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Universidad Rey Juan Carlos

Abstract

Robotic software frameworks simplify the development of robotic
applications. The more powerful ones help to build such applica-
tions as a distributed collection of interoperating software nodes. The
communications inside those robotic systems are amenable of being at-
tacked and vulnerable to the security threats present on any networked
system. With the robots increasingly entering in people’s daily lives,
like autonomous cars, drones, etc. security on them is a central issue
gaining attention. This paper studies several well known communi-
cation middleware inside robotic frameworks running on robots with
regular computers, and their support for cybersecurity. It analyzes
their performance when transmitting regular robotic data of different
sizes, with or without security features, and on several network set-
tings. The experiments show that security, when available, does not
significantly decrease the quality of the robotic data communication
in terms of latency and packet loss rate.
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1 Introduction

Robots have been traditionally used in industrial scenarios, but in the last
years they have matured so much that their use is expanding to homes and
streets, with people increasingly trusting them in some part of their life.
For instance, robotic vacuum cleaners are now robust appliances in many
homes. Commercial drones are now being used for event recording and their
use in logistics is being explored. Autoparking capability and autonomous
autopilots are included in some car models, driverless cars are already legal
for research in several places and autonomous transportation systems are
being tested with general public.

On their hardware, robots integrate sensors, actuators and computers.
Their intelligence, algorithms and behaviors mainly rely on their software.
Nowadays software is more than half of the cost of a robotic system. The
robot software, as any other software, is amenable to suffer of security at-
tacks. Many robots have external connectivity, for instance to let the user
interact with them (like interacting with the vacuum cleaner through the
smartphone). In addition, robots are complex systems and their software
rely on robotic frameworks that simplify the development of applications.
Most successful robotic frameworks are distributed. Such useful connectivity
and distribution open the door to vulnerabilities and robot hacking.

The security attacks in robots have physical impact, not only information
loss. The consequential damage of a hacked robot is directly commensurate
with the amount of trust put into the system and is fully dependent on the
capabilities of the robot. Simply hacking a robot to operate slightly out of
a specified configuration mode can lead to everything from minor damage to
death. Many attack examples have been reported, like the capture of a US
Predator military drone (UAV) by the Iranian forces in 2011 [1]. Another
relevant example is the remote hacking of a Jeep Cherokee car in 2014 [2].

Typically the robotics community has lived in a “happy naivety” [3]. For
instance, the most popular robotic framework does not include any security
mechanism. Researchers have discovered multiple common security flaws in
mainstream robotic technologies from leading vendors, leaving them wide
open to attack. Recently, cybersecurity in robotics is gaining attention [4, 5].
There is an increasing number of presentations about robotic systems in
cybersecurity conferences (like DEF CON or RSA) and journals (like ACM
Transactions on Cyber-Physical Systems (TCPS)), including many domains
like rescue robotics [6], teleoperated robots [7, 8] or industrial robots [9].

Providing mechanisms to avoid undesired attacks and exploits in robot
communication software is becoming increasingly required. Most promising
solutions include security mechanisms inside the robot frameworks. Not all
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the security solutions are suitable for robotic environments. For instance,
they have to comply with the general requirement of real-time operation,
their computational cost can not be huge.

The goal of this paper is to quantitatively study the security solutions for
communication explored inside distributed robotic frameworks. The perfor-
mance of different communication middleware like Ice, Fast-RTPS (a DDS
implementation) and the ROS transport system are compared when trans-
mitting typical robotic data of different sizes (laser readings, images and
point clouds). The experiments have been carried out in several network
scenarios: local inside a single machine, an ethernet network and a WiFi
network. Data transmission with and without security have been done in the
bench tests, and the cost of the secure communications has been measured
in terms of latency and data loss rate.

Section 2 presents the utility of the robotic frameworks and some illustra-
tive examples. The security problems in robot software are introduced, clas-
sified and commented in section 3, including three communication choices.
Section 4 describes the methodology followed, the experiments performed
and the results. Finally some conclusions end the paper.

2 Robotic frameworks

In the last years, several robotic frameworks (SDKs) have appeared that sim-
plify and speed up the development of robot applications [10, 11] . They fa-
vor the portability of applications between different robots, and ease the code
reusability and integration. Modern robotic frameworks are based on soft-
ware engineering criteria more than in cognitive issues. Their major achieve-
ments are: (i) the hardware abstraction, hiding the complexity of accessing
heterogeneous hardware (sensors and actuators) under standard interfaces;
(ii) the distribution capabilities, that allow to run complex systems spread
over a network of computers; (iii) the multiplatform and multilanguage capa-
bilities, that enable the developer to program and run the software in several
computer types, robots and programming languages; and (iv) the existence
of big communities around them, that share code, tools and algorithms.

There are several communication mechanisms and choices for providing
the distribution capabilities. For instance, the Publish-Subscribe paradigm,
the Remote Procedure Call (RPC) paradigm, distributed object-oriented
models (like Common Object Request Broker Architecture, CORBA), the
use of name servers, the use of central servers vs peer-to-peer communica-
tions, the use of specific well known communication middleware like Ice or
DDS implementations vs the development of ad-hoc messaging software, etc.
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Ice (Internet Communications Engine [12]) is an efficient, open source and
object oriented RPC framework that provides SDKs for C++, Python, Java
and other languages, and can run on various operating systems, including
Linux, Windows, OS X and Android. It implements a proprietary communi-
cations protocol, called the Ice protocol, that can run over TCP, TLS, UDP,
and WebSocket.

