
This version of the article has been accepted for publication, after peer review

and is subject to Springer Nature’s AM terms of use, but is not the Version of

Record and does not reflect post-acceptance improvements, or any corrections.

The Version of Record is available online at:

http://dx.doi.org/10.1007/s11416-022-00458-7

How to cite this article: Soriano-Salvador, E., Guardiola-Múzquiz, G. Detecting

and bypassing frida dynamic function call tracing: exploitation and mitigation. J

Comput Virol Hack Tech 19, 503–513 (2023).

Detecting and Bypassing Frida Dynamic
Function Call Tracing: Exploitation and

Mitigation∗

Enrique Soriano-Salvador,Gorka Guardiola-Múzquiz
Universidad Rey Juan Carlos

enrique.soriano@urjc.es, gorka.guardiola@urjc.es

Abstract

Frida is a powerful dynamic analysis tool that uses different mech-
anisms to hijack the control flow of the analyzed process and is capable
of communicating with external tools. The code of the process is ma-
nipulated to intercept the function calls and analyze them. Frida is

∗This work is partially funded under the Proyectos de Generación de Conocimiento
2021 call of Ministry of Science and Innovation of Spain co-funded by the European Union,
project PID2021-126592OB-C22 CASCAR/DMARCE.

1

commonly used to analyze suspicious programs and malware. Never-
theless, the function call interception mechanisms can be circumvented
by malicious code. In this paper, we describe the different techniques
to detect Frida and a novel technique to bypass those interception
mechanisms. We also describe a generic mitigation method based on
standard Linux capabilities, specifically the Page Table Entry (PTE)
inspection mechanisms. This method is generic and does not depend
on specialized hardware. Finally, we present an open source implemen-
tation, gopper, a lightweight stand-alone tool that watches a process
to detect anomalous and suspicious behaviors without interference.

Keywords: Cybersecurity, antianalysis, antifrida, malware, evasion.

1 Introduction

Frida [1, 2, 3] is a dynamic instrumentation toolkit for reverse engineering
and security analysis. It uses different mechanisms and can operate in three
modes (embedded, injected and preloaded). For example, the default mode
is the injected one. This mode uses ptrace to hijack the control flow of the
analyzed process. Then, it allocates some memory in the process memory
space and injects a library (a shared object): the agent. This agent uses inter-
process communication (IPC) mechanisms (e.g. named pipes and signals) to
communicate with external tools. The code of the process is manipulated to
intercept the function calls and analyze them (using mechanisms like mmap,
dlopen and dlsym).

One of the tools, frida-trace, is used for dynamically tracing function
calls. It is based on the instrumentalization of the functions’ preludes: the
first instructions of the traced function are modified to redirect the control
flow to the components injected by Frida.

This tool is highly convenient for analyzing malware. Nevertheless, cur-
rent advanced malware (split personality malware or evasive malware [4])
usually includes anti-analysis mechanisms. These malicious programs try to
detect if they are being analyzed in order to change their behavior: they
only perform the malicious actions (e.g. extract/decrypt and execute the
malicious payload) when they are not under analysis. For example, modern
malware trying to detect if the environment is virtualized (i.e. if it is execut-
ing on a virtual machine or a sandbox) by checking the size of the storage
devices, some processor attributes [5], the temperature of the hardware [6],
some configuration files and drivers, DMI (Desktop Management Interface)
data, loaded libraries, performing side-channel time attacks [7], and so on.

2

In the same way, advanced evasive malware can use antifrida techniques
to detect and avoid the analysis. In this work, we describe the different an-
tifrida detection techniques. Then, we focus on a simple technique that can
be used to detect and bypass the frida-trace interception mechanisms (for
all or just some selected malicious function calls). This technique consists
of checking and restoring the preludes of functions that have been instru-
mented by frida-trace. This technique can be easily implemented by the
malware and does not require any special privilege: the malware code only
has to modify some parts of the process’ memory (i.e. change and restore
the function’s prelude) to bypass the interception.

Dynamically detecting prelude modifications is not trivial, because the
malicious process only needs to write on its own memory. It just needs to:

1. Change the frida-trace prelude to bypass the function tracing.

2. Call the selected function.

3. Restore the frida-trace prelude.

Note that, in order to detect the modification, the prelude must be
checked between steps 1-3. Polling the process’ memory is not feasible: it
is very expensive, because it requires extra control flows performing busy
waiting. Moreover, there is an obvious race condition.

In this paper, we describe a mitigation method that watches the preludes.
It is based on standard Linux mechanisms and it does not depend on special-
ized hardware or third party tools. The method can be included in existing
analysis tools (e.g. Frida) and antimalware systems. Specifically, we propose
to monitor a Page Table Entry (PTE) attribute, the soft dirty bit, to detect
prelude modifications.

In addition, we provide an open source implementation of the proposed
method. The implementation also tracks changes in the permissions of the
corresponding memory pages and monitors selected system calls. Gopper is
a userspace tool designed to watch a process and detect suspicious behaviors
while it is being analyzed with other tools. This command does not interfere
with the watched process and can be used with other reversing and analysis
tools (e.g. Frida) to detect evasion techniques and other malicious conducts.

