burnt sequentially. The keystream precedingKαheader.off
has to differ between kα and kβ and be the same (unburnt) after.

• Given two contiguous records, their corresponding chunks must be con-
tiguous. OK is used to check that.

• Records belonging to a log L are ordered in SEALlog (by R.Loff).
Thus, the data areas defined by its records must be contiguous: if
there is a gap, the verification fails. An array with a position for each
log file, O[], is used to check that.

The corresponding chunk of the keystream is read from Kβ (at offset
R.Coff), the data described by the record is read from L (from position
R.Loff , length R.Dsz) and the HMAC is regenerated using the chunk as
the key. The new HMAC and the HMAC stored in R are compared. If they
are not equal, the verification fails for L.

TODO, check in verification algo, the log is sealed (number of entries
multiple of NRATCHET, like implementation).

Provided that the HMAC is secure, the attacker is not able to deduce the
key (C) for any record stored in SEALlog. Thus, she will not be able to forge
any HMAC of SEALlog.

If the adversary removes any record for a log L from SEALlog, the veri-
fication fails (line 14). If any log file is truncated or shortened, it also fails
(line 14). If the adversary modifies any of the fields of any record belonging
to L or its data, the verification fails because the HMAC does not match
(line 21).

Modular log verification (i.e. verifying only a portion of L) would be done
similarly. In this case, we would check only the records for the corresponding
area of that specific log file. Note that, in this case, we can only claim that
the checked area of this log file has not been tampered with. Other areas of
this log file (or any other log file) could be tampered with and the file could
be truncated.

4.4 Discussion

4.4.1 SealFS vs. Ratchets

The main advantage of our approach is its simplicity. Ratchet based pro-
posals have been around for more than 20 years but even though they have

12

Algorithm 2 Verification algorithm

1: if size(Kα) ̸= size(Kβ) or Kαheader.id ̸= Kβheader.id then
2: FAIL()
3: end if
4: P ← Kαheader.off
5: if Kα[P−Csz . . . P−1] = Kβ[P−Csz . . . P−1] orKα[P . . . P+Csz−1] ̸=

Kβ[P . . . P + Csz − 1] then
6: FAIL()
7: end if
8: OK ← 0
9: for each record R of SEALlog do

10: if O[R.L] is not initialized yet then
11: O[R.L]← R.Loff
12: end if
13: if O[R.L] ̸= R.Loff or OK ̸= R.Coff then
14: FAIL()
15: end if
16: C′ ← Kβ[OK . . . OK + Csz − 1]
17: MD ← R.L||R.Loff ||R.Dsz||R.Coff
18: D ← R.L[R.Loff . . . R.Loff +R.Dsz − 1]
19: H′ = HMAC(C′,MD||D)
20: if H′ ≠ R.H then
21: FAIL()
22: end if
23: O[R.L]← O[R.L] +R.Dsz
24: OK ← OK + Csz
25: end for
26: SUCCESS()

13

found specialized use they have not been integrated in conventional operating
systems yet.

Note that the ratchet, similarly to SealFS, starts with a number of se-
crets (the seed, a number of keys or some secret state). On each “epoch”
(which would correspond to a write in our system) it is advanced with a non
reversible function and then saves its status in permanent storage (NVRAM,
disk or specific purpose storage hardware). This is necessary in order to
support reboots, autonomous or not. Moreover, the ratchet also needs to
update other metadata in permanent storage (a file analogous to SEALlog).
Thus, a ratchet implementation has to pay the same price: atomically updat-
ing some metadata located in permanent storage which includes deleting old
state securely and keeping a secret in separate storage for later verification.

There is a more fundamental difference from an theoretical point of view.
As stated before, a ratchet is a (degenerate, linear) Merkle tree [36] which
uses an HMAC instead of a regular secure hash. An HMAC is a keyed secure
hash. The output of each HMAC is used as the key to compute the HMAC
of the logs, which will be verified later. In the ratchet, on each “epoch” the
keys used to compute the HMACs are obtained from the previous secret state
(and maybe some state chained from the output of the previous HMAC of
the log).

As a consequence, the total entropy of the system is limited to the size of
the initial secret. The original paper [2] itself states that “the security of the
prf-chain FI-MAC degrades only linearly with the number of epochs”. The
number of epochs would correspond to the number of writes in our system.
In contrast, SealFS adds new entropy per input record in the log and does
not connect the secrets in a Merkle tree. Burning the keys already provides
us with the necessary forgetful (non-reversible) process. This makes it theo-
retically more secure even if it uses more disk space. Also, as a consequence,
our scheme provides random access to the keystream in verification time;
we do not need to calculate the keys, they are already there. Ratchet based
keystreams must be regenerated from scratch to verify the logs (even to verify
a small part of a single log file). This can be a problem for large log files.

In general, ratchets need to store keys or seeds. They can be kept on an
external device or locally. If they are stored locally, they must be protected
with secrets (i.e. passwords), which carry their own set of security issues.
On the other hand, if they are stored on an external device, they should be
kept well protected and separate from the main system for security reasons.
In this case, the only difference with our approach is that we will use the
whole storage capacity of the external device. The cost per byte of storage
media has dropped exponentially for three decades [37]. Nowadays, storage
is several orders of magnitude cheaper and faster than when ratchets first

14

appeared, so we can explore new, simpler approaches that can work well
in limited CPUs like those used in robots and IoT devices. At the time of
writing, it is difficult to find an external USB device smaller than 32 Gb. All
the extra space will be unused in the ratchet scheme. Note that any approach
used by ratchets to store their secrets (e.g. a password protected encryption)
can be used to protect Kβ, following a two-factor method (“something you
have” and “something you know”) if required. We just need to decrypt Kβ

while performing the audit.
It is also interesting to notice that future approaches can combine both

ideas, for example, burning a chunk of the keystream per new file created and
using a ratchet with that key as input. Our approach is closer to the extreme
of the spectrum, the one-time pad (OTP) [38] approach. As a consequence,
it consumes a space proportional to the length of the message (actually in our
case proportional to the number of writes to the log, which is much better)
and provides more security whereas the ratchet is at the other extreme of
constant CPU usage and linearly degrading security and verification time.
Combining both can enable the user to choose the adequate compromises for
their use case.