DDS (Data Distribution Service [13]) is a machine-to-machine standard
that aims to enable scalable, real-time, dependable, high-performance and
interoperable data exchanges using a Publish-Subscribe pattern. Both com-
mercial and open-source software implementations of DDS are available.
These include application programming interfaces (APIs) and libraries in
Ada, C, C++, Java and other languages.

2.1 Advantages

Frameworks offer a more abstract access to sensors and actuators than the
operating systems of simple robots do. The SDK Hardware Abstraction
Layer (HAL) deals with low level details accessing to sensors and actuators,
releasing the application programmer from that complexity. In addition, it
provides high-level, easy-to-use interfaces.

Frameworks also provide a particular software architecture for robot ap-
plications, an specific way to organize the programs and deal with code com-
plexity when the robot functionality increases. There are many options here:
calling to library functions, reading shared variables, invoking object meth-
ods, sending messages via the network to servers, etc. Depending on the
programming model the robot application can be considered an object col-
lection, a set of modules talking through the network, an iterative process
calling to functions, etc..

In addition, robotic frameworks usually include simple libraries, tools and
common functionality blocks, such as robust techniques for perception or
control, localization, safe local navigation, global navigation, social abilities,
map building, etc. Libraries shorten the development time and reduce the
programming effort needed to code a robotic application as long as the pro-
grammers can build it by reusing the common functionality included in the
SDK, keeping themselves focused in the specific aspects of their application.

2.2 ROS

The Robot Operating System (ROS) [14, 15] is one of the biggest frameworks
nowadays. It was founded by Willow Garage as an open source initiative and
it is now maintained by Open Source Robotics Foundation. It has a growing
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user and developer community and its site hosts a great collection of hard-
ware drivers, algorithms and other tools. ROS is a set of software libraries
and tools that help to build robot applications (it includes from drivers to
state-of-the-art algorithms, and with powerful developer tools simplifies the
development of robotics projects). It is multiplatform and multilanguage.

The main idea behind ROS is an easy to use middleware that allows con-
necting several components (nodes) implementing the robotic behavior in a
distributed fashion, over a network of computers using hybrid architecture.
ROS is developed under hybrid architecture by message passing, mainly in
Publish-Subscribe fashion (topics). Message passing of typed messages al-
lows components to share information in a decoupled way. Therefore, the
developer does not require to know which component sends a message, and
vice versa, the developer does not know which component or components will
receive the published messages.

Nodes send and receive messages on topics. A topic is a data transport
system based on a Publish-Subscribe system. One or more nodes are able to
publish data to a topic, and one or more nodes can read data on that topic. A
topic is typed, the type of data published (the message) is always structured
in the same way. A message is a compound data structure. It comprises a
combination of primitive types (character strings, Booleans, integers, floating
point real numbers, etc.) and messages (a message is a recursive structure).
RPC mechanisms (like services) are available as well. Resources can be
reached through a well defined naming policy and a ROS master.

2.3 Other frameworks

Another important example is ORCA [16], an opensource framework for de-
veloping component-based robotic systems. It provides the means for defin-
ing and developing the building-blocks which can be pieced together to form
arbitrarily complex robotic systems, from single vehicles to distributed sen-
sor networks. It uses the Ice communication middleware from ZeroC and its
explicit interface definition to exchange messages among the components. It
was discontinued in 2009, but it was very influential.

Other relevant component-based framework is RoboComp [17] by Univer-
sidad de Extremadura. It is open source and also uses the Ice communication
middleware as glue between its components. It includes some tools based on
Domain Specific Languages to simplify the whole development cycle of the
components. Most component code is automatically generated from simple
and abstract descriptions over a component template. In addition, Robo-
Comp includes a robot simulation tool that provides perfect integration with
RoboComp and better control over experiments than current existing simu-
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lators.
Another framework that mainly uses Ice as communication middleware to

connect its components is JdeRobot [18]. It includes a set of applications for
teaching robotics and computer vision, and tools for visual programming of
hierarchical Finite State Machines. It can also connect to ROS nodes using
ROS messages.

Yarp [19] is a robotic middleware that has been used in humanoid robots
for more than a decade and puts emphasis in interoperability with other
environments like ROS nodes, web apps and others. It consists of a number
of modules potentially on several different hosts, connected in a peer-to-peer
topology. It includes an optional authentication mechanism which adds a
key exchange to the initial handshaking on the TCP connection in order to
authenticate any connection request.

There are many other open frameworks like OROCOS [20], Urbi [21] or
NAOqi [22] (for Nao and Pepper robots).

3 Cybersecurity in Distributed Robotic Frame-

works

As a distributed system, the basic security goals for a robotics system based
on distributed components are:

• Confidentiality: The transmitted data must be available only for the
authorized principals.

• Integrity: The transmitted data can not be modified by an unautho-
rized principal.

• Authentication: The transmitted data must be generated only by au-
thorized principals.

• Availability: The components must be running and providing the cor-
responding service.

Normally, the threat model for communication protocols assumes an ad-
versary that is able to:

• Act like any other node in the network, that is, it can send and receive
messages.
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• Access to the messages of other nodes. The adversary can read, mod-
ify and remove messages sent from other nodes. Some of the attacks
require to take over the network infrastructure (e.g. routers or access
points) or attack the physical layers (e.g. injecting noise in channels).
Passive attacks only require observation. On the other hand, active
attacks require interference.