In short, the contributions of this paper are:

• A compilation of known antifrida detection techniques.

• The description of a novel and effective antifrida technique for bypass-
ing dynamic function call tracing.

3

• A generic countermeasure for this evasion technique, based on the in-
spection of the Page Table Entry’s soft dirty bit.

• The description of a lightweight implementation for Linux and an open
source userspace tool based on standard mechanisms.

The rest of the paper is organized as follows: Section 2 discusses related
work, Section 3 explains the antifrida techniques for detection, Section 4
describes the technique for bypassing frida-trace’s interception, Section 5
describes the mitigation method, Section 6 explains our implementation and
Section 7 presents the conclusions.

2 Related Work

Filho et al. [4] presented a complete study on evasion and countermeasures
techniques to detect dynamic binary instrumentation (DBI) frameworks.
They analyze previous taxonomies of evasive techniques ([8, 9, 10, 11, 12])
and present a new one. They also review a set of anti-instrumentation and
evasion techniques for DBI [12, 13, 14, 10, 9, 15, 16, 11]. For an intensive
review of general DBI evasion techniques and countermeasures, please refer
to this work.

As far as we know, there are few academic works describing or discussing
specific antifrida techniques. Druffel et al. [17] explains that interception
can be bypassed with inline assembly system calls. They present DaVinci,
an Android kernel space tool for dynamic application analysis. On the other
hand, we describe a userspace solution to detect frida-trace’s interception
evasion. Userspace tools reduce complexity (specially in a monolithic kernel
like Linux). They are more convenient for system stability (whole system
crashes, side effects, etc.), process isolation and protection, maintainability,
portability, and usability in general (testing, scripting, etc.).

The OWASP Mobile Security Testing Guide [18] describes different an-
tifrida techniques. Section Testing Reverse Engineering Tools Detection
(MSTG - RESILIENCE - 4) explains several techniques for Android and iOS
systems. Mueller provides more details [19] and source code for some of those
methods [20]. Other blog posts [21, 22, 23] also describe the same detection
techniques and others. All those techniques are explained in Section 3.

The OWASP document mentions the possibility of detecting trampolines
and named pipes to detect Frida, but it does not provide further details.
Others [21, 22, 23] also sketch this detection technique. In fact, detect-
ing trampolines in preludes is a well known method to detect hooking in
general. For example, it can be used to prevent bypassing SSL certificate

4

pinning [24]. Nevertheless, none of these publications describes techniques
to bypass frida-trace dynamic interception We describe a technique to
evade the interception, based on changing and restoring the frida-trace’s
trampolines. We also provide a countermeasure.

Other systems propose the use of the PTE attributes for memory check-
pointing [25, 26]. For example, CRIU [26] (used by OpenVZ, LXC/LXD and
Docker) permits freezing a running container (or an application), checkpoint-
ing its state to disk, and restoring it later. It uses the soft dirty bit to track
memory changes in this process. We propose the same tracking mechanism
as a countermeasure to frida-trace interception bypassing.

3 Antifrida: detection techniques

In this section, we briefly describe the known antifrida detection techniques.

3.1 Loaded libraries

Inspecting the loaded libraries of a process to find Frida libraries is a straight-
forward detection method. As described in [18], the malware can inspect the
memory space of the process and find the regions for the mapped library (the
agent).

For example, if we run frida-trace to intercept the calls for open (the
libc’s stub for the open system call) and dump the memory map of the
corresponding process, we can see the Frida library:

$> frida-trace -i open a.out &

...

$> cat /proc/12555/maps | grep frida

7fea7168a000-7fea72c53000 r-xp 00000000 103:04 1968850

/tmp/frida-81be93df197f7fb45dea328c7237c270/frida-agent-64.so

7fea72c53000-7fea72c54000 ---p 015c9000 103:04 1968850

/tmp/frida-81be93df197f7fb45dea328c7237c270/frida-agent-64.so

7fea72c54000-7fea72cde000 r--p 015c9000 103:04 1968850

/tmp/frida-81be93df197f7fb45dea328c7237c270/frida-agent-64.so

7fea72cde000-7fea72cf6000 rw-p 01653000 103:04 1968850

/tmp/frida-81be93df197f7fb45dea328c7237c270/frida-agent-64.so

$>

The malware could inspect its own memory maps to do the same. Nev-
ertheless, it would require some suspicious system calls that would alert the
analyst (open the /proc file, reading it, etc.).

5

3.2 Package signatures

Checking the signatures of the Android package is another technique de-
scribed by the OWASP document [18]. To include the instrumentation mech-
anisms in the software, the application package has to be rebuilt.

If it was signed, the signature (which will change with any modification
of the package data) can be checked to detect that the application has been
modified by Frida.

3.3 Frida resources

Checking the environment for related artifacts is also a well known detection
technique [18, 19, 20, 21].

The malware can inspect the system and find Frida’s resources, such as
processes, files (e.g. .so libraries), temporal files, services (e.g. frida-server)
and so on.

The malware can also inspect the network resources to detect Frida. The
common technique is checking if the TCP 27042 port is open.

Frida also uses the D-Bus protocol to communicate. Checking for ports
responding to D-Bus Auth is also effective to detect Frida.

