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A DESCRIPTION OF AD-NILPOTENT ELEMENTS IN

SEMIPRIME RINGS WITH INVOLUTION
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AND GUILLERMO VERA DE SALAS

Abstract. In this paper we study ad-nilpotent elements in Lie algebras aris-
ing from semiprime associative rings R free of 2-torsion. With the idea of

keeping under control the torsion of R we introduce a more restrictive notion

of ad-nilpotent element, pure ad-nilpotent element, which is a only technical
condition since every ad-nilpotent element can be expressed as an orthogonal

sum of pure ad-nilpotent elements of decreasing indices. This allows us to be

more precise when setting the torsion inside the ring R in order to describe
its ad-nilpotent elements. If R is a semiprime ring and a ∈ R is a pure ad-

nilpotent element of R of index n with R free of t and
(n
t

)
-torsion for t = [n+1

2
],

then n is odd and there exists λ ∈ C(R) such that a−λ is nilpotent of index t.

If R is a semiprime ring with involution ∗ and a is a pure ad-nilpotent element

of Skew(R, ∗) free of t and
(n
t

)
-torsion for t = [n+1

2
], then either a is an ad-

nilpotent element of R of the same index n (this may occur if n ≡ 1, 3 (mod 4))

or R is a nilpotent element of R of index t+1 and R satisfies a nontrivial GPI
(this may occur if n ≡ 0, 3 (mod 4)). The case n ≡ 2 (mod 4) is not possible.

Mathematics Subject Classification: 16W10, 16N60, 17B60.
Keywords: ad-nilpotent element, semiprime ring, Lie algebra, skew-symmetric

elements.

1. Introduction

Herstein’s theory of rings, which started in 1954 in [20] (see also the influential
works [21] and [32]), is the study of nonassociative objects in associative prime and
semiprime rings perhaps with involution, or in rings with well-behaved idempotents
that provide a context rich enough for the theory to be satisfactorily developed.
Among the main contributors, apart from Herstein itself, we can also cite Posner,
Lanski, Montgomery, Martindale and Miers, and Brešar and Beidar.

Herstein’s theory developed into several similar but different branches: the study
of sets with an additional nonassociative structure, as Lie and Jordan ideals (e.g.
[31]), culminating in the development of GPI theory ([5]); the study of special
conditions (e.g. commuting map) on special maps (e.g. generalized derivations)
over special sets (e.g. Jordan ideals), in which strong knowledge is gained about
the map or the ring (e.g. commutativity) through the a priori weaker properties
of the map (e.g. [7], [26], [15], [33]); and the determination of the structure of
nonassociative maps, as Lie homomorphisms and derivations (e.g. [2], [3], [4]),
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2



DESCRIPTION OF AD-NILPOTENT ELEMENTS IN SEMIPRIME RINGS 3

culminating in the development of the theory of functional identities ([6]). It is
to this last branch of Herstein’s theory that our paper belongs, centering on the
structure of nilpotent derivations, which have been broadly studied since the 1960’s.
In 1963, Herstein proved that for any ad-nilpotent element a of index n in a simple
ring R of characteristic zero or greater than n there exists some λ in the center of
R such that a−λ is nilpotent. Furthermore, he showed that the index of nilpotence
of such element is not greater than [n+1

2 ], see [22, Theorem in p. 84]. Herstein’s
result was extended by Martindale and Miers in 1983 ([28, Corollary 1]) to prime
rings of characteristic greater than n by making use of the extended centroid of R.
In 1978, Kharchenko obtained in [24] an important result: all algebraic derivations
of prime rings of characteristic zero are inner for certain elements in an overring;
he extended this result to torsion-free semiprime rings in 1979, see [25]. In 1983,
Chung and Luh stated that the index of nilpotence of a nilpotent derivation on a
semiprime ring of characteristic zero is always odd (see [12] and [13]), and in 1984
Chung, Kobayashi and Luh ([14]) proved that if R is semiprime and charR = p > 2
then the index of nilpotence of a nilpotent derivation is of the form n = asp

s +
as+1p

s+1 + · · ·+ alp
l where 0 ≤ s ≤ l, the ai are nonnegative integers less than p,

as is odd, and as+1, . . . , al are even. Moreover, Chung in 1985 proved, for prime
rings of characteristic zero, that a nilpotent derivation is inner and induced by
a nilpotent element of an overring, see [11]. In 1992, with different techniques,
Grzeszczuk showed that any nilpotent derivation in a semiprime ring with minimal
restrictions on its characteristic is an inner derivation in a semiprime subring of the
right Martindale ring of quotients of R and is induced by a nilpotent element in
such subring, see [19, Corollary 8] and its generalization by Chuang and Lee in [10,
§3].

Two important examples of Lie algebras appear when working with rings R with
involution ∗, the Lie algebra of skew-symmetric elements K := Skew(R, ∗) and the
derived Lie algebra [K,K]/([K,K]∩Z(R)). The nilpotent derivations of the skew-
symmetric elements of prime rings with involution were studied by Martindale
and Miers in the 1990’s. In this case, if R has zero characteristic and is not an
order in a 4-dimensional central simple algebra, for every inner derivation ada with
adna = 0 there exists an element λ in the extended centroid of R such that either

(a − λ)[
n+1
2 ] = 0 or the involution is of the first kind and a[

n+1
2 ]+1 = 0, see [29,

Main Theorem]. This result was partially extended to semiprime rings by Lee in
2018. In his main result he proved that if R is semiprime with involution and has
no n!-torsion, then for any a ∈ K with adna(K) = 0 there exist λ and a symmetric

idempotent ϵ in the extended centroid of R such that (ϵa− λ)[
n+1
2 ]+1 = 0, see [27,

Theorem 1.5].
The main goal of this paper is to deepen into the description of ad-nilpotent

elements of K for semiprime rings. In the spirit of Martindale and Miers’ result [29,
Main Theorem], we will obtain different results about the form of an ad-nilpotent
element of K of index n depending on the equivalence class of n modulo 4. To
get such results in the semiprime context we introduce a new concept, that of pure
ad-nilpotence. We say that an ad-nilpotent element a of index n in L := R− or K
is pure if λa remains ad-nilpotent of the same index for every λ in the extended
centroid such that λa ̸= 0. This is just a technical condition, since every ad-
nilpotent element of R− can be expressed as an orthogonal sum of pure ad-nilpotent
elements of the central closure R̂ of R with decreasing indices of ad-nilpotence.
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As a first step we focus on ad-nilpotent elements of R. In this case, under the
hypothesis of pure ad-nilpotence, the condition on the torsion of the ring can be
weakened when compared with the result of Lee in [27, Theorem 1.3]:

Theorem 4.4 Let R be a semiprime ring with no 2-torsion, and let a ∈ R be
a pure ad-nilpotent element of R of index n. Let t := [n+1

2 ] and suppose that R is

free of
(
n
t

)
-torsion and t-torsion. Then n is odd and there exists λ ∈ C(R) such

that a− λ is nilpotent of index n+1
2 .