The STRIDE [23, Chapter 3] threat model, defined by Microsoft, in-
cludes six different threat categories [24]. For a Publish-Subscribe model of
communication, the threats are [25]:

• Spoofing: Unauthorized publish, message modification, unauthorized
subscription and publish message rejection.

• Tampering: Replay attack, message modification and stored message
tampering.

• Repudiation: Publish disclaimer and message receipt repudiation.

• Information disclosure: Confidentiality violation, metadata disclosure
and stored message tampering.

• Denial of service: Publish message rejection and system overload.

• Elevation of privilege: Unauthorized publish, unauthorized subscrip-
tion and confidentiality violation.

These are some examples in our context:

• Confidentiality violation: The images transmitted from the camera
component to the controller component are intercepted by the attacker.
Later, these images are used any illegitimate purpose (e.g. privacy vi-
olations).

• Message modification: The attacker changes the distance measures
transmitted by a laser sensor to cause a crash of the robot and physi-
cally damage the robot or the environment.

• Unauthorized publish: The attacker forges false localization messages
and injects them in the system to move the robot to another location.

• Overload: The attacker performs a delay attack and delays in the de-
livery of the localization data while the robot is moving. The controller
component make decisions based on deprecated localization data.
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• Replay attack: The attacker injects old petitions sent by a genuine
component in order to repeat an actuator action and physically damage
the robot or the environment.

• Publish message rejection and unauthorized publish: The adversary
performs a relay attack, so she removes the original messages from
the publisher and retransmits them in its behalf in order to replace a
legitimate component (i.e. identity theft).

• Denial of Service: The attacker stops the component that controls the
effectors (wheels, legs, etc.) in order to immobilize the robot.

Other threats related to host operating system vulnerabilities, application
level vulnerabilities (e.g. command injection), malware or physical security
of the robot are out of the scope.

In order to countermeasure the secure network protocols are based on
cryptographic algorithms and tools like asymmetric/public-key encryption
(e.g. RSA), symmetric encryption (e.g. AES), key agreement algorithms
(e.g. DH), secure hashes (e.g. SHA2), message authentication codes (e.g.
SHA2-HMAC), secure pseudo random generators, and so on.

Next, we briefly describe the security capabilities of the communication
layers inside the robotic platforms selected for the present study.

3.1 Ice middleware

Ice permits to select between three transport layers: UDP, TCP and SSL1.
SSL [26] is a widely used, standard protocol (e.g. HTTPS). The SSL trans-
port layer is over the TCP layer. It provides an encrypted bi-directional
connection. For the application, the SSL connection is similar to a TCP
connection.

SSL is based on Public Key Infrastructure (PKI), that is, digital certifi-
cates. It follows an hybrid scheme that combines public key encryption and
symmetric encryption. Basically, public key encryption is only used to start
the communication and negotiate a shared session key (handshake). This
session key is used to encrypt the channel by using symmetric encryption
(which is faster than public key encryption) and is discarded when the ses-
sion ends. In addition, it uses Message Authentication Codes (MACs) to
provide message integrity and authentication. Client and server can support
different sets of cryptographic algorithms (cipher suites). The cipher suite is
negotiated in the SSL handshake.

1TLS (Transport Layer Security) is the successor of SSL. These acronyms are often
used indistinctly.
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Usually, client and server authenticate each other in the SSL handshake
by interchanging some messages, encrypted with their RSA private keys.
They follow the PKI scheme to obtain and validate the public keys, checking
the chain of trust from the Certificate Authority root certificate (which must
be locally installed). Alternatively, SSL/TLS can use Diffie-Hellman (DH), a
key exchange protocol, to negotiate a shared secret and derivate the session
key. There are three modes: anonymous DH, fixed DH and ephemeral DH
(DHE). The recommended mode is DHE, which combines PKI and DH to
provide authentication and perfect forward secrecy (PFS) [27].

SSL is often considered too heavy for constrained devices and embedded
systems [28], because it depends on costly public key cryptography. Neverthe-
less, there are different lightweight implementations targeted for embedded
systems [29, 30, 31].

IceSSL [32] is the Ice plugin that implements the SSL transport layer,
available for C++, Java and .NET. It only requires to create the PKI infras-
tructure (key pairs and certificates for the certification authority, publishers,
subscribers and infrastructure nodes), configure the plugin and update the
properties of the application. In general, it is not necessary to modify the
source code of the application. Therefore, the burden of adding security to
the application is relatively low. The C++ IceSSL implementation uses the
OpenSSL library [33]. Thus, it can use all the supported cipher suites.

In this study we evaluate IceSSL 3.5. All the components of the ap-
plication (publisher, subscriber, IceBox service and the IceStorm service)
use SSL end-points. They use the default cipher suite for this version,
DHE-RSA-AES256 -GCM-SHA384: Diffie-Hellman is used to negotiate the shared
secret and RSA is used for authentication, AES (with 256-bit keys) is used
for symmetric encryption, GCM (Galois Counter Mode) is the mode of op-
eration for AES and SHA2 is used to create secure hashes (384-bit digests).
Note that GCM is an authenticated mode of operation, that is, the cipher-
text is not malleable: any modification of the cipher text is detected and the
decryption fails in the receiver.