The components frida-gadget and frida-server create specific named
threads (e.g. gmain, gum-js-loo) [21, 23]. The threads can be detected by
inspecting:

/proc/<pid>/task/<tid>/status

In addition, Frida also uses named pipes (i.e. fifos) [21]. The malware
can read the directory:

/proc/<pid>/fd

This way, it can find those pipes and other file descriptors related to
Frida. For example, Frida uses temporal files located in:

/data/local/tmp/

Another common antidebugging technique is checking the parent process.
Commonly, the parent process is the shell, a desktop session or init if it
inherits it after the parent exits (bash, sh, gnome-session, systemd, in
Linux or explorer.exe in Windows). The malware can check if a Frida tool
is the program executed by the parent process [22].

6

3.4 Memory artifacts and function preludes

Scanning a process memory for artifacts, such as strings (e.g. “LIBFRIDA”),
is also a known technique [18], as is checking exported functions’ names [22].

Frida-trace’s trampolines are memory artifacts too. The beginning of
the function is replaced by a trampoline code. Once the call is intercepted,
the flow is redirected to the Frida agent. Then, the agent can execute what-
ever it needs: incrementally, for each branch in the function, a component
named stalker rewrites the code basic blocks and stores them in a new exe-
cutable page. This way, it can add new code in different parts of the inter-
cepted function.

Comparing the code section in memory with the code section of the library
files (standard C library and native library) [21] is is a (heavy) way to check
changes in the preludes.

There are more subtle ways to do the same without performing suspicious
system calls (i.e. to read the /proc files, the excutable file or the libraries).

Suppose the following example1:

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

void

dumpprelude(unsigned char *f)

{ int i;

int c;

for(i=0; i<32; i++){

fprintf(stderr, "%02x", *(f+i));

}

fprintf(stderr, "\npress enter...\n");

read(0, &c, 1);

}

int

f(int x)

{

fprintf(stderr, "f says hi!\n");

return ++x;

}

int

main(int argc, char *argv[])

{

int x;

dumpprelude((unsigned char*)f);

dumpprelude((unsigned char*)f);

x = f(13);

fprintf(stderr, "x is %d\n", x);

exit(EXIT_SUCCESS);

}

1Be careful when writing this kind of code: it is very easy to hit undefined behaviour.

7

If we compile and execute the program, pressing enter when prompted:

$> gcc -o ex1 ex1.c

$> ./ex1

f30f1efa554889e54883ec10897dfc488b05942d00004889c1ba0b000000be01

press enter...

f30f1efa554889e54883ec10897dfc488b05942d00004889c1ba0b000000be01

press enter...

f says hi!

x is 14

$>

In this case, we can see that the prelude of the function does not change.
If we disassemble the function f, we can see the original instructions:

0x00001276 f30f1efa endbr64

0x0000127a 55 pushq %rbp

0x0000127b 4889e5 movq %rsp, %rbp

0x0000127e 4883ec10 subq $0x10, %rsp

0x00001282 897dfc movl %edi, -4(%rbp)

If we execute it again:

$> ./ex1

f30f1efa554889e54883ec10897dfc488b05942d00004889c1ba0b000000be01

press enter...

Before pressing enter, we run frida-trace as root in another terminal
to trace the function f (offset 0x1276 in the binary text segment):

$> nm ex1 | grep ’ f$’

0000000000001276 T f

$> frida-trace -a ex1\!0x1276 ex1

Instrumenting...

sub_1276: Auto-generated handler at

"/tmp/__handlers__/ex1/sub_1276.js"

Started tracing 1 function. Press Ctrl+C to stop.

Then, we press enter in the other terminal:

e98d4d00004889e54883ec10897dfc488b05942d00004889c1ba0b000000be01

press intro...

f says hi!

x is 14

$>

We can observe that the prelude has changed: the first 5 bytes were
f30f1efa55, now they are e98d4d0000. The first two instructions of function
f have been replaced to jump to the Frida code. In this example, Frida will
intercept the call to f:

8

...

frida-trace intercepts one call (f is named sub_1276()):

/* TID 0x38f4 */

7393 ms sub_1276()

Process terminated

$>

This technique does not require any external function or system call. The
malware only needs to check some bytes of its own code. If any of the preludes
has been changed, then frida-trace is present in the system.

4 Evasion

If the malware detects Frida, it can try to bypass the function call intercep-
tion. The maliciuos binary can restore the original prelude before calling the
function. Moreover, the malware can hide just the important calls (those
that perform the suspicious malicious actions) and let Frida intercept the
rest of calls to deceive the analyst.