We also agree with the authors of the original ratchet paper [2] that
“Other than a one-time pad, the authors know of no cryptographic primitives
with forward privacy”. Note that directly using a one-time pad with the
Vernam cipher (an xor with the logs or some hash of the xor with the logs)
is not feasible. Some parts of the content of the logs is known beforehand.
As a consequence, the process could be reversed to recover the corresponding
section of the secret and partially forge the logs. Our scheme is probably the
closest thing which is actually feasible. Another problem of a one-time pad
would be that its secrets are equal to the size of the message (the logs in
this case). In our scheme, they are proportional to the size of a write. If
each write is aproximately a line of around 80 bytes and a key is 20 bytes,
this is a factor of 4 of reduction of space, of course with a similar cost in
the theoretical maximum security which can be provided even with an ideal
HMAC function.

4.4.2 Password-free

Our system verifies the logs by using a USB portable device in order to avoid
passwords. The bibliography on the advantages and trade-offs of the different
authentication methods is vast, see, for example [39, 40, 41, 42, 43]. We
delegate the management of the authentication device to the administrator,
a specialized user that understands these trade-offs (devices can be lost or
damaged, passwords can be forgotten, misused, reused, etc.). The secret

15

keystream we generate, could be kept in a specialized anti-tamper device,
should the need for a higher level of security appear, foregoing the easiness of
a commonplace and cheap USB device. If keeping the USB device protected
is too much of a burden, the keystream could be encrypted with a password,
yielding this property.

4.4.3 Whiteouts

We have deliberately not added whiteouts to the log (i.e. entries which log the
deletion of a file). It somehow goes against the philosophy of accountability
of the system. In order to be able to audit the system completely, it is
vital that no information is lost. Storage is big enough already (and keeps
growing). It should not be a problem to keep all the logs produced between
two audits.

Eventually, the files will need to be audited and, at that time, old files
can be deleted or backed up as needed. Take into account that if we added
whiteout entries in the log and permited verifiable deletion, it would not be
possible to provide protection against our threat model. This would let the
intruder delete traces of the attack after elevating privileges. In our threat
model, future operations should not be able to delete information of the past.

5 SealFS

SealFS is a stackable file system for Linux that implements the scheme pre-
sented in the previous section. It is based on WrapFS [44].

A file system is an operating system component2 that provides files and
directories. Userspace programs access files through the operating system
interface (POSIX API): the processes perform system calls to manipulate
file data and metadata.

A stackable file system is a file system that is mounted on top of another
one to offer extra functionality (e.g. directory union, encryption, etc.).

SealFS is mounted on top of a directory that has the logs we want to
protect. It serves the same files and directories as the underlying directory.
Its goal is to handle the write operations that appends data to an underlying
file, applying the proposed scheme. Note that, in the end, the data is written
in the underlying file (the one served by the underlying file system), but it
is authenticated on the fly.

For example:

2Note that some file systems run in userspace (e.g. FUSE based file systems), but file
systems are commonly implemented as a kernel space component.

16

$> logdir=/var/log/antitamper

$> stat -f -c ’%T’ $logdir

ext3/ext4

$> ls -l $logdir

total 0

-rw-r--r-- 1 root root 0 Apr 10 14:21 robot.log

-rw-r--r-- 1 root root 0 Apr 10 14:21 sensors.log

$> mount -t sealfs $logdir $logdir -o kpath=/kalpha

$> ls -l $logdir

total 0

-rw-r--r-- 1 root root 0 Apr 10 14:21 robot.log

-rw-r--r-- 1 root root 0 Apr 10 14:21 sensors.log

$> mount | fgrep $logdir

/var/log/antitamper on /var/log/antitamper type sealfs (rw)

$>

First, the example shows that /var/log/antitamper is a directory server
by an Ext4 file system3. The directory is listed and there are two empty
files. Then, SealFS is mounted on /var/log/antitamper. The path to
the keystream (Kα) is provided as a mount option (/kalpha). From now on,
when an application opens any file or directory under /var/log/antitamper,
it will be using SealFS. All write operations will pass through to the SealFS
instance. Next, the /var/log/antitamper directory is listed again: it has
the same files names as the first listing. Last, the example shows that SealFS
is mounted in the corresponding point.

Figure 1 depicts the regular use (the application is writing to the log
file served by a standard Linux file system) and the case configured in the
previous example.

SealFS will hook the file operations performed by the application to au-
thenticate the written data. When it is mounted, only append write oper-
ations are allowed. The file system also forbids many operations not suited
for a log file: deletion, memory mapping (mmap), etc. It permits to create
new files and rename the old ones in order to rotate the logs.

Applications write logs as usual. They open the file and perform append
write operations. Multiple processes or threads can write the log files con-
currently. Different applications could use independent instances of SealFS
mounted in separate points. Once the applications are stopped and SealFS
is unmounted, the directory is available through the original file system (i.e.
the Ext4 file system in this example): the files (the logs and the metadata
file) are regular files.

SealFS will be mounted as part of the boot process. From the moment the
system boots, any of the logs in the mount path (for example /var/log) will

3Ext4 is the standard Linux file system.

17

kernel

app

ext4 fs

antitamper

robot.log

sensors.log

userspace

system calls

kernel

app

SealFS

antitamper

robot.log

sensors.log

.SEALFSLOG

userspace

system calls

ext4 fs

antitamper

robot.log

sensors.log

.SEALFSLOG

Figure 1: The regular use (left) and the scenario configured in the example
(right).

have anti-tamper guaranties. This approach provides instant deployability
and backwards compatibility: applications, libraries and frameworks do not
require any modification to generate tamper-evident logs. Moreover, our
approach is compatible with all standard Unix tools that work with regular
files.