3.2 The ROS transport system

ROS includes its own communication middleware: TCPROS/UDPROS. It
does not provide any security features [34]. The only secure approach is to
isolate the ROS nodes in private networks. If the nodes need to be connected
to a public network, perimeter security is the only solution: the network has
to be protected by configuring firewalls and data diodes, and the routers
must use network address translation (NAT). In addition, virtual private
networks (VPN) are used to communicate robots in different private net-
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works. Unfortunately, the security issue is usually overlooked in standard
ROS applications.

Some research efforts have been made in order to add security features
to ROS [35]. For instance, in [36] the use of web tokens for achieving se-
cure authentication for remote, non-native clients in ROS is discussed. Only
authentication of messages is addressed.

Dieber et al. [37] proposed a security architecture intended for use on top
of ROS on the application level for industrial scenarios. They use a dedicated
authorization server to ensure that only valid nodes are part of the applica-
tion. Cryptographic methods ensure data confidentiality and integrity.

SROS is a proposed addition to the ROS API. It provides an ecosystem
to support modern cryptography and security measures [38, 39]. SROS is
intended to secure ROS across three main fronts: (a) Transport Encryption
(for instance verifying the identity of nodes, including TLS support and PKI
certificates) ; (b) Access Control (for instance restricting the node’s scope
of access within the ROS graph to only what is necessary) ; and (c) Pro-
cess Profiles (for instance hardening node processes on using Linux Security
Modules in kernel)

A huge increase in security support and communication performance in-
side ROS is expected with the jump from ROS1 to ROS2 and the use on it
of DDS communication middleware [40, 41].

3.3 DDS Implementation: Fast-RTPS

The DDS Security specification is defined by the Object Management Group
(OMG) [42].

In this study, we evaluate the Fast-RTPS implementation [43]. By de-
fault, the communication is not secure. Nevertheless, it can be configured to
provide authentication and encryption.

Authentication is performed to discover remote nodes. The authenti-
cation plugin (Auth:PKI-DH) is based on PKI (X.509 certificates) and the
ECDSA signature algorithm. The authentication process finishes with the
creation of a shared secret that can be used later for encryption and message
authentication. The negotiation of the shared secret is based on a variant
of Diffie-Hellman based on elliptic curve cryptography (ECDH). Each node
must have the X.509 certificate of the Certification Authority, its own X.509
certificate (signed by the authority) and its own private key.

Encryption is provided by the plugin Crypto:AES-GCM-GMAC. It uses sym-
metric encryption, AES, in GCMmode. Each published message is encrypted
with a shared key. All subscribers know this shared key used for encryption.
In addition, each subscriber shares another key with the publisher. This key
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is used to generate MACs (Message Authentication Codes). Every published
message includes multiple MACs, one for each receiver. When a subscriber
receives a message, it decrypts the message and checks the corresponding
MAC. This way, a subscriber is not able to publish messages, even knowing
the shared key used for encryption: it does not know the keys to generate
the MACs for the other subscribers.

There are three levels of encryption:

• Encrypt the whole RTPS message.

• Only encrypt RTPS submessages of an entity.

• Only encrypt the payload of a particular writer.

In this study we opted for the first option.

4 Experiments

In this section we will describe the experiments performed to analyze the
impact of security on distributed robotics frameworks.

4.1 Experimental design

Robotics applications are typically distributed into several software com-
ponents and communication middlewares allow their interconnection. The
goal of the experiments is to measure the impact of the security mechanisms
present in the middlewares described in previous sections.

The working hypothesis is that the security mechanisms implemented in
the communication middlewares included in this study produce an accept-
able overload for typical distributed robotic applications running on common
robotic hardware.

The independent variable of the experiments is the activation of the se-
curity mechanisms in the underlaying communication middleware.

The two dependent variables to be measured are:

• Message loss rate. The messages with robotic data can be lost, some
of them do not arrive on time to the subscriber or are discarded. The
number of lost messages is accounted for and stored as a measurement
of communication quality.
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• Latency. Latency is measured as the time to complete these steps: (a)
the serialization of the data in the publisher; (b) the transmission of the
message through the communication software; (c) the reception of the
message; and (d) the deserialization of the message on the subscriber.

The experiments consist of two main nodes, a producer and a consumer,
sending robot sensor data over different networks using different communica-
tion middlewares and settings. These nodes use the Publish-Subscribe mech-
anisms of the underlaying middleware to communicate. Both the producer
and consumer are ROS nodes (similar to UNIX processes) using the different
communication middlewares we want to compare. The standard ROS serial-
ization/deserialization mechanisms are used in all the experiments (natively
for ROS and using ROS libraries for the other communication solutions).
The communication configurations that have been tested in the experiments
are:

• ROS. This is the baseline framework: we use the result of this config-
uration as a reference to evaluate the results of the others. Although
TCP and UDP are supported in ROS, we will use TCP. This is the
default option and it is not usually changed.

• Ice. We use the common IceStorm configuration, which is based on
TCP.

• IceSec. We also use the common IceStorm configuration, but using a
SSL connection, which only supports TCP.

• Fast-RTPS Best-effort (FRTPS). This is the baseline configuration
for Fast-RTPS. It uses multicast addresses over UDP, which is the only
supported protocol.