If we modify the previous example to restore the original prelude:

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

void

dumpprelude(unsigned char *f)

{

int i;

int c;

for(i=0; i<32; i++){

fprintf(stderr, "%02x", *(f+i));

}

fprintf(stderr, "\npress enter...\n");

read(0, &c, 1);

}

int

f(int x)

{

fprintf(stderr, "f says hi!\n");

return ++x;

}

int

main(int argc, char *argv[])

{

int x;

dumpprelude((unsigned char*)f);

dumpprelude((unsigned char*)f);

memcpy((void*)f, "\xf3\x0f\x1e\xfa\x55", 5);

dumpprelude((unsigned char*)f);

9

x = f(13);

fprintf(stderr, "x is %d\n", x);

exit(EXIT_SUCCESS);

}

Then, we execute it (running frida-trace in another terminal as in the
previos example)2:

$> ./ex1

f30f1efa554889e54883ec10897dfc488b05742d00004889c1ba0b000000be01

press enter...

e96d4d00004889e54883ec10897dfc488b05742d00004889c1ba0b000000be01

press enter...

f30f1efa554889e54883ec10897dfc488b05742d00004889c1ba0b000000be01

press enter...

f says hi!

x is 14

$>

Now, frida-trace does not intercept the call:

$> frida-trace -a ex1\!0x1296 ex1

Instrumenting...

sub_1296: Auto-generated handler at

"/tmp/__handlers__/ex1/sub_1296.js"

Started tracing 1 function. Press Ctrl+C to stop.

Process terminated

$>

Note that the malware does not need to use the memcpy function to restore
the prelude, it could use a simple loop like3:

for(i=0; i<len; i++, dest++, src++){

*dest = *src;

}

This way, it would not depend on any library function to restore the
prelude.

The attentive reader will note that the program has modified a text

executable memory page (i.e. instructions) and there was not an execution
error. By default, Linux and other modern operating systems disable the
write permission for executable memory pages. This way, if the process tries
to write the code, it receives a SIGSEGV signal and crashes (segmentation

2Note that the offset has changed: now it is 0x1296.
3Being len the number of bytes to be copied, dest a char pointer with the destination

address, and src a char pointer with the source address.

10

fault). That did not happen. Why? Because Frida needs to change the
permissions of the text pages to instrument the code. After modifying the
functions’ preludes, Frida leaves the write permission enabled. If we check
the memory map, the code region has write, read and execution permissions
(rwxp):

56550bc57000-56550bc58000 rwxp 00001000 103:02 4724567 /tmp/ex1

That is very convenient for the evasion. Nevertheless, it is not a require-
ment to implement the attack. The malware would use the mprotect system
call to enable the write permission to rewrite the preludes and bypass in-
terception. Note that using mprotect to enable the write permission for an
executable page would be a striking clue of malicious activity (but the attack
is viable).

As far as we know, no previous malware has implemented this antifrida
evasion technique yet.

4.1 Proof of Concept

We present a proof of concept based on a simple C macro, which can be
used by the malware to perform silent calls to selected functions. It has the
following parameters:

• Variable to store the return value.

• Function to be called.

• Array with the original prelude for the function.

• Arguments for the function (variadic).

#define HIDECALL(RET,FUNC,PRELUDE,...) \

{ int i; \

int presz = sizeof(PRELUDE); \

unsigned char aux[presz]; \

for(i = 0; i < presz; i++) {\

if(*(((unsigned char*)FUNC)+i) != PRELUDE[i]){\

break;\

} \

} \

if(i != presz){ \

for(i = 0; i < presz; i++){ \

aux[i] = *(((unsigned char*)FUNC)+i); \

(((unsigned char)FUNC)+i) = PRELUDE[i]; \

} \

RET = FUNC(__VA_ARGS__); \

for(i = 0; i < presz; i++){ \

*(((unsigned char *)FUNC)+i) = aux[i]; \

} \

11

}else{ \

RET = FUNC(__VA_ARGS__); \

} \

}

This macro:

1. Checks if the prelude is the original one

2. If not, it copies the original one, calls the function and restores the
Frida prelude

3. Else, it calls the function normally (Frida is not present in the system)

A malicious binary could use the macro to hide the important calls (i.e.
evidences of malicious activity).

4.2 Example of use

The following program dumps a file (its path is passed as an argument). If
the -s option is used, it dumps the file silently: all the calls to the libc

functions open, read, write and close are hidden (i.e. they will not be
intercepted). These functions will perform the required system calls to read
and write the file.

If the -s option is not used, the libc functions are called normally.
The original preludes for open, read, write and and close are stored in

global variables:

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <err.h>

#include <unistd.h>

#include <fcntl.h>

#include "hidecall.h"

enum{

Bsz = 1024,

};

unsigned char openprelude[] = {

0xf3, 0x0f, 0x1e, 0xfa, 0x41, 0x54,

0x41, 0x89,

};

unsigned char readprelude[] = {

0xf3, 0x0f, 0x1e, 0xfa, 0x64, 0x8b,

0x04, 0x25, 0x18, 0x00, 0x00, 0x00,

};

12

unsigned char writeprelude[] = {

0xf3, 0x0f, 0x1e, 0xfa, 0x64, 0x8b,

0x04, 0x25, 0x18, 0x00, 0x00, 0x00,

};

unsigned char closeprelude[] = {

0xf3, 0x0f, 0x1e, 0xfa, 0x64, 0x8b,

0x04, 0x25, 0x18, 0x00, 0x00, 0x00,

};

void

usage(void)

{

fprintf(stderr, "usage: readfile [-s] path\n");

exit(EXIT_FAILURE);

}

void

readall(char *path)