5.1 Implementation details

Our prototype of SealFS is fully functional and its implementation is not
trivial. In general, kernel code is complex and the implementation of a file
system is not straightforward. Note that in the following description the only
data structures to support the SealFS file system in secondary storage (the
hard disk) are the log files and the SealFS log file (i.e. SealFS does not need
a partition). The file system is a software construct and the only “real” file
system is the one stacked under it, containing the log files being protected.
Next, we summarize the most important features and issues.

5.1.1 The File System

VFS (Virtual File System, also known as the Virtual Filesystem Switch),
the Linux subsystem that provides an abstraction layer to implement file
systems, is based on the concepts of Unix file systems: the superblock, i-
nodes and directory entries which will be data structures in memory.

In Unix-like systems, the main data structure of a file system is the su-
perblock. This data structure contains the high-level metadata of the file
system. The superblock of a SealFS instance contains:

18

• A reference to the superblock of the underlying file system.

• The references to read and write the files that contain the authentica-
tion metadata for the log files (SEALlog) and the keystream (Kα). The
paths of these files are specified in the mount operation options. By de-
fault, SEALlog is a hidden file named .SEALFSLOG in the mount point
and both files are opened to perform asynchronous write operations

• The data structures used to generate the HMACs are included in the su-
perblock in order to avoid unnecessary allocations/deallocations. The
current implementation uses the HMAC-SHA-1 [35] algorithm to au-
thenticate the logging data4. The key length used for the algorithm is
20 bytes.

• The data structure used for concurrency synchronization.

Note again that, in this case, the superblock is not stored in any physical
storage device: it exists only in memory. It is created when the file system is
instantiated and initialized (that is, when it is mounted) and removed when
the file system is unmounted.

Applications must open their log files after SealFS is mounted. If the
log files are opened by an application before mounting SealFS, the process is
accessing the underlying file system directly.5 In this case, the data written
will not be authenticated and the subsequent verification will fail. As an
extra protection, SealFS checks if the files of the directory are being used by
any process during its initialization. If so, the mount operation fails. It is just
a check, but it does not ensure that there are not processes accessing the files
bypassing SealFS. A process could open a file while SealFS is being mounted.
Moreover, SealFS cannot prevent a process in a different name space from
accessing these files through the underlying file system. In conclusion, the
administrator must ensure that the applications open the logs after SealFS
is mounted (by mounting it at boot time).

In Unix-like systems, a file system element (a file, directory, symbolic link,
fifo. . .) is identified by its i-node number. The i-node number is used by the
file system to locate the i-node structure of the element. This per-element
structure contains its metadata (modification date, permissions, etc.) and

4SHA-1 is deprecated, but HMAC-SHA-1 is considered secure [45].
5Note that (i) unmounting SealFS requires administration privileges and (ii) SealFS

should be mounted by the init process at boot time. An attacker with enough privileges
may unmount the file system and forge new logs, but the ones created before the attack
will still be protected. The attacker cannot access that part of the keystream, it is already
burnt.

19

the references to find all its data blocks in the storage device. Directories are
just lists of directory entries that map file names to i-node numbers.

SealFS provides exactly the same files and directories as the underlying
file system. It uses the same i-node numbers and names in directory entries.

The metadata generated and stored in SEALlog uses i-node numbers to
identify the log files. This way, files can be renamed to rotate the logs:
renaming a file only changes the directory entry, the i-node number remains
the same. Thus, the records of SEALlog are still coherent after renaming the
old log and creating the new one.

A rotated log file could be deleted and then ignored as part of the veri-
fication process (doing only a partial verification during the audit). We do
not recommend this approach because it weakens the security model.

5.1.2 Synchronization

When a write system call is performed over a file, the corresponding hook
function of SealFS is called. This function performs the write operation on
the underlying file.

The main problem is to know the real offset for the append-only write
operation. The hook function receives as a parameter the current offset
managed by the file descriptor (i.e. what the process believes the offset of
the file is). Nevertheless, this value is ignored by the file system for a write
operation when the file is open in append-only mode: the data is always
appended at the end of the file, regardless. Moreover, different processes
may have different file descriptors for the same file.

SealFS performs the write in the underlying file and when it is completed,
the actual number of bytes written to the file is known. Then, SealFS syn-
chronizes the i-nodes (that is, it copies the fields of the underlying i-node
to its i-node). The metadata stored in the i-node includes the current size
of the file. Then, it calculates the real offset for this write operation (cur-
rent size minus the number of bytes returned by the write operation). In
order to avoid race conditions (e.g. when two processes write the same file
concurrently), the process must acquire a per-file mutex to execute these
operations.

This mutex is stored in the corresponding directory entry memory data
structure of SealFS for the file. Write operations over different files can be
executed concurrently.

We need a global mutex to preserve the order of operations in SEALlog

and the offsets in the header of Kα. As stated before, this global mutex is
stored in the superblock memory data structure of SealFS. After the append-
only write is done and the real offset is known, the process acquires the global

20

mutex to execute operations 2-9 of algorithm 1. Note that this is costly
and can be greatly optimized. For now, we have aimed for simplicity and
correctness.

As explained in section 4.2, operations 2-9 of algorithm 1 must be exe-
cuted atomically. If there is a system crash (e.g. kernel panic, power failure,
etc.) while the data or metadata is not already written in the disk, the logs
will be corrupted after rebooting. Note that modern operating systems use
asynchronous I/O mechanisms and a memory cache for file systems. These
mechanisms have a big impact on performance, but they make it worse in
the case of a crash. Commonly, the underlying file system (e.g. Ext4) will
implement mechanisms to provide data and metadata integrity in the case
of crashes (e.g. journaling and soft updates). Anyway, there is a window
of time when a crash will corrupt the logs. SealFS provides a mount op-
tion (syncio) to force synchronous I/O when SEALlog and Kα are written
(O SYNC flag for the open system call). In this case, by the time the write
system calls returns, the output data and metadata are committed to the
underlying storage hardware. This option reduces such window of time, but
it has a dramatic impact on performance as we will show in section 6.