• Fast-RTPS Reliable (FRTPS rel). This is a variation of the base-
line configuration, but trying to warranty the message delivery.

• Fast-RTPS Best-effort with authentication (FRTPSAuth). The
subscriber and the producers are authenticated.

• Fast-RTPS Reliable with authentication (FRTPSAuth rel). Sim-
ilar to previous variation, adding reliability.

• Fast-RTPS Best-effort encrypted (FRTPSCrypt). The entire
message is encrypted.
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• Fast-RTPS Reliable encrypted (FRTPSCrypt rel). Besides of
the encryption, the delivery is reliable.

We propose a set of scenarios that we consider complete and representa-
tive, including:

• Several networks. Even when a robotic framework is distributed,
most of the application components usually run inside the robot. The
main reason to distribute components in other hosts is for debugging,
or for computations which require more resources than those available
onboard the main robot processor. In addition, several computers may
be inside the robot system, in the same wired or wireless network. To
cover the most illustrative scenarios, the experiments are performed on
three different networks: localhost, an ethernet connection, and a WiFi
connection.

• Several data types. Mobile robots are usually equipped with sen-
sors to perceive its environment. Most common sensors nowadays are
lasers, cameras and 3D cameras. For this reason we carry out the ex-
periments using the information provided by these sensors: LaserScan
(9Kb per reading), Image (900Kb) and PointCloud (9Mb). The last
one is very challenging for the communication solutions which are not
usually designed to manage such large amount of data in one message.

4.2 Execution

The experiment has been executed in the real robot of Figure 1. This sys-
tem reproduces the real scenario used during regular robot operation. This
configuration, with standard hardware, is common in other robots, such as
those shown in Figure 2.

We aim to perform high precision measurements. In order to do so, we
use a global clock to measure the latency. Therefore, all the nodes (publisher,
subscriber and the additional services required by the middleware) run in the
same machine.

We have taken extra precautions to measure the latency of the messages
with high accuracy. We read the time stamp counter register (TSC) of the
CPUs directly from the user space process to avoid OS interference (e.g.
system calls, etc.). Every message has an ID. The publisher reads the TSC
before serializing the data and publishing it. Later, the ID of the message,
together with the TSC value, is stored in memory. When the subscriber
receives and deserializes a message, it reads the TSC and stores it in memory.
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Figure 1: Robot used in the experiments.

Figure 2: Another robots with standard computing hardware.

When all rounds are finalized, the publisher and the subscriber print the TSC
values for each message ID. This way, we avoid interferences caused by I/O
while the rounds are executed. When the experiment finishes, we calculate
the CPU cycles for each message ID and transform it to microseconds.

Measuring with the TSC is not straightforward [44]. First of all, we
must pay attention to the guarantees provided by the CPU. The CPU is
an Intel Core i5-5250U CPU at 1.60GHz with four cores. Each core has its
own TSC register, which counts the number of cycles since reset. This Intel
CPU keeps the TSC of the four cores synchronized. Thus, the code that
is being measured can be moved to another core by the operating system
scheduler and the measurement is not affected at all. In addition, in some
CPUs, de TSC rate may not be invariant (e.g. changes the frequency for
power saving). That is not the case, the CPU used for the experiment has
the nonstop tsc and constant tsc flags set2. Thus, it guarantees invariant

2This can be checked by reading /proc/cpuinfo in a GNU/Linux system.
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TSC : The CPU increments the TSC at a constant rate even when the CPU
frequency is changed. Moreover, the TSC rate is constant in all ACPI P-,
C-, and T-states [44].

We read the TSC following the guidelines published by Intel to bench-
mark code execution [45]. In order to measure just the time to complete the
actions described before, we embedded the required assembly code to read
the TSC from user space in the publisher and subscriber C++ source code
(i.e. we measure no extra function/method/system calls at all). Moreover,
we take into account that modern CPUs implement out-of-order executions
dynamic execution. Thus, we serialize the previous instructions with a bar-
rier instruction before reading the TSC. The barrier instruction forces the
CPU to finish the execution of every pending instruction before reading the
TSC.

In order to reproduce the network scenarios described before (localhost,
Gigabit ethernet andWiFi networks), we take advantage from Linux NetEm [46].
This module allows the simulation of network delays. Moreover, we are able
to simulate bandwidth and packet loss.

We measured the real ethernet and wireless networks of our laboratory
to characterize the scenarios3. The parameters for each one are:

• Localhost. Loopback device with no limits.

• Gigabit Ethernet. Delay: normal distribution, mean=0.3ms, sd=0.36ms.
Bandwidth limit: 1000 Mbit/s. Packer loss rate: 0%.

• WiFi. Delay: normal distribution, mean=13ms, sd=22ms. Bandwidth
limit: 54 Mbit/s. Packer loss rate: 1%.

For all the experiments, the data to be transmitted are the same: a
collection of laser readings, images and 3D point clouds stored in log files
of the ROS framework, ROSbag files. ROSbag is a critical resource for our
experiments. Instead of reading directly from sensors, the producer reads
the data from a file called bag file. This file is built from an offline execution
of the sensor driver, storing there the sensor data and their corresponding
timestamps. This let us to reproduce this file ensuring exactly the same
dataset for all the experiments. It also avoids any communication between
the driver node and the producer, which could affect the measurements.
Each bag file stores 1 minute of real data acquisition. The LaserScan bag
file contains 2398 samples, the Image bag file contains 1910 samples and the
PointCloud bag file contains 1083 samples.