{

int fd;

int nr;

char buf[Bsz];

fd = open(path, O_RDONLY);

if(fd < 0){

err(EXIT_FAILURE, "open failed");

}

while((nr = read(fd, buf, Bsz)) > 0){

if(write(1, buf, nr) != nr){

err(EXIT_FAILURE, "write failed");

}

}

if(nr < 0){

err(EXIT_FAILURE, "read failed");

}

close(fd);

}

void

silentreadall(char *path)

{

int fd;

int nr;

char buf[Bsz];

int ret;

HIDECALL(ret, open, openprelude, path, O_RDONLY);

fd = ret;

if(fd < 0){

err(EXIT_FAILURE, "open failed");

}

for(;;){

HIDECALL(ret, read, readprelude, fd, buf, Bsz);

nr = ret;

if(nr <= 0)

break;

HIDECALL(ret, write, writeprelude, 1, buf, nr);

if(ret != nr){

err(EXIT_FAILURE, "write failed");

}

13

};

if(nr < 0){

err(EXIT_FAILURE, "read failed");

}

HIDECALL(ret, close, closeprelude, fd);

}

int

main(int argc, char *argv[])

{

char c;

fprintf(stderr, "press enter...\n");

read(0, &c, 1);

argc--;

argv++;

if(argc < 1 || argc > 2){

usage();

}

if(argc == 2){

if(strcmp(argv[0], "-s") != 0){

usage();

}

silentreadall(argv[1]);

}else{

readall(argv[0]);

}

exit(EXIT_SUCCESS);

}

If we run it without the -s option and execute frida-trace before press-
ing enter:

$> frida-trace -i open -i read -i write -i close readfile-simple

Instrumenting...

open: Loaded handler at "/tmp/__handlers__/libc_2.31.so/open.js"

read: Loaded handler at "/tmp/__handlers__/libc_2.31.so/read.js"

write: Loaded handler at "/tmp/__handlers__/libc_2.31.so/write.js"

close: Loaded handler at "/tmp/__handlers__/libc_2.31.so/close.js"

open: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/open.js"

read: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/read.js"

write: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/write.js"

close: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/close.js"

Started tracing 8 functions. Press Ctrl+C to stop.

/* TID 0x4445 */

1986 ms open(pathname="/tmp/f", flags=0x0)

1986 ms read(fd=0x4, buf=0x7ffcb03292f0, count=0x400)

1986 ms write(fd=0x1, buf=0x7ffcb03292f0, count=0x400)

1986 ms read(fd=0x4, buf=0x7ffcb03292f0, count=0x400)

1986 ms write(fd=0x1, buf=0x7ffcb03292f0, count=0x400)

1986 ms read(fd=0x4, buf=0x7ffcb03292f0, count=0x400)

1986 ms write(fd=0x1, buf=0x7ffcb03292f0, count=0x400)

1986 ms read(fd=0x4, buf=0x7ffcb03292f0, count=0x400)

1986 ms write(fd=0x1, buf=0x7ffcb03292f0, count=0x400)

1986 ms read(fd=0x4, buf=0x7ffcb03292f0, count=0x400)

1986 ms write(fd=0x1, buf=0x7ffcb03292f0, count=0x388)

1986 ms read(fd=0x4, buf=0x7ffcb03292f0, count=0x400)

1986 ms close(fd=0x4)

Process terminated

$>

14

In this case, frida-trace is able to intercept the calls. On the other
hand, if we execute the program with the -s option:

$> frida-trace -i open -i read -i write -i close readfile-simple

Instrumenting...

open: Loaded handler at "/tmp/__handlers__/libc_2.31.so/open.js"

read: Loaded handler at "/tmp/__handlers__/libc_2.31.so/read.js"

write: Loaded handler at "/tmp/__handlers__/libc_2.31.so/write.js"

close: Loaded handler at "/tmp/__handlers__/libc_2.31.so/close.js"

open: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/open.js"

read: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/read.js"

write: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/write.js"

close: Loaded handler at "/tmp/__handlers__/libpthread_2.31.so/close.js"

Started tracing 8 functions. Press Ctrl+C to stop.

Process terminated

$>

Now, the hidden calls have not been intercepted and the program works
correctly:

$> seq -w 1 1000 > /tmp/f

$> ./readfile-simple -s /tmp/f

press enter...

0001

0002

...

0996

0997

0998

0999

1000

$>

5 Mitigation

Let’s generalize the problem: a process P executes a program B that changes
a variable var. Later, it restores the previous value:

aux=var;

var=z;

dosomething();

var=aux;

How could we track memory changes to detect this modification of vari-
able var?

Polling P ’s memory is not feasible. We would need a separate control
flow P ′ reading var in a loop to detect modifications (i.e. busy waiting). It
does not work because there is a race condition: the main flow can change
and restore var between two consecutive checks. If the polling frequency
is low, the probability of failing to detect the change is very high. If the

15

frequency is high, it is very expensive (and the race condition still exists).
Synchronization (e.g. using a mutex) is not possible, because we do not
control B (the malware does in our specific case).