In any case, after a system crash, the logs must be verified at boot time.
If the logs can be verified, the system will boot normally, mount SealFS and
run the applications. If the verification fails, the administrator must audit
the system and reconfigure SealFS before starting the applications. In this
case, the crash is indistinguishable from an attack: we cannot state that the
logs are correct.

5.1.3 Tools

Reliably erasing data from the disk may be tricky depending on the type of
storage device.

The first write to burn a used portion of the keystream is done syn-
chronously in the context of the write operation performed by the client.
After that first write, it is considerably difficult to recover the burnt portion
without a specialized lower layer attack.

Asynchronously, a system daemon (i.e. a service) named sealfsd is in
charge of reliably re-burning Kα in background. This daemon reads the offset
(Kαheader.off) periodically and applies the appropriate deletion technique.
Note that the blocks being written by sealfsd are not accessed by the driver
anymore. Therefore, the interference is minimal (just exchanging an integer,
the offset). The extra bandwidth required by sealfsd is negligible compared
to the normal use of the disk6.

6Note that a disk block holds 25 keys in the current implementation. Re-burning the

21

In theory, it is possible to perform a complex physical analysis to re-
cover information from magnetic disks, even after multiple overwrite opera-
tions [46]. In practice, for current high density magnetic disks, it suffices from
3 to 7 write passes7 (interleaving constant and pseudorandom data) [47]. On
the other hand, overwriting the entire visible address space of a solid state
disk (SSD) may not be secure enough [48]. In this case, the daemon must
use specific utilities provided by the manufacturer. This task could be rele-
gated in the future to an stackable safe deletion file system like restFS [49]
or PurgeFS [50].

There are other userspace tools for SealFS:

• prep creates the keystreams Kα and Kβ by reading data from the
secure random data generator of the system. After the execution of
this command, the administrator must detach β from the system.

• dump lists all the records of SEALlog in a human-readable format. Note
that the records are kept in the endianness of the machine.

• verify implements the algorithms described in sections 4.3 to verify
SEALlog. This command receives the following arguments: the direc-
tory that contains the logs, the path for the keystreams Kα and Kβ,
and optionally, the name of the SEALlog file (if this argument is not
provided, it uses the default name). It also accepts a i-node number
and a range (begin and end offsets) for partial log verification. In this
case, it only verifies the records corresponding to that portion of the
log file.

6 Evaluation

In this section we will describe a number of experiments performed to analyze
the performance of the prototype implementation of SealFS. The goal of the
experiments is to measure the impact of the SealFS layer for performing
append operations over a standard Linux file system. We have followed a
twofold approach.

First we have measured the performance using the standard benchmark,
filebench [51] with a custom load which creates a set of files, N processes and
M threads and makes them append to the files concurrently. To delve deeper
in understanding how the file system behaves, we also implemented a custom

last portions of keystream only requires rewriting a few blocks.
7The de facto standard wiper on Linux systems, shred, performs three pseudorandom

rounds by default.

22

minibenchmark which measures the same thing but gives back more detailed
results.

We have measured only append operations. Other file operations are not
of interest because they are either just forwarded to the underlying file system
(e.g. read operations) or forbidden (e.g. memory mapping or non-append
write operations).

All the experiments were measured in a limited machine in order to be
representative of different kinds of systems (servers, robots or embedded
systems). The machine has a 2.13 GHz Intel Xeon E5506 CPU with four
cores, 4 GiB of RAM and two disks: a WDC WD1602ABKS-1 (a standard
SATA HDD disk) and a Kingston SKC300S (a standard SATA SSD disk). It
runs a Ubuntu Server 18.04 with a custom Linux 4.8.17 SMT kernel. Both
disks are formatted with Ext4 file systems, with the default options.

6.1 Filebench

We ran filebench to measure how the system would behave in a typical system.
We wrote a small program and ran it in various systems to measure the
average line length and standard deviation for a line in the standard log
files of the system. In the worst case for performance, a log will receive a
write per line (in other cases, they may be compressed and batched). Our
program reported that the average line length was around 42 characters with
a standard deviation of around 40 characters. Armed with this knowledge,
we configured filebench with the following parameters:

• Number of standard filebench concurrent processes and threads writing
to the logs8. This will simulate both concurrent applications sharing
the same sealfs mount (not strictly necessary as there can be a SealFs
mount per application) and a multithreaded application sharing a log
file.

• 100 byte write operations, which should cover the biggest write in most
cases.

• Disk type: the conventional electromechanical rotating disk drive (NOSSD)
or the solid-state (SSD) disk described before.

We ran the tests against a naked Ext4 file system and the same file system
with SealFs mounted over it.

The results of the measurements can be seen in figures 2, 3, 4, 5, 6 and
numerically in tables 1 and 2. Note that the effect of using an SSD disk is

8They are independent, both are created with fork.

23

N. Proc. Ext4 SSD ms SealFs SSD ms Ext4 NOSSD ms SealFs NOSSD ms
1 0.003 0.012 0.003 0.013
2 0.003 0.019 0.004 0.019
4 0.003 0.039 0.004 0.040
8 0.007 0.079 0.007 0.083
16 0.013 0.160 0.015 0.170
32 0.026 0.319 0.031 0.334
64 0.052 0.645 0.069 0.677

Table 1: Filebench measurements for different number of processes. The
table shows the average latency of 100 byte write operations.

N. Th. Ext4 SSD ms SealFs SSD ms Ext4 NOSSD ms SealFs NOSSD ms
1 0.003 0.012 0.003 0.013
2 0.003 0.018 0.004 0.020
4 0.007 0.038 0.007 0.040
8 0.015 0.080 0.016 0.084
16 0.032 0.159 0.032 0.168
32 0.063 0.319 0.066 0.337
64 0.131 0.639 0.137 0.676

Table 2: Filebench measurements for different number of threads. The table
shows the average latency of 100 byte write operations.

negligible because of the file system cache. Looking at the measurements,
SealFS is, at worst, 10 times slower than Ext4. This makes it, as it is, useable.
Most applications do not have logging as bottleneck and will be faster than
this worst case, by batching the writes and having a dedicated process for
writing to the file. Note that with less concurrency it is just 5 times slower
instead of 10.