When dealing with ad-nilpotent elements of K, we can again split them into or-
thogonal sums of pure ad-nilpotent elements in Skew(R̂, ∗) with decreasing indices.
We study each of these pure pieces and get precise descriptions of them depending
on the equivalence class of their indices of ad-nilpotence modulo 4.

Theorem 5.6 Let R be a semiprime ring with involution ∗ and free of 2-torsion,
let R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of K of
index n > 1. If R is free of

(
n
t

)
-torsion and t-torsion for t := [n+1

2 ] then:

(1) If n ≡ 0 (mod 4) then at+1 = 0, at ̸= 0 and atKat = 0. Moreover,
there exists an idempotent ϵ ∈ H(C(R), ∗) such that ϵa = a and the

ideal generated by at is essential in ϵR̂. In addition ϵR̂ satisfies the GPI
atxatyat = atyatxat for every x, y ∈ ϵR̂.

(2) If n ≡ 1 (mod 4) then there exists λ ∈ Skew(C(R), ∗) such that (a−λ)t = 0
(a is an ad-nilpotent element of R of index n).

(3) It is not possible that n ≡ 2 (mod 4).
(4) If n ≡ 3 (mod 4) then there exists an idempotent ϵ ∈ H(C(R), ∗) making

a = ϵa+ (1− ϵ)a ∈ R̂ such that:
(4.1) If ϵa ̸= 0 then ϵat+1 = 0, ϵat ̸= 0 and ϵatkϵat−1 = ϵat−1kϵat for every

k ∈ Skew(R̂, ∗). The ideal generated by ϵat is essential in ϵR̂ and ϵR̂

satisfies the GPI atxatyat = atyatxat for every x, y ∈ ϵR̂.
(4.2) If (1 − ϵ)a ̸= 0 then there exists λ ∈ Skew(C(R), ∗) such that ((1 −

ϵ)a−λ)t = 0 ((1− ϵ)a is a pure ad-nilpotent element of R̂ of index n).

In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a−λ)t+1 = 0,
(a− λ)t−1 ̸= 0.

From these two results describing pure ad-nilpotent elements of R and of K we
easily recover Lee’s results [27, Theorem 1.3 and Theorem 1.5]. Furthermore, we
also describe ad-nilpotent elements of Lie algebras of the form R/Z(R) and K/(K∩
Z(R)), and of their derived Lie algebras [R,R]/([R,R]∩Z(R)) and [K,K]/([K,K]∩
Z(R)).

2. Preliminaries

In this paper we will be dealing with rings R with or without involution ∗, free
of 2-torsion. When R has an involution ∗ we will consider the subsets of skew-
symmetric elements K := Skew(R, ∗) and symmetric elements H := H(R, ∗). We
will also be dealing with Lie algebras. As usual, a Lie algebra L over a ring of
scalars Φ is a Φ-module with an anticommutative bilinear product [ , ] satisfying
the Jacobi identity. Recall that the adjoint map determined by any x ∈ L is
adx(y) := [x, y] for every y ∈ L. Typical examples of Lie algebras come from the
associative setting: if R is an associative algebra over a ring of scalars Φ, then R
with product [x, y] := xy − yx is a Lie algebra denoted by R−, and if R has an
involution ∗ then K is a Lie subalgebra of R−.
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2.1. A ring R is semiprime (resp. ∗-semiprime) if for every nonzero ideal (resp.
∗-ideal) I of R, I2 := {

∑
i xiyi | xi, yi ∈ I} ≠ 0, and it is prime (resp. ∗-prime) if

IJ := {
∑

i xiyi | xi ∈ I, yi ∈ J} ≠ 0 for every pair of nonzero ideals (resp. ∗-ideals)
I, J of R. It is well known that a ring R is prime if and only if aRb ̸= 0 for arbitrary
nonzero elements a, b ∈ R, and it is semiprime if and only if it is nondegenerate,
i.e., aRa ̸= 0 for every nonzero element a ∈ R. Moreover, if R has an involution,
the notions of semiprimeness and ∗-semiprimeness coincide.

An ideal Iα of a ring R (resp. with involution ∗) is prime (resp. ∗-prime) if R/Iα
is a prime (resp. ∗-prime) ring. If R is a semiprime ring then there exists a family
of prime ideals {Iα}α∈∆ such that

⋂
α∈∆ Iα = {0} and therefore R can be seen as a

subdirect product of prime rings. Similarly, if R is a semiprime ring with involution
∗ there exists a family of ∗-prime ideals {Iα}α∈∆ such that

⋂
α∈∆ Iα = {0} and

therefore R can be seen as a subdirect product of ∗-prime rings.
Moreover, if R is semiprime and free of n-torsion then the intersection of all prime

ideals Iα such that R/Iα is free of n-torsion is zero (notice that the intersection
of all prime ideals Iα such that R/Iα has n-torsion contains the essential ideal
nR). With the same argument we also have that semiprime rings without m and
n-torsion are subdirect products of prime rings with no m nor n-torsion.

2.2. Given an ideal I of R, the annihilator of I in R is the set AnnR(I) := {z ∈
R | zI = Iz = 0}. The annihilator of an ideal I of R is an ideal of R. Moreover,
when R is semiprime AnnR(I) = {z ∈ R | zIz = 0} and an ideal I of R is essential
(for every nonzero ideal J of R, I ∩ J ̸= 0) if and only if AnnR(I) = 0.

2.3. Given a ring R, we define a permissible map of R as a pair (I, f) where I is an
essential ideal of R and f is a homomorphism of right R-modules. For permissible
maps (I, f) and (J, g) of R, define a relation ≡ by (I, f) ≡ (J, g) if there exists an
essential ideal K of R, contained in I ∩ J , such that f(x) = g(x) for all x ∈ K. It
is easy to see that this is an equivalence relation. The quotient set Qr

m(R) will be
called the right Martindale ring of quotients of R. If R is a semiprime ring then
Qr

m(R) has a ring structure coming from the addition of homomorphisms and from
the composition of restrictions of homomorphisms, see [5, Chapter 2]:

• [I, f ] + [J, g] := [I ∩ J, f + g],
• [I, f ] · [J, g] := [(I ∩ J)2, f ◦ g].

Note that if R is a semiprime ring then the map f : R → Qr
m(R) defined by

f(r) := [R, λr], where λr : R → R is defined by λr(x) := rx, is a monomorphism of
associative rings, i.e., R can be considered as a subring of its right Martindale ring
of quotients. Moreover every subring S of Qr

m(R) which contains R is semiprime
because every nonzero ideal of S has nonzero intersection with R.