Modern processors provide instructions to monitor memory addresses, for
example umwait and umonitor [27]. This approach is not viable. These in-
structions require changes in the state of the core and are very expensive: A
umwait instruction tells the processor to stop executing until the correspond-
ing write occurs. This mechanism is prohibitive.

We have another option: consult the attributes of the corresponding
memory page. Modern processors use memory paging. Pages have differ-
ent attributes for memory management. Among them, there is the dirty bit,
which is set to 1 when the page is written. This bit is used to implement
page replacement algorithms. We can use it to detect changes in a page.

For the general problem, we should locate the variable var in a dedicated
memory page. Once var is initialized, the dirty bit of this page should be
cleared. Then, we can poll the dirty bit to detect changes in var.

In our specific case (i.e. detecting function modifications), we don’t need
a dedicated page for each function, because all the executable pages of the
process should be read-only.

The method is simple:

1. After instrumenting the preludes, the write permission is disabled from
all executable pages (text segment, libraries, etc.).

2. The dirty bit is cleared for all these pages.

3. Concurrently:

(a) Monitor the dirty bit of the corresponding pages (the ones con-
taining the functions).

(b) Monitor attempts to clear the dirty bit.

(c) Monitor changes in the permissions of these pages.

6 Implementation for Linux

In particular, AMD64 uses a multilevel page table to translate virtual ad-
dresses. In the last level, a Page Table Entry (PTE) points to a physi-
cal memory page (if 4 KB pages are used). The PTE includes several bits
(present, execution, writable, dirty, etc.).

Linux manages the soft dirty bit [28]. The soft dirty bit behaves like the
dirty bit, but it requires kernel support. The kernel clears the writable bit

16

gopper

pid: 123

inotify

/proc/123/clear_refs

/proc/123/pagemap

/proc/123/maps

trace points

watches

system calls

polls

polls

system calls

kernel

watches

Detects
dangerous

system calls

Detects soft
dirty bit
resets

Detects
prelude

modifications

Detects
bad page

permissions

PTE

Figure 1: gopper watching a process (PID: 123). It receives events from
inotify and trace-points and polls the /proc files to detect dangerous
permissions for pages and modifications of the watched memory addresses
(i.e. Frida preludes).

from the PTE when the soft dirty bit is cleared. Later, when the process tries
to write the page, a page fault occurs. Then, the kernel handles the page
fault, sets the soft dirty bit in the PTE and resumes the process execution.

At first glance, the obvious choice would be an implementation within the
Linux kernel (to read and write de PTE data). A kernel module could imple-
ment the method described above (or provide an interface for a userspace pro-
gram). Fortunately, there is an alternative for implementing it in userspace.

Since Linux 3.11, the soft dirty bit can be retrieved and cleared from
userspace. It is done through the /proc filesystem. To get the soft dirty bit
from userspace, we can read:

/proc/<pid>/pagemap

The bit 55 of this 64-bit word is the soft dirty bit. According to the
interface defined in the /proc manua;4, to clear the bit we must write the
text value “4” in:

/proc/<pid>/clear refs

Therefore, the method can be fully implemented by a userspace program.
We have solved only part of the problem. There are two issues:

4man 5 proc

17

1. The granularity is 4 KB (page size).

2. The malicious program can clean the bit after modifying and restoring
the preludes.

In the frida-trace case, issue (1) is not a problem. Code pages (e.g.
text segment pages, libraries, etc.) should not be writable (although frida-trace
leaves the write permission enabled, as explained previously). Code pages
should not be modified after Frida’s instrumentation. Any further modifica-
tion can be evidence of malicious behavior.

Issue (2) can be solved by watching accesses to the clear refs file. For-
tunately, the /proc filesystem supports the inotify API [29].

6.1 Gopper

As stated before, we implemented a new userspace tool named gopper to
detect the antifrida evasion technique described in Section 4 by implementing
the mechanisms described in Section 5. The tool is written in Go5 and it is
libre (free) software.

This program must be run with root privileges. It spawns different gor-
outines (i.e. concurrent control flows) to:

• Check modifications of the corresponding memory pages. This is done
by polling the pages’ soft dirty bit, available through /proc/<pid>/pagemap
as explained before.

• Monitor operations over /proc/<pid>/clear refs. The malicious pro-
gram could use this file to hide some page changes (by changing a page
and clear the soft dirty bit while the polling is done, i.e. between two
reads).

This is done by receiving the inotify events. Gopper uses the Kuber-
netes6 Go package for the inotify mechanisms.

• Detect modifications of the permissions of the pages. It also warns
about dangerous permissions (i.e. write and exec permissions).

To do that, it polls the /proc/<pid>/maps file.

• Trace the mprotect system call, used to change page permissions in
Linux, and other system calls defined by the user.

5https://go.dev
6k8s.io/utils/inotify

18

https://go.dev

Figure 2: (A) gopper watching a process reading a file with 100,000 lines
(starting at x-axis value 40 and finishing at value 33). (B) gopper watching
a process reading a file with infinite lines (starting at x-axis value 44).

This is done by receiving events from the Linux kernel tracepoints [30]
through the synthetic files located in /sys/kernel/debug/tracing.