As can be expected, separating log files in different mount points (i.e.
two independent instances of SealFS) makes write operations faster. Note
that different SealFS instances do not share any internal resource (files, data
structures, locks, etc.). Figure 6 compares the times of the benchmark
for one and two concurrent SealFS instances. As the number of concurrent
processes increases, the difference decreases, because they share the rest of
system’s resources (i.e. the contention for the usage of the system resources
increases). For example, for two processes, the result is 0.019 vs. 0.013 ms
per operation. For four processes, it is 0.039 vs. 0.019 ms per operation.
These times match the results shown in table 1.

24

1 2 4 8 16 32 64
processes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tim
e

(m
s)

fs
ext4
sealfs

Figure 2: Filebench reported time for 100 byte write operations, SSD disk
and private log files.

6.2 Minibenchmark

As we stated earlier, we also wrote a minibenchmark to understand the be-
havior more in depth for other cases. The custom minibenchmark performs
1000 write operations (per process) from a user space program. We measure
the time to complete each write system call. We propose a set of scenarios
that we consider complete and representative. The variables are:

• Size of each of the write operations (100, 1000 and 10000 bytes).

• Number or concurrent processes writing to the logs9.

• Number of logs: a log file shared by all processes or a private log file
per process.

• Disk type: a conventional electromechanical rotating disk drive (NOSSD)
or a solid-state (SSD) disk.

9They are independent, standard processes created with fork.

25

1 2 4 8 16 32 64
processes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tim
e

(m
s)

fs
ext4
sealfs

Figure 3: Filebench reported time for 100 byte write operations for concur-
rent processes, NOSSD disk and private log files.

• I/O type: synchronous or asynchronous write operations for SEALlog

and Kα.

6.2.1 Execution

To measure the time to complete a write system call, we read the time stamp
counter register (TSC) of the cores from the user space process. The TSC
is read before performing the system call and when the system call returns.
Then we calculate the number of cycles required for the operation. Note
that using the TSC to measure is not trivial: the TSC of the different cores
must be synchronized, the rate must be constant, power saving must not
interfere, and so on [52]. The user space program reads the TSC following
the guidelines published by Intel to benchmark code execution [53], taking
into account the out-of-order dynamic execution of instructions performed
by modern CPUs (using barriers before reading the TSC).

All executions use the same Kα file and write exactly the same data.

26

1 2 4 8 16 32 64
threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tim
e

(m
s)

fs
ext4
sealfs

Figure 4: Filebench reported time for 100 byte write operations on SealFS,
SSD disk and different numbers of concurrent threads with shared log files

Before executing the 1000 rounds, each process completes a cache heating
phase of 500 write operations.

6.2.2 Results

We present the results of the experiment with box-and-whisker plots10. Time
is always expressed in nanoseconds and data size in bytes.

Figure 7 shows the time to complete 100 byte write operations (approx-
imately a line for a common plain text log) using the SSD disk. It com-
pares the standard Ext4 file system (NOSEALFS) and SealFS stacked over
it (SEALFS). Each process writes its private log file. Figure 8 shows the
outliers for the same results.

Figure 9 presents the time only for SealFS with different write sizes,
comparing the two disk types. The number of processes is fixed to 8. Each

10The plot shows the quartile of the dataset, the whiskers extend to show the rest of
the distribution and the center line shows the median.

27

1 2 4 8 16 32 64
threads

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tim
e

(m
s)

fs
ext4
sealfs

Figure 5: Filebench reported time for 100 byte write operations on SealFS,
NOSSD disk and different numbers of concurrent threads with shared log
files

process writes its private log file.
Figure 10 shows the time for different number of processes, comparing

the results when using private (exclusive log file for each process) and shared
log files.

Figure 11 compares synchronous and asynchronous I/O for SEALlog and
Kα. It shows the times for only one process, two different write sizes and
both disk types.

6.3 Analysis and Discussion

As shown by Figures 2, 3, 4, 5, 7 and 8, the overhead of using SealFS is
notable but still manageable. In the most common scenario, SealFS is, at
worst, one order of magnitude slower. The minibenchmark results show that
the median for SealFS is 17205 ns; without SealFS, it is 1680 ns. The means
are 17205 ns and 3385 ns respectively. These results are compatible with the

28

1 2 4 8 16 32 64
processes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

tim
e

(m
s)

points
1point
2point

Figure 6: Filebench reported time for 100 byte write operations for concur-
rent processes, SSD disk, private log files and different number of SealFS
instances (1 or 2 mount points).

results obtained with filebench, but let us analyze the behavior more closely.
The overhead we observe is mostly caused by the mutual exclusion to

access SEALlog and Kα. When the applications share the log file, the syn-
chronization to access the shared file also has a cost (we can see the dispersion
in Figure 10). We have not made attempts to optimize this synchronization
by making the critical region smaller, and it should not be difficult to make
this better.

Figure 8 shows that when the contention is high (i.e. there are many con-
current processes trying to acquire the mutex), some write operations take
a long time (up to 490 ms in the worst case, with 64 concurrent processes).
If there is a context-switch while a process has the mutex acquired, all pro-
cesses trying to acquire the mutex will block. The bigger the contention, the
higher the probability of this happening. As shown in figure 6, this prob-
lem can be mitigated by mounting different instances of SealFS for different
applications/processes.

29

1 2 4 8 16 32 64
processes

0

5000

10000

15000

20000

25000

30000

35000

40000

tim
e

(n
s)

sealfs
NOSEALFS
SEALFS

Figure 7: Time for 100 byte write operations, SSD disk and private log
files. To the left and right of each category shown on the X axis are two
different experimental results. To the left of the X ticks the whiskers depict
NOSEALFS, and to the right SEALFS.