The symmetric Martindale ring of quotients of R is defined as

Qs
m(R) := {q ∈ Qr

m(R)| ∃ an essential ideal I of R such that qI + Iq ⊂ R}
(if R has an involution one can replace the filter of essential ideals by the filter of
essential ∗-ideals in the definition of the symmetric Martindale ring of quotients,
see [1, p. 858-859]). If R is semiprime then Qs

m(R), which is a subring of Qr
m(R)

containing R, is also a semiprime ring.
When R has an involution ∗, this involution can be extended to Qs

m(R) as
follows: for any q ∈ Qs

m(R), let I be an essential ∗-ideal such that qI + Iq ⊂ R.
Then q∗ := [I, f ] where f(y) := (y∗q)∗ for any y in the essential ∗-ideal I (see [5,
2.5.4]).
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The extended centroid C(R) of a semiprime ring R is defined as the center of
Qs

m(R). The extended centroid of a prime ring is a field (see [5, p. 70]), the set of
symmetric elements of the extended centroid of a ∗-prime ring is again a field (see
[1, Theorem 4(a)]), and the extended centroid of a semiprime ring is a commutative
and unital von Neumann regular ring (see [5, Theorem 2.3.9(iii)]). In particular, if
R is semiprime, C(R) is a semiprime ring without nilpotent elements.

The central closure of R, denoted by R̂, is defined as the unital subring of Qs
m(R)

generated by R and C(R), i.e., R̂ := C(R)R + C(R), and can be seen as a C(R)-

algebra. Therefore we can consider R contained in R̂. Moreover, since R̂ contains
R and is contained in Qs

m(R), if R is semiprime then R̂ is semiprime. The ring R̂
is centrally closed, i.e., it coincides with its central closure. In particular its center
equals its extended centroid, Z(R̂) = C(R̂).

If R is a centrally closed semiprime ring then R− is a Lie algebra over the ring
of scalars C(R); if in addition R has an involution ∗, then K is a Lie algebra over
H(C(R), ∗).

2.4. If R is a centrally closed ∗-prime ring without 2-torsion and Skew(C(R), ∗) ̸= 0
then for any 0 ̸= λ ∈ Skew(C(R), ∗) we have R = H+K = λ2H+K ⊆ λK+K ⊆ R
because 0 ̸= λ2 is invertible, so R = λK + K for every 0 ̸= λ ∈ Skew(C(R), ∗).
This occurs in particular when R is ∗-prime but not prime, because in this situation
there exists a nonzero ideal I of R such that I ∩ I∗ = 0, and so we can define a
nonzero skew element λ : I ⊕ I∗ → R in C(R) given by λ(x+ y) := x− y.

2.5. ([9, 2.10]) Since the extended centroid C(R) of a semiprime ring R is von
Neumann regular, given an element λ ∈ C(R) there exists λ′ ∈ C(R) such λλ′λ = λ
and λ′ = λ′λλ′. Let us define ϵλ := λλ′. Then ϵλ is an idempotent of C(R)
satisfying ϵλλ = λ. If R has no k-torsion for some k ∈ N, then for k = k · 1 ∈ C(R)
there exists a unique k′ ∈ C(R) such that kk′k = k, so k(k′k− 1) = 0 and k′k = 1,
i.e, k′ = 1

k ∈ C(R). In particular, throughout this paper 1
2 ∈ C(R) because R will

always be a semiprime ring without 2-torsion.
Moreover, if R is a semiprime ring without 2-torsion with involution ∗ and λ ∈

Skew(C(R), ∗), then −λ = λ∗ = (λλ′λ)∗ = λλ′∗λ, which implies that λ′ can be
taken in Skew(C(R), ∗) (indeed, replace λ′ by 1

2 (λ
′−λ′∗)). In this case, ϵλ = λλ′ ∈

H(C(R), ∗) is a symmetric idempotent of C(R).

Lemma 2.6. ([9, Lemma 2.11]) Let (R, ∗) be a semiprime ring with involution free
of 2-torsion and let a ∈ R. If there exist λ and µ ∈ C(R) such that a−λ and a−µ
are nilpotent then λ = µ. Moreover, if a ∈ K and λ ∈ C(R) is such that a − λ is
nilpotent, then λ ∈ Skew(C(R), ∗).

Proof. If a − λ and a − µ are nilpotent elements of the central closure R̂ of R,
a − λ − (a − µ) = µ − λ is a nilpotent element in the semiprime commutative
ring C(R). Therefore λ = µ. Now, if a ∈ K and a − λ is nilpotent then (a −
λ)∗ = −(a + λ∗) is nilpotent and therefore a + λ∗ is nilpotent, which implies that
λ = −λ∗ ∈ Skew(C(R), ∗). □

We will use the following two results due to Beidar, Martindale and Mikhalev.

Theorem 2.7. ([30, Theorem 2(a)]) Let R be a prime ring. Let ai, bi ∈ R for
i = 1, 2, . . . , n with b1 ̸= 0 be such that

∑n
i=1 aixbi = 0 for every x ∈ R. Then there

exist λi ∈ C(R) for i = 2, . . . , n such that a1 =
∑n

i=2 λiai in R̂.
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Theorem 2.8. ([5, Theorem 2.3.3]) Let R be a semiprime ring and let a1, a2, . . . , an ∈
R. If a1 ̸∈

∑n
i=2 C(R)ai in R̂ then there exist rj , sj ∈ R for j = 1, 2, . . . ,m such

that
∑m

j=1 rja1sj ̸= 0 and
∑m

j=1 rjaksj = 0 for k = 2, . . . , n.

The next corollary can be found in [9]. For the sake of completeness we include
its proof here.

Corollary 2.9. Let R be a semiprime ring. Let ai, bi ∈ R for i = 1, 2, . . . , n be
such that IdR(a1) ⊂ IdR(b1) and

∑n
i=1 aixbi = 0 for every x ∈ R. Then there exist

λi ∈ C(R) for i = 2, . . . , n such that a1 =
∑n

i=2 λiai in R̂.

Proof. By Theorem 2.8, if a1 ̸∈
∑n

i=2 C(R)ai there exist rj , sj ∈ R, j = 1, . . . ,m,
such that

∑m
j=1 rja1sj ̸= 0 and

∑m
j=1 rjaksj = 0 for k = 2, 3, . . . , n. Replace x by

sjx and multiply
∑n

i=1 aixbi = 0 on the left by rj . We have

0 =

n∑
i=1

m∑
j=1

rjaisjxbi =

m∑
j=1

rja1sjxb1,

which implies that the ideal generated by
∑m

j=1 rja1sj is orthogonal to the ideal

generated by b1 and therefore, since IdR(a1) ⊂ IdR(b1), the ideal generated by∑m
j=1 rja1sj has zero square, a contradiction because R is semiprime. □

The following proposition is an easy generalization of [5, Theorem 2.3.9(i)].