3There is only one subnet in the ethernet and WiFi scenarios.
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For the execution of each experiment, the configuration4 includes setting
the communication mechanism for both the publisher and the subscriber
(one of the nine aforementioned), setting the network conditions and the
type of data to be sent. The producer reads all the bag file, serializes the
messages and publishes the data at the same frequency as they were originally
produced. The consumer receives the messages and deserializes them.

To compute the final latency values and loss percentage, the first rounds
(10%) of each execution are discarded in order to avoid warming effects
(cache, buffers, queues, etc.). Both scores reflect the quality of the selected
communication mechanism under different conditions.

4.2.1 Discussion

As we stated before, we need a global clock to measure the path from the
sender (publisher) to the receiver (subscriber). Thus, these nodes have to
run in the same machine and the network has to be emulated.

Alternatively, this path could be measured in a real scenario (i.e. the
nodes running on different machines connected through a real network). In
this case, there are two options: (i) to synchronize the clocks of the machines
or (ii) to measure round-trips by using the clock of the sender and estimate
the time for the path as the half of the round-trip time. Note that the second
option does not fit the publisher/subscriber model well. In addition, both
options are far less precise than the followed approach.

In an experimental study, there is a trade-off between realism and control.
In this case, we sacrifice the realism of using a real network in order to have
more control in the measurement. We prefer to measure the latency in a very
accurately way on realistic emulated networks rather than loosely measuring
it on real networks. With Linux NetEm, we are able to create a synthetic
scenario close the real behavior of the network. The network behavior for
each message is just a random sample extracted from the modeled network.
Therefore, the results of the experiments represent the expected case for our
real networks (and the number of executions).

4.3 Analysis

4.3.1 Analysis of loss rate

In the following experiments we have measured the loss rate, from 0% to
100%, when transmitting different robotic data using several communication

4The source code of the developed bench test and the used log ROSbag files are publicly
available at https://gitlab.aulas.gsyc.urjc.es/fmartin/JdeRobotROS,
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Figure 3: Loss rate using the loopback interface.

Figure 4: Loss rate using Gigabit Ethernet.

solutions.
First, Figure 3 shows the loss rate using the loopback interface. This

scenario is very illustrative, as in many settings all the components of the
robotic application are executed on a single computer on board the robot.
On those settings the WiFi or the ethernet are used mainly for debugging.

Second, Figure 4 shows the results using a Gigabit Ethernet network.
And third, Figure 5 shows the loss rate when using a wireless network.

4.3.2 Analysis of latency

The presented graphs are Tukey’s boxplots [47]. The bottom and top of the
boxes are the first and third quartiles. The line in the box is the median
and the point is the mean. The upper whisker extends from the hinge to the
highest value that is within 1.5∗ IQR of the hinge (IQR, interquartile range,
is the distance between the first and the third quartile). The lower whisker
extends from the hinge to the lowest value within 1.5 ∗ IQR of the hinge.
Data beyond the end of the whiskers are outliers and plotted as points.
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Figure 5: Loss rate using a Wireless network.

In the following figures, the Y axis plots the latency in a log10 scale in
most cases. Certain frequencies, like 10Hz (100000us) or 33Hz (33000us)
have been marked as references for real-time operation.

Figure 6 shows the latency when the publisher and the subscriber use the
loopback network interface and different communication solutions to send
robotic data. The combinations with high loss rate are not shown.

Figure 7 shows the latency when the publisher and the subscriber use the
ethernet network interface and different communication solutions to send
robotic data.

Figure 8 shows the latency when the publisher and the subscriber use
the WiFi network interface and different communication solutions to send
robotic data.

Laser
Local Ethernet Wifi

ROS 41609± 13231µs 33905± 12925µs 60235± 34614µs
ICE 124± 25µs 851± 444µs N/A
ICE SSL 186± 845µs 968± 1245µs 48674± 32206µs
Fast-RTPS Best Effort 89± 16µs 418± 296µs 17343± 17107µs
Fast-RTPS Best Effort Auth 89± 9µs 438± 315µs 17252± 16160µs
Fast-RTPS Best Effort Crypto 576± 18µs 450± 304µs 17590± 17013µs
Fast-RTPS Reliable 96± 9µs 449± 302µs 20914± 20576µs
Fast-RTPS Reliable Auth 96± 7µs 441± 299µs 20453± 19601µs
Fast-RTPS Reliable Crypto 617± 49µs 965± 322µs 21839± 19631µs

Table 1: Latency results for Laser Data

4.4 Interpretation

Next, we will interpret the results of the experiments presented in last sec-
tions. For clarity, we will follow the same structure for this interpretation.
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Image
Local Ethernet Wifi

ROS 31809± 22330µs 41357± 20529µs 688181± 115580µs
ICE 5013± 415µs 27104± 6914µs N/A
ICE SSL 6224± 1011µs 27875± 7260µs N/A
Fast-RTPS Best Effort 1834± 121µs 8533± 452µs 4610726± 2605580µs
Fast-RTPS Best Effort Auth 1845± 185µs 8543± 442µs 4558665± 2501261µs
Fast-RTPS Best Effort Crypto 2341± 663µs N/A N/A
Fast-RTPS Reliable 2541± 152µs 8679± 369µs 4536934± 2446427µs
Fast-RTPS Reliable Auth 2317± 192µs 8528± 374µs 4526905± 2506736µs
Fast-RTPS Reliable Crypto 28249± 771µs 28458± 1107µs N/A