The tool does not interfere with the watched process (it doesn’t inject ar-
tifacts in the process memory, etc.). All these actions are performed through
external standard Linux mechanisms. Figure 1 depicts an example. The
command be used together with Frida-trace or any other analysis tool.

Gopper is lightweight, because:

1. The polling frequency can be low. No matter what polling time we set,
prelude modifications will still be detected (sooner or later) because the
attacker is not able to clear the dirty bit silently (gopper will receive
this event). By default, polling time is set to 400 ms.

2. inotify and the Linux kernel tracepoints provide events, so these
mechanisms do not add noticeable overhead.

The command requires two mandatory arguments: the process identifier
(PID) and at least one memory address to be watched (i.e. the memory
addresses of the functions we want to watch, that can be found with any
standard debugger). It admits other optional arguments, such as the polling
frequency and a list of extra system calls to be monitored.

19

In the following example, PID 24841 runs the program explained in Sec-
tion 4.2, which is being analyzed by frida-trace. It is executed with the
-s flag, so the program modifies the Frida preludes in order to bypass the
interception mechanisms. In addition, the soft dirty bit is cleared of the
corresponding pages are cleared by another process:

$: gopper -addr=7f777e5c61d0,7fffe69c6757 -syscalls=clone,read 24841

2021/12/15 20:13:30 watching pid: 24841

2021/12/15 20:13:30 watching address: 7f777e5c61d0

2021/12/15 20:13:30 watching address: 7fffe69c6757

2021/12/15 20:13:30 critical: 7f777e5c61d0 page writable and executable

2021/12/15 20:13:34 warning: mprotect detected for 7fffe69c6757

2021/12/15 20:13:34 critical: mprotect w+x detected for 7fffe69c6757

2021/12/15 20:13:34 warning: syscall read detected:

readfile-24841 [001] 15133.617503:

sys_read(fd: 4, buf: 7fffe69c6330, count: 400)

2021/12/15 20:13:34 warning: syscall read detected:

readfile-24841 [001] 15133.617559:

sys_read(fd: 4, buf: 7fffe69c6330, count: 400)

2021/12/15 20:13:34 warning: syscall read detected:

readfile-24841 [001] 15133.618244:

sys_read(fd: 0, buf: 7fffe69c6787, count: 1)

2021/12/15 20:13:34 critical: page of address 7f777e5c61d0

was modified

2021/12/15 20:13:34 critical: page of address 7fffe69c6757

was modified

2021/12/15 20:14:26 critical: soft dirty could be cleared

"/proc/24841/clear_refs": 0x2 == in_modify

2021/12/15 20:14:26 critical: soft dirty could be cleared

"/proc/24841/clear_refs": 0x20 == in_open

2021/12/15 20:14:26 critical: soft dirty could be cleared

"/proc/24841/clear_refs": 0x2 == in_modify

2021/12/15 20:14:26 critical: soft dirty could be cleared

"/proc/24841/clear_refs": 0x8 == in_close_write

2021/12/15 20:14:32 process (24841) died

$>

To convey an idea of the CPU usage, Figure 2(A) shows the 8 CPUs of a
Intel Core i5-10210U CPU at 1.60GHz laptop with 8GB of RAM executing
gopper as in the last example (i.e. watching two preludes and monitoring
two system calls, clone and read). In this case, the watched process just
reads a plain text file with 100,000 lines (writing them to the console). The
execution starts at the x-axis value 40 and finishes at the x-axis value 33. As
shown in the figure, the impact is negligible. Figure 2(B) shows the execution
of the same program, but reading an infinite number of lines. The program
starts at the x-axis value 44. We can observe that, in this extreme case, the
system is not overloaded (none of the CPUs are over the 60% of usage).

As shown, using gopper, the analyst is able to detect that the malicious
program is bypassing the Frida interception mechanisms by changing and
restoring the functions’ preludes. Note that gopper can also be used to detect
other antifrida techniques described in section 3, for example, monitoring

20

operations over /proc files (to find the Frida file descriptors, threads and so
on).

7 Conclusions

In this paper we describe known antifrida detection techniques and a simple
but effective technique to bypass dynamic function call tracing without any
special privilege, function or system call.

We also provide the description of a generic method to detect this an-
tifrida evasion technique. The method is based on standard OS mechanisms
(i.e. the Page Table Entry attributes), it does not depend on specialized
hardware and can be implemented by existing analysis/reverse engineering
tools and antimalware solutions.

Last, we present a functional implementation of the proposed method: a
simple, stand-alone Linux command named gopper. This implementation is
lightweight and runs in userspace. It is written in Go and it is libre software.
Its source code can be downloaded from:

https://gitlab.etsit.urjc.es/esoriano/gopper

Data sharing not applicable to this article as no datasets were generated
or analysed during the current study.

References

[1] K. T. Kalleberg, “Frida: Putting the open back into closed software,”
2015, open Source Developers Conference, OSDC Nordic 2015.

[2] A. O. A. V. Ravnas, “The engineering behind the gnireenigne,” 2015,
open Source Developers Conference, OSDC Nordic 2015.

[3] “Frida github,” 2022, https://github.com/frida/frida.