Proposition 2.10. Let R be a centrally closed semiprime ring free of 2-torsion.
For any subset V ⊂ R there exists a unique idempotent ϵ ∈ C(R) such that ϵv = v
for all v ∈ V , the annihilator in C(R) of V is AnnC(R)(V ) = (1 − ϵ)C(R), the
annihilator in R of the ideal generated by V is AnnR(IdR(V )) = (1− ϵ)R, and the
ideal generated by V is essential in ϵR. Moreover, when R has an involution ∗ and
V ⊂ H or V ⊂ K, then ϵ ∈ H(C(R), ∗).
Proof. The first part of the proof follows as in [5, Theorem 2.3.9(i)] with the obvious
changes. Let V ⊂ H or V ⊂ K, and consider the unique idempotent ϵ ∈ C(R) such
that ϵv = v for all v ∈ V , the annihilator in C(R) of V is AnnC(R)(V ) = (1−ϵ)C(R)
and the annihilator in R of the ideal generated by V is AnnR(IdR(V )) = (1− ϵ)R.
When R has an involution we can decompose ϵ = ϵk + ϵh with ϵk ∈ Skew(C(R), ∗)
and ϵh ∈ H(C(R), ∗). We have that ϵv = v implies ϵkv = 0. Therefore, ϵk ∈
AnnC(R)(V ) = (1− ϵ)C(R), i.e., ϵkϵ = 0 and ϵ2k = ϵkϵh = 0 and therefore ϵ = ϵ2 =

(ϵk + ϵh)
2 = ϵ2h ∈ H(C(R), ∗). □

Lemma 2.11. Let R be a centrally closed semiprime algebra and let {νi}i∈I be a
family of idempotent elements in C(R). Suppose there exists a family {λi}i∈I of
elements in C(R) such that for every i, j ∈ I, λiνiνj = λjνiνj. Then there exists
λ ∈ C(R) such that λνi = λiνi for every i ∈ I. Moreover, if the ideal generated by
the family {νi}i∈I is essential in R, such λ is unique.

Proof. Let us consider the ideal S =
∑

Rνi generated by the family of idempotents
{νi}i∈I and the essential ideal T = S ⊕AnnR(S). Define λ : T → R by

λ(
∑

xiνi + z) :=
∑

λixiνi.

Let us prove that λ is well defined and an element in C(R). If
∑

xiνi + z = 0 then∑
xiνi = 0 = z and for every νk we have(∑

λixiνi

)
νk =

∑
λkxiνiνk = λk

(∑
xiνi

)
νk = 0.
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Therefore
∑

λixiνi ∈ S ∩ AnnR(S) = 0 which proves that λ is well defined. By
construction [T, λ] ∈ C(R). Moreover, if the ideal S generated by the family {νi}i∈I

is essential, AnnR(S) = 0 and [S, λ] ∈ C(R) is uniquely defined. □

3. Pure ad-nilpotent elements

Recall that an element a in a Lie algebra L is ad-nilpotent of index n if adna(L) = 0
and adn−1

a (L) ̸= 0.

3.1. (i) Let us consider R−: we say that an element a is a pure ad-nilpotent element

of R− of index n if for every λ ∈ C(R) with λa ̸= 0, λa is ad-nilpotent in R̂− of

index n, where R̂ is the central closure of R.
(ii) Let us consider K: we say that an element a is a pure ad-nilpotent element
of K of index n if for every λ ∈ H(C(R)), ∗) with λa ̸= 0, λa is ad-nilpotent in

Skew(R̂, ∗) of index n, where R̂ is the central closure of R.

Lemma 3.2. If R is a semiprime ring and a is an ad-nilpotent element of R of
index n, the following conditions are equivalent:

(i) a is a pure ad-nilpotent element of R−.
(ii) IdR(ad

n−1
a (R)) is an essential ideal of IdR(a).

(iii) AnnR(IdR(ad
n−1
a (R))) = AnnR(IdR(a)).

Proof. Suppose that R is semiprime and centrally closed (otherwise, substitute R

by its central closure R̂).
(i) ⇒ (ii). Let us consider V = {adn−1

a x | x ∈ R}. By Proposition 2.10 there
exists e ∈ C(R) such that ev = v for every v ∈ V and AnnR(IdR(V )) = (1 − e)R.
Suppose that (1 − e)a ̸= 0. By hypothesis (1 − e)a is ad-nilpotent of index n,
hence 0 ̸= adn−1

(1−e)a(R) = (1 − e) adn−1
a (R) = 0, a contradiction. So ea = a and

AnnIdR(ea)(IdR(ad
n−1
a (R))) ⊂ AnnR(IdR(ad

n−1
a (R))) = (1− e)R must be zero, i.e.,

IdR(ad
n−1
a (R)) is essential in IdR(ea).

(ii)⇒ (iii). This holds in general if I and J are ideals of R with I essential in J :
0 = AnnJ(I) = AnnR(I) ∩ J implies AnnR(I)J = 0, so AnnR(I) ⊂ AnnR(J).

(iii) ⇒ (i). Let λ ∈ C(R) be such that λa ̸= 0. Clearly adnλa(R) = 0. Suppose
that adn−1

λa (R) = 0: then λn−1 adn−1
a (R) = 0, so λn−1 ∈ AnnR(IdR(ad

n−1
a (R))) =

AnnR(IdR(a)), which is not possible because R is semiprime and λa ̸= 0. □

Lemma 3.3. Let R be a centrally closed semiprime ring with involution ∗ and no
2-torsion, and let a ∈ K be a pure ad-nilpotent element of K of index n. If there
exists λ ∈ H(C(R), ∗) such that λa is ad-nilpotent of R of index n, then λa is a
pure ad-nilpotent element of R of index n.

Proof. Let us see that for every µ ∈ C(R) with µλa ̸= 0, the element µλa has
index of ad-nilpotency in R equal to n. Suppose that there exists µ ∈ C(R) with
adn−1

µλa R = 0, and let us prove that µλa = 0:

We have that µn−1 adn−1
λa R = adn−1

µλa R = 0, so µ adn−1
λa R = 0 because C(R)

is regular von Neumann. In particular, µ adn−1
λa H = µ adn−1

λa K = 0. Since µ =

µh + µk, we have that µh ad
n−1
λa R = µk ad

n−1
λa R = 0.

From 0 = µn−1
h adn−1

λa R = adn−1
µhλa

R we get that µhλa index of ad-nilpotency in
K lower than n, implying µhλa = 0 because a is a pure ad-nilpotent element of K.
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From 0 = (µ2
k)

n−1 adn−1
λa R = adn−1

µ2
kλa

R we get that µ2
kλa has index of ad-

nilpotency in K lower than n, so again µ2
kλa = 0 (because a is a pure ad-nilpotent

element of K), and by regularity of C(R), µkλa = 0.
This implies µλa = 0. □

The next proposition shows that every ad-nilpotent of R− and of K can be
expressed as an orthogonal sum of pure ad-nilpotent elements of decreasing indices.