We can observe in Figure 9 that the type of disk is not critical for SealFS if
I/O is asynchronous. Variance differs in each case, but the median is similar.
This is the effect of the system’s file cache and I/O optimization. Files are
cached in RAM, so we don’t pay the costs of writing the data synchronously
to the disk. Moreover, files (append-only logs, SEALlog and Kα) are mostly
accessed sequentially. Modern drives and operating systems are optimized
for sequential access [54]. Writes to files opened as append-only are specially
easy to optimize and Linux takes full advantage of this.

There are no clear differences between sharing the log file and using a
private file (see Figures 2, 3, 4, 5 and 10). The reason is that the bottleneck
is the mutual exclusion to access SEALlog and Kα, not the mutual access to
write the shared file. In both cases (shared or private), the dispersion is very
big for some executions. Note again that this is a consequence in part of the

30

1 2 4 8 16 32 64
processes

0

1

2

3

4

5

tim
e

(n
s)

1e8

sealfs
NOSEALFS
SEALFS

Figure 8: Results shown in figure 7 with the outliers. To the left and right
of each category shown on the X axis are two different experimental results.
To the left of the X ticks the whiskers depict NOSEALFS, and to the right
SEALFS.

lack of optimization in the mutual access exclusion algorithm.
Forcing synchronous I/O for SEALlog and Kα is extremely expensive (see

Figure 11), for both disk types. Note that this figure shows the result for
only one process. For concurrent processes, it is not reasonable to wait for
I/O completion while holding the mutex. The main disadvantage of using
asynchronous I/O is that, in case of a system crash, the probability of getting
a corrupted log is higher (the window is wider).

In general, using SealFS is expensive and it is not suitable to perform
intensive I/O over the underlying files. Nevertheless, SealFS is intended for
securing log files. Log files should not be under intensive I/O by design.

Spending approximately 0.02 ms for logging a 100 character text line
seems reasonable for most applications that would require synchronous tamper-
evident logs. Note that logging is a very small part of what an application

31

100 1000 10000
write size (bytes)

20000

40000

60000

80000

100000

120000

140000

tim
e

(n
s)

disk
SSD
NOSSD

Figure 9: Time for SealFS with different write operation sizes, 8 processes
with private log files. To the left and right of each category shown on the
X axis are two different experimental results. To the left of the X ticks the
whiskers depict SSD, and to the right NOSSD.

does. Normally, the accumulated time spent on logging is negligible. Nev-
ertheless, application logging is normally asynchronous (either it is buffered
or completely asynchronous on multi-threaded systems). Therefore, an ap-
proximately 10x overhead for write operations does not mean that deploying
SealFS on an application would make its logging operations approximately
10x slower.

Verification is fast. For example, a single log file of 1.5 MB with 1500
records in SEALlog was verified in 0.011 s. A hundred 1.5 MB log files with
150000 records in SEALlog were verified in 0.989 s. The write size was 1000
bytes in both cases.

Verification will not happen often, only at audit. Nevertheless, time may
be of the essence if we are trying to decide if the system has been compro-

32

1 2 4 8 16 32 64
processes

10000

15000

20000

25000

30000

35000

40000

45000

tim
e

(n
s)

shared
SHARED
NOT-SHARED

Figure 10: Time for 100 byte write operations on SealFS, SSD disk and
different numbers of concurrent processes, comparing the results for shared
and private files. To the left and right of each category shown on the X axis
are two different experimental results. To the left of the X ticks the whiskers
depict SHARED, and to the right NOT-SHARED.

mised. Making the verification fast can shorten the downtime. Several efforts
in the literature have been spent trying to make verification in ratchets faster
(see, for example, [7]).

As anecdotal data, for our main Linux server, which provides various
network services with a public IP address and has an uptime of 10 days, the
journalctl command reports 1036046 lines of logs. This means that, at this
rate, if we used a 64 bytes key HMAC with a keystream of 32 GB our scheme
could run for around 14 years without running out of secrets. As another
example, publicly available Hadoop (HDFS) logs comprise approximately 4
million log entries per day [55]. In this case, a 32 GB keystream would last
approximately 1.2 years. For some more money, $150 a 1 TB SSD hard disk
will never run out of secrets even for applications that do almost nothing but

33

100 1000

10
4

10
5

10
6

10
7

tim
e

 (
n

s)

100 1000

SSD
NOSSD

write size (bytes) write size (bytes)

Disk

io = NOSYNC io = SYNC

Figure 11: Time for synchronous and asynchronous I/O, only one process.
To the left and right of each category shown on the X axis are two different
experimental results. To the left of the X ticks the whiskers depict SSD, and
to the right NOSSD. Note the logarithmic axis.

log continuously. If the trend continues, storage will only get cheaper.

7 Conclusions

In this paper we present a new scheme to provide tamper-evident logs in dis-
connected or loosely connected systems that does not depend on specialized
hardware. This scheme is simple and takes advantage of the current prices
of storage: our prototype can authenticate up to 1.6e9 write operations with
a $5 32 GB external flash drive.

We also present a prototype implementation of the scheme, SealFS. It
follows a novel approach to implement tamper-evident logs, with forward
integrity based on a stackable file system. SealFS enables a transparent way
to protect the logs of existing software without requiring any modification
of applications, libraries or frameworks. As a proof of concept, we have a
working version integrated in a conventional operating system like Linux,
taking into account all the details necessary to make it work.

In addition, we provide some experimental results that show that the ap-
proach performs well on limited hardware. Two different benchmarks have
been used to evaluate the prototype: a standard benchmark for file sys-
tems, filebench, and a custom minibenchmark. As expected, our approach is
not suitable for intensive I/O applications, but it is appropriate to provide

34

tamper-evident logs to critical applications.
Future work includes a new ratchet/keystream hybrid scheme and the

evaluation of different strategies for better performance: optimizing the al-
gorithm to reduce the critical section, evaluating other fine-grained synchro-
nization schemes and testing new mechanisms to improve I/O performance
(e.g. tailored caching mechanisms, etc.).