[4] A. S. Filho, R. J. Rodŕıguez, and E. L. Feitosa, “Evasion and
countermeasures techniques to detect dynamic binary instrumentation
frameworks,” Digital Threats, vol. 3, no. 2, feb 2022. [Online]. Available:
https://doi.org/10.1145/3480463

[5] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software, 1st ed. USA: No Starch Press,
2012.

21

https://doi.org/10.1145/3480463

[6] “Gravityrat, mitre attack,” https://attack.mitre.org/software/S0237/.

[7] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is
not transparency: Vmm detection myths and realities,” in Proceedings
of the 11th USENIX Workshop on Hot Topics in Operating Systems,
ser. HOTOS’07. USA: USENIX Association, 2007.

[8] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro, “Sok:
Using dynamic binary instrumentation for security (and how you may
get caught red handed),” in Proceedings of the 2019 ACM Asia Confer-
ence on Computer and Communications Security, 2019, pp. 15–27.

[9] R. J. Rodŕıguez, I. R. Gaston, and J. Alonso, “Towards the detection
of isolation-aware malware,” IEEE Latin America Transactions, vol. 14,
no. 2, pp. 1024–1036, 2016.

[10] K. Sun, X. Li, and Y. Ou, “Break out of the truman show: Active
detection and escape of dynamic binary instrumentation,” Black Hat
Asia, 2016.

[11] J. Kirsch, Z. Zhechev, B. Bierbaumer, and T. Kittel, “Pwin–pwning
intel pin: Why dbi is unsuitable for security applications,” in European
Symposium on Research in Computer Security. Springer, 2018, pp.
363–382.

[12] Z. Zhechev, “Security evaluation of dynamic binary instrumentation
engines,” Ph.D. dissertation, Technical University of Munich Munich,
Bavaria, 2018.

[13] R. J. Rodŕıguez, E. L. Feitosa et al., “Reducing the attack surface of
dynamic binary instrumentation frameworks,” in Developments and Ad-
vances in Defense and Security. Springer, 2020, pp. 3–13.

[14] D. C. D’Elia, E. Coppa, F. Palmaro, and L. Cavallaro, “On the dissec-
tion of evasive malware,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 2750–2765, 2020.

[15] M. Polino, A. Continella, S. Mariani, S. D’Alessio, L. Fontana, F. Gritti,
and S. Zanero, “Measuring and defeating anti-instrumentation-equipped
malware,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2017, pp. 73–96.

[16] M. Hron and J. Jermář, “Safemachine: Malware needs love, too,” Virus
Bulletin, 2014.

22

[17] A. Druffel and K. Heid, “Davinci: Android app analysis beyond frida
via dynamic system call instrumentation,” in Applied Cryptography and
Network Security Workshops, J. Zhou, M. Conti, C. M. Ahmed, M. H.
Au, L. Batina, Z. Li, J. Lin, E. Losiouk, B. Luo, S. Majumdar, W. Meng,
M. Ochoa, S. Picek, G. Portokalidis, C. Wang, and K. Zhang, Eds.
Cham: Springer International Publishing, 2020, pp. 473–489.

[18] “Mobile security testing guide,” https://owasp.org/www-project-
mobile-security-testing-guide/.

[19] B. Mueller, “The jiu-jitsu of detecting frida,”
https://web.archive.org/web/20181227120751/http://www.vantagepoint.sg/blog/90-
the-jiu-jitsu-of-detecting-frida.

[20] ——, “Frida detection examples github,”
https://github.com/muellerberndt/frida-detection.

[21] G. Arvind, “Detect frida for android,”
https://darvincitech.wordpress.com/2019/12/23/detect-frida-for-
android/.

[22] NCR, “Anti-instrumentation techniques: I know you’re there,
frida!” https://crackinglandia.wordpress.com/2015/11/10/anti-
instrumentation-techniques-i-know-youre-there-frida/.

[23] R. Thomas, “r2-pay: anti-debug, anti-root and anti-frida,”
https://www.romainthomas.fr/post/20-09-r2con-obfuscated-whitebox-
part1/.

[24] D. Frett, “Prevent bypassing of ssl certificate pinning in ios
applications,” https://www.guardsquare.com/blog/iOS-SSL-certificate-
pinning-bypassing.

[25] D. Vogt, C. Giuffrida, H. Bos, and A. S. Tanenbaum, “Lightweight
memory checkpointing,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, 2015, pp. 474–484.

[26] “Criu,” https://criu.org/Main Page.

[27] “Intel intrinsics guide,” https://www.intel.com/content/www/us/en/docs/intrinsics-
guide/index.html#text=UMWAIT.

[28] “The linux kernel user’s and administrator’s guide,”
https://www.kernel.org/doc/html/v5.0/admin-guide/mm/soft-
dirty.html.

23

[29] “inotify(7) - linux manual page.”

[30] T. Ts’o, “Event tracing,” https://www.kernel.org/doc/Documentation/trace/events.txt.

24

	Introduction
	Related Work
	Antifrida: detection techniques
	Loaded libraries
	Package signatures
	Frida resources
	Memory artifacts and function preludes

	Evasion
	Proof of Concept
	Example of use

	Mitigation
	Implementation for Linux
	Gopper

	Conclusions