Proposition 3.4. Let R be a centrally closed semiprime ring and let a ∈ R be
an ad-nilpotent element of R− of index n. There exists a family of orthogonal

idempotents {ϵi}ki=1 ⊂ C(R) such that a =
∑k

i=1 ϵia with ϵia a pure ad-nilpotent
element of index ni in ϵiR for n = n1 > n2 > · · · > nk.

Similarly, if R has an involution ∗ and a is an ad-nilpotent element of K of index
n, then there exists a family of orthogonal idempotents {ϵi}ki=1 ⊂ H(C(R), ∗) such

that a =
∑k

i=1 ϵiai with ϵia a pure ad-nilpotent element of index ni in Skew(ϵiR, ∗)
for n = n1 > n2 > · · · > nk.

Proof. Let us prove the result for Lie algebras of skew-symmetric elements. We will
proceed by induction on n. If n = 1 there is nothing to prove. Let us suppose that
the result is true for every ad-nilpotent element of index less than n and let a ∈ K
be an ad-nilpotent element of index n ≥ 3. Let us consider V = {adn−1

a x | x ∈ K}.
By Proposition 2.10 there exists ϵ ∈ H(C(R), ∗) such that ϵv = v for every v ∈ V
and AnnR(IdR(V )) = (1− ϵ)R. Then a = ϵa+ (1− ϵ)a.

Clearly, by construction (1 − ϵ)a is ad-nilpotent of index less than n in K: for
every x ∈ K, adn−1

(1−ϵ)a x = (1− ϵ) adn−1
a x = adn−1

a x− ϵ adn−1
a x = 0.

Let us prove that ϵa is pure ad-nilpotent of index n in Skew(ϵR, ∗). For any λ ∈
H(C(R), ∗) such that λϵa ̸= 0, λϵa is ad-nilpotent of index n: clearly adnλϵa(Skew(ϵR, ∗)) =
0 and if adn−1

λϵa (Skew(ϵR, ∗)) = 0 then λn−1ϵ ∈ AnnR(IdR(V )) = (1 − ϵ)R, which
leads to a nilpotent ideal generated by the nonzero element λϵa, a contradiction
with the semiprimeness of R.

Apply now the induction hypothesis to (1 − ϵ)a and the Lie algebra of skew-
symmetric elements Skew((1− ϵ)R, ∗). □

4. Ad-nilpotent elements of R

In this section we are going to prove that every nilpotent inner derivation is in-
duced by a nilpotent element, generalizing to semiprime rings Herstein’s result [22,
Theorem in p. 84] for simple rings. This result was already proved by Grzeszczuk
([19, Corollary 8]). Our techniques are rather elementary and, by adding the hy-
pothesis of pure ad-nilpotence, we can describe such elements with less restrictions
on the torsion of the ring.

Lemma 4.1. Let R be a semiprime ring and let a ∈ R be a nilpotent element.
Suppose that there exist some λi ∈ Z, i = 0, . . . , n, such that

n∑
i=0

λia
i[x, y]an−i = 0

for all x, y ∈ R. Then for every i = 0, . . . , n we have λia
max(i,n−i) = 0. In

particular, each term in the identity above is zero.
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Proof. First, let us suppose that R is prime and suppose that a ̸= 0 has index of
nilpotence s. If the lemma is not satisfied, there exists some k with λka

max(k,n−k) ̸=
0. In particular, max(k, n−k) < s. Let us multiply the expression

∑n
i=0 λia

i[x, y]an−i

by as−1−k on the left and by as−1−(n−k) on the right, so that

0 = as−1−k

(
n∑

i=0

λia
i[x, y]an−i

)
as−1−(n−k) = λka

s−1[x, y]as−1

for every x, y ∈ R. Hence λka
s−1xyas−1 = λka

s−1yxas−1 for every x, y ∈ R. Since
as−1 ̸= 0 for every x ∈ R we have by Theorem 2.7 that there exists αx ∈ C(R) such
that λka

s−1x = αxλka
s−1. Multiplying this last expression by a on the right we

get λka
s−1xa = 0 for every x ∈ R. By primeness of R we get that either as−1 = 0

or λka = 0, leading to a contradiction.
If R is semiprime then R is a subdirect product of prime quotients R/Iα with⋂

α Iα = 0. For any α and any i, by the prime case λia
max(i,n−i) ∈ Iα, so

λia
max(i,n−i) = 0. □

Lemma 4.2. Every nilpotent element of a ring R is ad-nilpotent. If a has index
of nilpotence s and index of ad-nilpotence n then n ≤ 2s − 1. If R is semiprime
then n ≥ s, and if in addition R is free of

(
n
t

)
-torsion for t := [n+1

2 ], then s = t
and n = 2s− 1.

Proof. Since as = 0, for every x ∈ R we have

ad2s−1
a x =

2s−1∑
i=0

(
2s− 1

i

)
(−1)2s−1−iaixa2s−1−i = 0

because if i < s then 2s− 1− i ≥ s. Therefore n ≤ 2s− 1.
Suppose now that R is semiprime and let us see that n ≥ s: if on the contrary

ads−1
a x =

s−1∑
i=0

(
s− 1

i

)
(−1)s−1−iaixas−1−i = 0

for every x ∈ R, focusing on the first summand of this expression ((−1)s−1xas−1)
we get that as−1 = 0 by Lemma 4.1, a contradiction.

Moreover, since for every x ∈ R we have 0 = adna(x) =
∑n

i=0

(
n
i

)
(−1)n−iaixan−i,

again by Lemma 4.1
(
n
t

)
at = 0 for t := [n+1

2 ]. If R is free of
(
n
t

)
-torsion then at = 0

so t ≥ s, i.e., n ≥ 2s− 1, and therefore n = 2s− 1 (equivalently, s = t). □

The next example shows that all possible cases in the lemma above can be
realized: Let p be an odd prime number and R a prime ring with characteristic p.
If a ∈ R is a nilpotent element of index s ∈ {p+1

2 , . . . , p} then a is ad-nilpotent of
index p. In particular there are no ad-nilpotent elements of index between p + 1
and 2p− 1, and a nilpotent element of index p is ad-nilpotent of the same index p.

Proposition 4.3. Let R be a prime ring and let a ∈ R be an ad-nilpotent element
of R− of index n. Let F denote the algebraic closure of the field F := C(R) and

R := R̂⊗ F. Then:

(1) There exists µ ∈ F such that a− µ is a nilpotent element of R.
(2) If R is free of

(
n
t

)
-torsion for t := [n+1

2 ] then n is odd and the index of

nilpotence of a − µ is n+1
2 . If in addition R is free of t-torsion then µ ∈

C(R).
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Proof. (1) Since R is prime, F = C(R) is a field and R is a centrally closed prime
ring (see [5, pp. 445–446]). From

0 = adna x =

n∑
i=0

(
n

i

)
(−1)n−iaixan−i

for every x ∈ R we have, by Theorem 2.7, that a seen as an element of R̂ is an
algebraic element over F of degree not greater than n. Let us consider the minimal
polynomial p(X) ∈ F[X] of a. Let F be the algebraic closure of F and let µ1, . . . , µt ∈
F be the roots of p(X) in F, i.e., p(X) = (X − µ1)

k1 · · · (X − µt)
kt ∈ F[X].