The source code of the SealFS prototype can be downloaded from:

https://gitlab.etsit.urjc.es/esoriano/sealfs/tree/master

References

[1] L. Zeng, Y. Xiao, H. Chen, B. Sun, and W. Han, “Computer
operating system logging and security issues: a survey,” Security and
Communication Networks, vol. 9, no. 17, pp. 4804–4821, 2016. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1677

[2] M. Bellare and B. S. Yee, “Forward integrity for secure audit logs,”
University of California at San Diego, Tech. Rep., 1997.

[3] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs,
“Ratcheted encryption and key exchange: The security of messaging,”
in Advances in Cryptology – CRYPTO 2017, J. Katz and H. Shacham,
Eds. Cham: Springer International Publishing, 2017, pp. 619–650.

[4] B. Schneier and J. Kelsey, “Cryptographic support for secure logs
on untrusted machines,” in Proceedings of the 7th Conference on
USENIX Security Symposium - Volume 7, ser. SSYM’98. Berkeley,
CA, USA: USENIX Association, 1998, pp. 4–4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267549.1267553

[5] J. Kelsey and B. Schneier, “Minimizing bandwidth for remote access to
cryptographically protected audit logs,” in Recent Advances in Intrusion
Detection, 1999, pp. 9–9.

[6] B. Schneier and J. Kelsey, “Secure audit logs to support computer
forensics,” ACM Trans. Inf. Syst. Secur., vol. 2, no. 2, p. 159–176, May
1999. [Online]. Available: https://doi.org/10.1145/317087.317089

[7] A. Sinha, L. Jia, P. England, and J. R. Lorch, “Continuous tamper-proof
logging using tpm 2.0,” in Trust and Trustworthy Computing, T. Holz
and S. Ioannidis, Eds. Cham: Springer International Publishing, 2014,
pp. 19–36.

35

[8] D. Ma and G. Tsudik, “A new approach to secure logging,”
ACM Trans. Storage, vol. 5, no. 1, Mar. 2009. [Online]. Available:
https://doi.org/10.1145/1502777.1502779

[9] A. Yavuz, P. Ning, and M. Reiter, “Efficient, compromise resilient and
append-only cryptographic schemes for secure audit logging,” in Finan-
cial Cryptography, 2012.

[10] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates, C. Fletcher,
A. Miller, and D. Tian, “Custos: Practical tamper-evident
auditing of operating systems using trusted execution,” Network and
Distributed System Security Symposium, Jan 2020. [Online]. Available:
http://par.nsf.gov/biblio/10146530

[11] H. Nguyen, B. Acharya, R. Ivanov, A. Haeberlen, L. T. X. Phan,
O. Sokolsky, J. Walker, J. Weimer, W. Hanson, and I. Lee, “Cloud-
based secure logger for medical devices,” in 2016 IEEE First Inter-
national Conference on Connected Health: Applications, Systems and
Engineering Technologies (CHASE), 2016, pp. 89–94.

[12] V. Karande, E. Bauman, Z. Lin, and L. Khan, “Sgx-log: Securing
system logs with sgx,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ser. ASIA CCS
’17. New York, NY, USA: Association for Computing Machinery, 2017,
p. 19–30. [Online]. Available: https://doi.org/10.1145/3052973.3053034

[13] Dogtag, “Managing Signed Audit Logs,”
https://www.dogtagpki.org/wiki/Signed Audit Log, 2019, [Online;
accessed may-2019].

[14] L. Zeng, H. Chen, and Y. Xiao, “Accountable administration and im-
plementation in operating systems,” in 2011 IEEE Global Telecommu-
nications Conference - GLOBECOM 2011, Dec 2011, pp. 1–5.

[15] S. Patil, A. Kashyap, G. Sivathanu, and E. Zadok, “I3fs: An in-kernel
integrity checker and intrusion detection file system,” in Proceedings of
the 18th USENIX Conference on System Administration, ser. LISA ’04.
USA: USENIX Association, 2004, p. 67–78.

[16] B. Chou, K. Tatara, T. Sakuraba, Y. Hori, and K. Sakurai, “A secure
virtualized logging scheme for digital forensics in comparison with kernel
module approach,” in 2008 International Conference on Information
Security and Assurance (isa 2008), April 2008, pp. 421–426.

36

[17] Loggly, “Loggly: Remote Logging Service,”
https://www.loggly.com/solution/remote-logging-service/, 2019,
[Online; accessed may-2019].

[18] Stackdriver, “Stackdriver Logging,” https://cloud.google.com/logging/,
2019, [Online; accessed may-2019].

[19] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging,” in Proceedings of the 18th Conference on USENIX
Security Symposium, ser. SSYM’09. USA: USENIX Association, 2009,
p. 317–334.

[20] T. Pulls and R. Peeters, “Balloon: A forward-secure append-
only persistent authenticated data structure,” IACR Cryptol-
ogy ePrint Archive, vol. 2015, p. 7, 2015. [Online]. Available:
https://eprint.iacr.org/2015/007

[21] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and
G. R. Ganger, “Self-securing storage: Protecting data in compromised
system,” in Proceedings of the 4th Conference on Symposium on Oper-
ating System Design and Implementation - Volume 4. USA: USENIX
Association, 2000.

[22] M. Rosa, J. P. Barraca, and N. P. Rocha, “Logging integrity with
blockchain structures,” in New Knowledge in Information Systems and
Technologies, Á. Rocha, H. Adeli, L. P. Reis, and S. Costanzo, Eds.
Cham: Springer International Publishing, 2019, pp. 83–93.

[23] H. Wang, D. Yang, N. Duan, Y. Guo, and L. Zhang, “Medusa:
Blockchain powered log storage system,” in 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS), 11
2018, pp. 518–521.