Table 2: Latency results for Image Data

Point Cloud
Local Ethernet Wifi

ROS 67496± 13508µs 197445± 28664µs 2116548± 222370µs
ICE N/A N/A N/A
ICE SSL N/A N/A N/A
Fast-RTPS Best Effort 54185± 2741µs 329298± 144492µs 6760720± 1394592µs
Fast-RTPS Best Effort Auth 54259± 2823µs 324007± 133125µs 5184121± 2342175µs
Fast-RTPS Best Effort Crypto N/A N/A N/A
Fast-RTPS Reliable 58185± 14807µs 319437± 172991µs 10435526± 3784635µs
Fast-RTPS Reliable Auth 58568± 17114µs 323849± 172553µs N/A
Fast-RTPS Reliable Crypto 439160± 59368µs 433916± 45754µs 6083977± 3064795µs

Table 3: Latency results for Point Cloud Data

Laser Image Point Cloud
Lo Eth Wifi Lo Eth Wifi Lo Eth Wifi

ROS 0.13% 0,04% 0,04% 0,00% 0,00% 78,42% 0,00% 36,78% 96,46%
ICE 0,00% 0,00% 100% 0,00% 0,00% 100% 100% 100% 100%
ICE SSL 0,00% 0,00% 0,00% 0,00% 0,00% 100% 100% 100% 100%
FR BE 0,00% 0,00% 0,00% 0,00% 0,00% 94,89% 0,00% 98,68% 99,62%
FR BE Auth 0,00% 0,00% 0,17% 0,00% 0,00% 94,95% 0,09% 98,68% 99,62%
FR BE Crypto 0,00% 100% 0,00% 0,00% 100% 100% 100% 100% 100%
FR RE 0,00% 0,00% 0,00% 0,00% 0,00% 95,23% 0,00% 0,00% 0,00%
FR RE Auth 0,00% 0,00% 0,00% 0,00% 0,00% 1,44% 0,00% 0,00% 100%
FR RE Crypto 0,00% 0,00% 0,00% 0,00% 5,11% 100% 0,00% 0,00% 99,34%

Table 4: Loss rate.
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Figure 6: Latency using the loopback interface, with different data and com-
munication solutions

4.4.1 Interpretation of results of loss rate

The interpretation of the results of this experiment (Figure 3) using the loop-
back interface shows how IceStorm is not able to send PointCloud messages,
since it does not allow sending so large data. Most of the communication
solutions efficiently transmits laser readings and images, as the loss rate is
zero. But for the bigger readings (i.e., PointClouds) Ice variants stall and
lose all messages. This figure also shows that the Fast-RTPS Best Effort
variant with encrypted messages is only capable of sending data from the
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Figure 7: Latency using the ethernet interface, with different data and com-
munication solutions.

laser.
Regarding to the results using a Gigabit Ethernet network (Figure 4),

Fast-RTPS Best Effort with the encrypted messages again has problems for
the communication of the data, this time even with laser. Regarding larger
data, it is interesting to see how the loss rate when transmitting PointCloud
with ROS remains less than 40% while most of other communication solutions
lose all of PointCloud messages. In addition, the Reliable variant of fast-
RTPS is the only one that succeeds in sending all data, either encrypted,
authenticated or clear.

In Figure 5, which corresponds to the loss rate when using a wireless
network, only some reliable variant of Fast-RTPS is able to send images and
pointcloud with a loss rate lower than ROS. In this case, the experiment
verifies that all communication solutions, with their variants, are capable of
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Figure 8: Latency using the WiFi interface, with different data and commu-
nication solutions.

sending small data, but not larger sensor readings.
As expected, loopback is the best network scenario, then ethernet and

then WiFi. The wireless scenario has the smaller throughput and is more
prone to transmission errors. All tested communication solutions are able to
efficiently transmit laser sensor readings, but problems appear (non zero loss
rates) with bigger sensor readings as the network conditions become hard.
As the network throughput decreases, also does the size of the data that the
communication solutions are able to efficiently transmit without losses.

In addition, in loss rate terms, there are no big difference between the
secure and no secure communication solutions.
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Figure 9: Latency transmitting laser readings with different communication
solutions and networks.

4.4.2 Interpretation of result of latency

When transmitting laser readings and images (Figure 6) in the loopback
interface, the ROS based transport system performs in real time (close to
33ms), but Ice and Fast-RTPS solutions perform better with significantly
smaller latency. Fast-RTPS performs slightly better than Ice. For heavy
sensor readings like PointClouds, the ROS transport system stays stable
keeping real-time operation (close to 60ms), the Fast-RTPS latency is similar
but Ice solutions do not work well.

Another relevant conclusion is that the increase in latency due to inclusion
of reliability in the communications is very small. For instance, comparing
the latencies for Ice and IceSec when transmitting laser readings or images,
they are quite similar. The same when comparing Fast-RTPS and Fast-RTPS
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Figure 10: Latency transmitting images with different communication solu-
tions and networks.

Reliable.
Looking at latencies of Fast-RTPS encrypted when transmitting laser

data, images or PointClouds, the encryption the messages implies a non
negligible increase in latency, but not so big to lose real-time operation.