Let us prove that p(X) has only one root in F and therefore p(X) = (X − µ)k ∈
F[X], whence a − µ is nilpotent in R: Suppose on the contrary that p(X) has
different roots µ1, . . . , µt, t > 1, and define qi(X) := p(X)/(X − µi) for ev-
ery i. Since p(X) is the minimal polynomial of a, qi(a) ̸= 0 in R. Note that
(a − µi)qi(a) = p(a) = 0 and therefore aqi(a) = µiqi(a). Now, since we are
in the prime case, there exists y ∈ R such that q1(a)yq2(a) ̸= 0 and therefore
ada(q1(a)yq2(a)) = aq1(a)yq2(a) − q1(a)yq2(a)a = (µ1 − µ2)q1(a)yq2(a) ̸= 0. This
means that q1(a)yq2(a) is an eigenvector of the linear map ada associated to the
eigenvalue µ1 − µ2, hence it is an eigenvector of ad2a associated to (µ1 − µ2)

2, etc.
This is a contradiction because both q1(a)yq2(a) and each power of (µ1 − µ2) are
nonzero, while ada is nilpotent. Therefore t = 1, p(X) = (X − µ)k ∈ F[X] and
(a− µ)k = 0.

(2) Let us consider b := a− µ ∈ R, which is ad-nilpotent of index n. Let us see
that n is odd: Suppose on the contrary that n = 2m. Then

0 = adna x = adnb x =

n∑
i=0

(
n

i

)
(−1)n−ibixbn−i

implies by Lemma 4.1 that
(
n
m

)
bm = 0 and, since R is free of

(
n
m

)
-torsion, that

bm = 0. Substituting in adn−1
b x =

∑n−1
i=0

(
n−1
i

)
(−1)n−1−ibixbn−1−i we get that

adn−1
b x = 0 for every x ∈ R, a contradiction.

Therefore n is odd and a − µ is nilpotent of R of index t := n+1
2 by Lemma

4.2. Moreover, since the coefficient of degree t − 1 of p(X) = (X − µ)t ∈ F[X] is
−tµ ∈ F, if R is free of t-torsion then µ ∈ F, i.e., there exists µ ∈ C(R) such that
a− µ is nilpotent of index t = n+1

2 . □

In the following theorem we get the description of the pure ad-nilpotent elements
of R−. In its proof, Proposition 4.3 is primarily used to find that any ad-nilpotent
element a ∈ R of index n forces [a, [adn−1

a x, [adn−1
a x, y]]] = 0 for every x, y ∈ R.

If 2, 3, . . . , r were invertible in R for r ≥ n + [n2 ] + 1, this identity would directly
follow from the proof of [18, Theorem 2.3].

Theorem 4.4. Let R be a semiprime ring with no 2-torsion, let R̂ be its central
closure, and let a ∈ R be a pure ad-nilpotent element of R− of index n. Put
t := [n+1

2 ], and suppose that R is free of
(
n
t

)
-torsion and t-torsion. Then n is odd

and there exists λ ∈ C(R) such that a− λ ∈ R̂ is nilpotent of index n+1
2 .

Proof. Let us suppose that R is a prime ring and, without loss of generality, that
it is centrally closed. Consider µ ∈ C(R) as given by Proposition 4.3. Putting
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b := a− µ, we know that bt = 0 for t := n+1
2 , hence for every x, y ∈ R we have

(adn−1
a x)(adn−1

a x) = (adn−1
b x)(adn−1

b x) = 0, and

[a, [adn−1
a x, [adn−1

a x, y]]] = [b, [adn−1
b x, [adn−1

b x, y]]]

= −2

(
n− 1

t− 1

)(
n− 1

t− 1

)
[b, bt−1xbt−1ybt−1xbt−1] = 0.

If R is semiprime, R is a subdirect product of prime rings (without
(
n
t

)
and

t-torsion) and in any of these prime quotients

(adn−1
a x)(adn−1

a x) = 0 and [a, [adn−1
a x, [adn−1

a x, y]]] = 0,

which imply that

(adn−1
a x)(adn−1

a x) = 0, and [a, [adn−1
a x, [adn−1

a x, y]]] = 0

for every x, y ∈ R. For every x ∈ R, let zx := adn−1
a x. By the identity above,

0 =
1

2
[a, [zx, [zx, y]]] = −azxyzx + zxyzxa.

Therefore, since IdR(zxa) ⊂ IdR(zx), by Corollary 2.9 there exists λx ∈ C(R) such
that zxa = λxzx and by Proposition 2.10 there exists ϵx ∈ C(R) such that ϵxzx = zx
and AnnR(IdR(zx)) = (1− ϵx)R. Therefore

0 = zx ad
n
a y = zx

(
n∑

i=0

(
n

i

)
(−1)n−iaiyan−i

)
=

n∑
i=0

(
n

i

)
(−1)n−izxa

iyan−i

=

n∑
i=0

(
n

i

)
(−1)n−izxλ

i
xya

n−i = zxy

(
n∑

i=0

(
n

i

)
(−1)n−iλi

xa
n−i

)
= zxy(a− λx)

n

for every y ∈ R, whence (a − λx)
n ∈ AnnR(IdR(zx)). So ϵx(a − λx)

n = 0. Now,
for every x, x′ ∈ R there exist λx, λx′ ∈ C(R) and idempotents ϵx, ϵx′ ∈ C(R)
such that 0 = (ϵxϵx′a − ϵxϵx′λx)

n = (ϵxϵx′a − ϵxϵx′λx′)n, so ϵxϵx′λx = ϵxϵx′λx′

by Lemma 2.6. By Lemma 2.11 there exists λ ∈ C(R) such that ϵxλ = ϵxλx for
every x ∈ R. Then for every x ∈ R we have zx(a − λ)n = ϵxzx(a − λx)

n = 0, so
0 = ϵxzx ad

n
a y = zxy(a− λ)n for every y ∈ R thus (a− λ)n ∈ AnnR(IdR(zx)) (see

2.2). Moreover
⋂

x∈R AnnR(IdR(zx)) = AnnR(IdR(ad
n−1
a (R))) by definition of zx,

and AnnR(IdR(ad
n−1
a (R))) = AnnR(IdR(a)) because a is pure (Lemma 3.2(iii)).

Finally, let ϵ ∈ C(R) be such that ϵa = a and AnnR(IdR(a)) = (1 − ϵ)R. Then
ϵ(a− λ)n = (a− ϵλ)n = 0 because it is contained in (1− ϵ)R.