[24] LogSentinel, “,” https://logsentinel.com/, 2019, [Online; accessed may-
2019].

[25] Guardtime, “Blockchain Backed Log Assurance,”
https://guardtime.com/solutions/blockchain-backed-log-assurance,
2019, [Online; accessed may-2019].

[26] K. Cohn-Gordon, C. Cremers, and L. Garratt, “On post-compromise se-
curity,” in 2016 IEEE 29th Computer Security Foundations Symposium
(CSF), June 2016, pp. 164–178.

37

[27] J. Holt and K. Seamons, “Logcrypt: Forward security and public verifi-
cation for secure audit logs,” in IACR Cryptol. ePrint Arch., 2005.

[28] A. A. Yavuz and P. Ning, “Baf: An efficient publicly verifiable secure
audit logging scheme for distributed systems,” in 2009 Annual Computer
Security Applications Conference, 2009, pp. 219–228.

[29] G. Hartung, B. Kaidel, A. Koch, J. Koch, and D. Hartmann, “Practi-
cal and robust secure logging from fault-tolerant sequential aggregate
signatures,” in ProvSec, 2017.

[30] G. Hartung, “Attacks on secure logging schemes,” IACR Cryptol. ePrint
Arch., vol. 2017, p. 95, 2017.

[31] S. Han, W. Shin, J.-H. Park, and H. Kim, “A bad dream: Subverting
trusted platform module while you are sleeping,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1229–1246.

[32] A. Czeskis and J. Lang, “Fido nfc protocol specification v1.0,” FIDO
Alliance Proposed Standard, 2015.

[33] J. Ehrensvärd and J. Kemp, “Fido hid protocol specification v1.0,”
FIDO Alliance Proposed Standard, 2015.

[34] A. Czeskis and J. Lang, “Fido bluetooth protocol specification v1.0,”
FIDO Alliance Proposed Standard, 2015.

[35] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” IETF, RFC 2104, Feb. 1997. [Online].
Available: http://tools.ietf.org/rfc/rfc2104.txt

[36] R. C. Merkle, “Protocols for public key cryptosystems,” in 1980 IEEE
Symposium on Security and Privacy. IEEE, 1980, pp. 122–122.

[37] D. S. Rosenthal, D. Rosenthal, E. L. Miller, I. Adams, M. W. Storer,
and E. Zadok, “The economics of long-term digital storage,” in The
Memory of the World in the Digital Age: Digitization and Preservation,
Sep. 2012.

[38] G. S. Vernam, “Cipher printing telegraph systems: For secret wire and
radio telegraphic communications,” Journal of the AIEE, vol. 45, no. 2,
pp. 109–115, 1926.

38

[39] C. Braz and J.-M. Robert, “Security and usability: the case of the
user authentication methods,” in Proceedings of the 18th Conference on
l’Interaction Homme-Machine, 2006, pp. 199–203.

[40] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in 2012 IEEE Symposium on Security and Pri-
vacy. IEEE, 2012, pp. 553–567.

[41] ——, “Passwords and the evolution of imperfect authentication,” Com-
munications of the ACM, vol. 58, no. 7, pp. 78–87, 2015.

[42] D. Wang and P. Wang, “Two birds with one stone: Two-factor authen-
tication with security beyond conventional bound,” IEEE transactions
on dependable and secure computing, vol. 15, no. 4, pp. 708–722, 2016.

[43] D. DeFigueiredo, “The case for mobile two-factor authentication,” IEEE
Security & Privacy, vol. 9, no. 5, pp. 81–85, 2011.

[44] E. Zadok and I. Badulescu, “A stackable file system interface for linux,”
in In LinuxExpo Conference Proceedings, 1999, pp. 141–151.

[45] E. Barker, “Recommendation for key management,” NIST,
NIST Technical Report 56, May 2020. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-57pt1r5

[46] P. Gutmann, “Secure deletion of data from magnetic and solid-state
memory,” in Proceedings of the 6th Conference on USENIX Security
Symposium, Focusing on Applications of Cryptography - Volume 6, ser.
SSYM’96. USA: USENIX Association, 1996, p. 8.

[47] “U.S. National industrial security program operating manual DoD
5220.22-M.” United States Department of Defense National Industrial
Security Program, 2006.

[48] M. Wei, L. M. Grupp, F. E. Spada, and S. Swanson, “Reliably erasing
data from flash-based solid state drives,” in Proceedings of the 9th
USENIX Conference on File and Stroage Technologies, ser. FAST’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 8–8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1960475.1960483

[49] W. Bhat and S. Quadri, “Restfs: Secure data deletion using reliable &
efficient stackable file system,” in 2012 IEEE 10th International Sympo-
sium on Applied Machine Intelligence and Informatics (SAMI). IEEE,
2012, pp. 457–462.

39

[50] N. Joukov and E. Zadok, “Adding secure deletion to your favorite file
system,” in Third IEEE International Security in Storage Workshop
(SISW’05). IEEE, 2005, pp. 8–pp.

[51] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework
for file system benchmarking,” USENIX; login, vol. 41, no. 1, pp. 6–12,
2016.

[52] “Pitfalls of TSC usage,” http://oliveryang.net/2015/09/pitfalls-of-TSC-
usage/.

[53] G. Paoloni, White paper: How to Benchmark Code
Execution Times on Intel® IA-32 and IA-64 In-
struction Set Architectures, Intel, 2010. [Online]. Avail-
able: http://www.intel.es/content/www/es/es/embedded/training/ia-
32-ia-64-benchmark-code-execution-paper.html

[54] M. Hinner, “Filesystems HOWTO: Extended filesystems (Ext, Ext2,
Ext3),” https://www.tldp.org/HOWTO/Filesystems-HOWTO-6.html ,
2007, [Online; accessed may-2019].

[55] M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber, “System
log clustering approaches for cyber security applications: A survey,”
Computers and Security, vol. 92, p. 101739, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404820300250

40