The same main conclusions drawn from Figure 6 hold also in Figure 7, but
with bigger latencies and bigger typical deviations due to a worse network.
The latency for laser data when using Ice of Fast-RTPS jumps from 100us
when using loopback to 900us for Ice and from 100us to 150us for Fast-RTPS
when using the ethernet interface. Using Ice, the average latency for images
jumps from 8000us in loopback to 30000us in ethernet. Using Fast-RTPS,
average latency jumps from 3000us to 10000us. Compared to the loopback
network the difference in performance for laser and images between ROS and
other communication solutions shortens.
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Again the increase in latency due to reliability in Ice and Fast-RTPS is
negligible. The increase due to encryption is a litte bit more relevant, but
keeps the real-time operation.

In the WiFi network scenario (corresponding to Figure 8) the average
latency increases and the loss rate too. The tested communication solutions
only work in an acceptable way for short sensor readings like laser. And the
difference in performance between them reduces, keeping that Fast-RTPS so-
lutions deliver shorter latencies than Ice and much shorter than ROS trans-
port system. Again, the degradation of performance due to adding security
is small.

Comparing the numbers for robotic data of different sizes, all the tested
communication solutions successfully cope with short data like laser readings
(Figure 9). ROS transport system has proven to be very robust to different
network conditions and data sizes, being relatively slow when the network
conditions are good. Ice-based solutions suffer with large sensor readings
like PointClouds, performs well with images in ethernet and loopback net-
works (Figure 10). Fast-RTP solutions also seem very robust to different
network conditions and are fast in good or medium network scenarios. The
performance of all communication solutions logically degrades as the network
conditions become harder or as the data size increases.

5 Conclusions

This work presents a study on the communication quality provided by differ-
ent communication solutions used in robotics, when security capabilities are
enabled. The robotic applications that are targeted in this study are those
which use a distributed middleware (like ROS) and that are typically com-
posed of several concurrent software components, running on regular comput-
ers inside robots. The study is based on tailored bench tests to measure the
latency and loss rate of a ROS application over different distribution solutions
(Ice based or DDS based), when sending popular sensory data (laser, image
and point cloud sensor readings) over different kinds of networks (loopback,
ethernet and wifi).

In short, the main contributions of the paper are: (i) a quantitative anal-
ysis of the impact of the security capabilities for two popular middlewares
used in robotics, Ice and Fast-RTPS; (ii) a comparative of these middle-
ware (with and without security) and the standard ROS transport system,
which is presented as the baseline/reference; (iii) a description of a meticu-
lous methodology to perform this kind of experiments using a real robot; and
(vi) an overall description of the risks and the threat model in this context,
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and the security solutions available in these systems.
The main conclusion of the study is that, in general, the security capabil-

ities of the analyzed communication solutions have an acceptable impact in
latency and loss terms. Therefore, they should be enabled in common cases.
As expected, the results heavily depend on the size of transmitted data and
network type. The experiments show that neither Ice nor Fast-RTPS behave
well with large data types: the loss rate is unacceptable for the biggest type
(pointcloud 3D images), with and without security. On the other hand, for
small and medium data sizes (laser scan and 2D images), the overhead of
security mechanisms is relatively low in local and wired networks, for both
solutions.

We hope this paper may contribute to raise awareness of the importance
of secure communications on distributed robotic systems, encourage middle-
ware and framework developers to add and support security mechanisms and
encourage robot programmers to use secure communications by default.
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[18] J. M. C. nas, M. González, A. Hernández, and F. Rivas, “Recent ad-
vances in the jderobot framework for robot programming,” in Proceed-
ings of RoboCity2030 12th Workshop, Robotica Cognitiva. UNED,
Madrid, July, 2013, pp. 1–21.

[19] P. Fitzpatrick, E. Ceseracciu, D. Domenichelli, A. Paikan, G. Metta,
and N. L., “A middle way for robotics middleware,” Journal of Software
Engineering for Robotics, vol. 5, no. 2, 2014.

[20] H. Bruyninckx, “Open robot control software: the orocos project,” in
Proceedings 2001 ICRA. IEEE International Conference on Robotics
and Automation (Cat. No.01CH37164), vol. 3, 2001, pp. 2523–2528
vol.3.

[21] J. C. Baillie, “Urbi: towards a universal robotic low-level programming
language,” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Aug 2005, pp. 820–825.

[22] “Softbank robotics: Naoqi,” https://www.ald.softbankrobotics.com/en/robots/tools.

[23] A. Shostack, Threat Modeling: Designing for Security. Redmond, WA,
USA: John Wiley and Sons, 2014.

[24] “The stride threat model,” https://msdn.microsoft.com/en-
us/library/ee823878(v=cs.20).aspx.

[25] “Publish/subscribe threat modeling,” https://blog.securitycompass.com/publish-
subscribe-threat-modeling-11add54f1d07.

28



[26] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008, updated by RFCs 5746, 5878,
6176. [Online]. Available: http://www.ietf.org/rfc/rfc5246.txt

[27] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentica-
tion and authenticated key exchanges,” Des. Codes Cryptography,
vol. 2, no. 2, pp. 107–125, Jun. 1992. [Online]. Available:
http://dx.doi.org/10.1007/BF00124891

[28] M. Koschuch, M. Hudler, and M. Krüger, “Performance evaluation of the
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