Hence a − ϵλ is nilpotent in addition to being ad-nilpotent of index n. Put
t := [n+1

2 ] and take any prime quotient without t and
(
n
t

)
-torsion in which a− ϵλ

is still ad-nilpotent of index n. By Proposition 4.3(2) we get that n must be odd
and a− ϵλ is nilpotent of index t. Since in any prime quotient (a− ϵλ)t = 0̄ by
Proposition 4.3(2), we have that t is the index of nilpotence of a− ϵλ. □

Lee’s description of ad-nilpotent elements of R− is recovered when the hypothesis
of being pure is removed.

Corollary 4.5. ([27, Theorem 1.3]) Let R be a semiprime ring, let R̂ be its central
closure, let a ∈ R be an ad-nilpotent element of R− of index n, and suppose that R
is free of n!-torsion. Then n is odd and there exists λ ∈ C(R) such that a− λ ∈ R̂
is nilpotent of index n+1

2 .



DESCRIPTION OF AD-NILPOTENT ELEMENTS IN SEMIPRIME RINGS 13

Proof. Suppose without loss of generality that R is centrally closed, i.e., R = R̂.
By Proposition 3.4 there exists a family of orthogonal idempotents {ϵi}ki=1 ⊂

C(R) such that a =
∑k

i=1 ϵia with ϵia a pure ad-nilpotent element of index ni

(n = n1 > n2 > · · · ) of Rϵi. Then by Theorem 4.4 there exists a family of scalars
{λi}ki=1 ⊂ C(R) such that (ϵia − λi)

ti = 0 for ti := [ni+1
2 ]. Hence λ =

∑n
i=1 ϵiλi

satisfies the claim. □

Interesting Lie algebras associated to simple rings R are the quotient algebras
[R,R]/([R,R]∩Z(R)), which are simple unless R has 2-torsion and is 4-dimensional
over its center ([23, Theorem 1.13]). Let us study ad-nilpotent elements in these
algebras.

Lemma 4.6. ([16, Lemma 4.6]) Let R be a semiprime ring and let a ∈ R be such
that adna(R) ⊂ Z(R). Then adna(R) = 0.

Proof. For every x ∈ R we have

0 = [adna(xa), x] = [(adna x)a, x] = (adna x)[a, x].

Therefore 0 = adn−1
a ((adna x)[a, x]) = (adna x)

2 which implies, since R is semiprime
and adna x ∈ Z(R), that adna x = 0. □

Lemma 4.7. Let R be a semiprime ring, let L := [R,R]/([R,R] ∩ Z(R)) and let
a := a+ ([R,R]∩Z(R)) ∈ L be an ad-nilpotent element of L of index n. Then a is
an ad-nilpotent element of index n in R−.

Proof. For every x ∈ R, adn+1
a x = adna([a, x]) ∈ adna([R,R]) ⊂ Z(R) so, by Lemma

4.6, adn+1
a x = 0 for every x ∈ R, i.e., a is ad-nilpotent in R− of index n or n+ 1.

Let us suppose that R is prime. Then, by Proposition 4.3, there exists µ ∈ F,
the algebraic closure of F := C(R), such that a − µ is nilpotent in R ⊗ F of some
index s. Moreover, by Lemma 4.2, s ≤ n+ 1. Put b := a− µ. Then

0 = adna([x, y]) = adnb ([x, y]) =

n∑
i=0

(
n

i

)
(−1)n−ibi[x, y]bn−i

for every x, y ∈ R. By Lemma 4.1, for every k ∈ {0, 1, . . . , [n+1
2 ]} we have(

n
k

)
bmax(k,n−k) = 0, so

adna x = adnb x =

n∑
i=0

(
n

i

)
(−1)n−ibixbn−i = 0,

i.e., a is an ad-nilpotent element of R− of index n.
Finally, since a is ad-nilpotent of index not greater than n in any prime quotient,

a is an ad-nilpotent element of R− of index n when R is semiprime. □

In particular, from these last two lemmas we get that if R is semiprime then
[R,R]/([R,R] ∩ Z(R)) and R/Z(R) are nondegenerate Lie algebras (see [23, Sub-
lemma in p. 5]).

Corollary 4.8. Let R be a semiprime ring, let R̂ be its central closure, and let
L := [R,R]/([R,R] ∩ Z(R)) or L := R/Z(R). If a ∈ L is an ad-nilpotent element
of L of index n and R is free of n!-torsion, then n is odd and there exists λ ∈ C(R)

such that a− λ ∈ R̂ is nilpotent of index n+1
2 .

Proof. If L = [R,R]/([R,R]∩Z(R)) the result follows by Lemma 4.7 and Corollary
4.5. If L = R/Z(R) the result follows by Lemma 4.6 and Corollary 4.5. □
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5. Ad-nilpotent elements of K

In this section we focus on semiprime rings R with involution ∗ and their set of
skew-symmetric elements K. As in the previous section, we will first describe the
pure ad-nilpotent elements of K, and then remove the hypothesis of being pure by
decomposing each ad-nilpotent element into a sum of pure ad-nilpotent elements of
decreasing indices.

The following lemma collects some results about ∗-identities. Item (1) is [23,
Remark on p. 43] (with a different proof), item (2) is a generalization of [29, Lemma
5], and item (3) is a generalization of [9, Lemma 5.2].

Lemma 5.1. Let R be a semiprime ring with involution ∗ and free of 2-torsion.
Let k ∈ K and h ∈ H. Then:

(1) kKk = 0 implies k = 0.
(2) hKh = 0 implies hRh ⊂ H(C(R), ∗)h. In particular, R satisfies

hxhyh = hyhxh for every x, y ∈ R,

and if IdR(h) is essential then Skew(C(R), ∗) = 0.
(3) hKh = 0 and hKk = 0 imply hRk = 0. In particular, if IdR(h) is essential

then k = 0, while if h ∈ IdR(k) then h = 0 (resp. if k ∈ IdR(h) then k = 0).
(4) k[K,K]k = 0 and k2 = 0 imply k = 0.

Proof. We can suppose without loss of generality that R = R̂, i.e., R is centrally
closed.

(1) Take x ∈ R. Note that k(x− x∗)k = 0, so that kxk = kx∗k. Then

k(xkx)k = k(xkx)∗k = −kx∗kx∗k = −(kx∗k)x∗k = −kxkx∗k

= −kx(kx∗k) = −kxkxk

and so we have kxkxk = 0 since R is free of 2-torsion. Therefore kxkxkyk = 0 for
every y ∈ R, hence

0 = −kxk(xky)k = −kxk(xky)∗k = kxky∗kx∗k = kxkykxk,

so (kxk)R(kxk) = 0 and kxk = 0 since R is semiprime. Now kRk = 0 implies,
again by semiprimeness, that k = 0.

(2) If h = 0 then the claim is trivially fulfilled, so assume h ̸= 0. Take x, y ∈ R.
Note that h(x− x∗)h = 0 and therefore hxh = hx∗h. Then

0 = h(xhy − (xhy)∗)h = hxhyh− hy∗hx∗h = hxhyh− (hy∗h)x∗h =

= hxhyh− hy(hx∗h) = hxhyh− hyhxh = (hxh)yh− hy(hxh),

i.e., hxhyh = hyhxh. By Corollary 2.9, since h ̸= 0 and IdR(hxh) ⊆ IdR(h), for
each x ∈ R there exists µx ∈ C(R) such that hxh = µxh. Hence 0 ̸= hRh ⊂ C(R)h.
Moreover, since hx∗h = hxh, 2hxh = hxh+ hx∗h = (µx + µ∗

x)h ∈ H(C(R), ∗)h, so
hRh ⊆ H(C(R), ∗)h.

Let us suppose that IdR(h) is essential in R and let us show that Skew(C(R), ∗) =
0: Take λ ∈ Skew(C(R), ∗) and y ∈ R. Then (λh)y(λh) = λh(yλ)h = λµλyh ∈ K
for some µλy ∈ H(C(R), ∗). On the other hand (λh)y(λh) = λ2hyh = λ2µyh ∈ H
for some µy ∈ H(C(R), ∗). Therefore (λh)y(λh) = 0 for every y ∈ R, and by
semiprimeness of R, λh = 0, so λ = 0 because IdR(h) is essential.

(3) Suppose first that R is ∗-prime and, without loss of generality, that it is
centrally closed. If R is not prime then there is λ ∈ Skew(C(R), ∗) such that
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R = K + λK (see 2.4), hence hKh = 0 implies hRh = 0 and h = 0 since R is
semiprime, so trivially hRk = 0. Now assume R is prime. Since R = H + K we
only need to show that hHk = 0. Let x ∈ H and y ∈ R. Then

0 = h(xky − (xky)∗)h = hxkyh+ hy∗kxh = hxkyh+ hykxh

since h(y∗ − y)k = 0 for every y ∈ R. By Corollary 2.9, since IdR(hxk) ⊂ IdR(h),
for each x ∈ R there exists µx ∈ C(R) such that hxk = µxh. If µx = 0 then
hxk = 0 and we are done. Otherwise, 0 = hxkxk = µxhxk = µ2

xh, hence h = 0 and
we are also done.

Suppose now that R is semiprime. Then there exists a family of ∗-prime ideals
{Iα}α∈∆ such that

⋂
α∈∆ Iα = 0. In each ∗-prime quotient R/Iα we have h̄R/Iαk̄ =

0̄, so hRk ⊂ Iα for all α, hence hRk = 0.
(4) Since k2 = 0 and k[K,K]k = 0, for all x, y ∈ K we get

0 = k[[x, k], y]k = kxkyk + kykxk, (a)

thus kxkyk = −kykxk and 2kxkxk = 0 for all x ∈ K, hence kxkxk = 0 since R is
free of 2-torsion. Now, by (a),

0 = (kxkxk)yk = kx(kxkyk) = −kxkykxk

for all x, y ∈ K. Thus (kxk)K(kxk) = 0 for all x ∈ K, kKk = 0 and k = 0 by item
(1) applied twice. □

Remark 5.2. Let R be a semiprime ring with involution such that R = H +K (in
particular this is true when R is centrally closed and has no 2-torsion by 2.5). Then
every x ∈ R can be expressed as x = xh + xk with xh ∈ H and xk ∈ K. If a ∈ K
is an ad-nilpotent element of K of index n, then for every x ∈ R

adna(ax+ xa) = adna(axk + xka) + adna(axh + xha)

= a adna(xk) + adna(xk)a+ adna(axh + xha) = 0,

since axh + xha ∈ K. On the other hand, expanding this expression,

0 = adna(ax+xa) = (−1)nxan+1+

n∑
i=1

((
n

i

)
−
(

n

i− 1

))
(−1)n−iaixan+1−i+an+1x.

Observe that a nilpotent element in K is ad-nilpotent of both K and R, but its
index of ad-nilpotence in R may be higher than the one found in K. In the following
proposition we describe the ad-nilpotent elements of K of index n that are already
nilpotent of certain index s. The description depends on the equivalence class of
the index of ad-nilpotence modulo 4 and relates the index of nilpotence to the index
of ad-nilpotence.

Proposition 5.3. Let R be a semiprime ring with involution ∗ and free of 2-
torsion, let R̂ be its central closure, and let a ∈ K be a nilpotent element of index
of nilpotence s. Then a is ad-nilpotent in R. If the index of ad-nilpotence of a in
K is n and R is free of

(
n
t

)
-torsion for t := [n+1

2 ], then:

(1) If n ≡ 0 (mod 4) then s = t+ 1 and atKat = 0.
(2) If n ≡ 1 (mod 4) then s = t and the index of ad-nilpotence of a in R is also

n.
(3) The case n ≡ 2 (mod 4) is not possible.
(4) If n ≡ 3 (mod 4) then there exists an idempotent ϵ ∈ C(R) such that ϵat =

at. Moreover, when we write a = ϵa+ (1− ϵ)a, we have:
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(4.1) If 0 ̸= ϵa ∈ R̂ then ϵa is nilpotent of index t + 1, ϵat = at generates

an essential ideal in ϵR̂ and (ϵa)t−1k(ϵa)t = (ϵa)tk(ϵa)t−1 for every

k ∈ Skew(R̂, ∗).
(4.2) If 0 ̸= (1− ϵ)a ∈ R̂, then the index of ad-nilpotence of (1− ϵ)a in R̂ is

not greater than n, and (1− ϵ)at = 0.

Furthermore, if a is a pure ad-nilpotent element of K then in (2) and in (4.2) we

obtain pure ad-nilpotent elements of R (respectively of R̂) of index n.

Proof. Let us suppose without loss of generality that R = R̂, i.e., R is centrally
closed.

Let a ∈ K be a nilpotent element of index of nilpotence s. Then a is ad-nilpotent
of K of a certain index n. If we apply Lemma 4.1 to the second formula obtained
in Remark 5.2 we get that all the monomials appearing in it are zero. We will now
focus on certain monomials depending on the parity of n.

• If n is even, n = 2t. Let us see that s = t+ 1: on the one hand, for any x ∈ R
we know that ((

n

t

)
−
(

n

t− 1

))
(−1)tatxat+1 = 0

and, since
(
n
t

)
−
(

n
t−1

)
is a divisor of 2

(
n
t

)
and R is free of 2

(
n
t

)
-torsion, we have that

atxat+1 = 0 for all x. Therefore at+1 = 0 by semiprimeness, hence s ≤ t + 1. On
the other hand, if s = t then at = 0 and ad2t−1

a (R) = 0, a contradiction.
Let us see that n ≡ 0 (mod 4): For any k ∈ K,

0 = ad2ta (k) =

2t∑
i=1

(
2t

i

)
(−1)2t−iaika2t−i =

(
2t

t

)
(−1)tatkat,

so atkat = 0 for every k ∈ K, which implies that t has to be even, since otherwise
at ∈ K and atKat = 0 imply at = 0 by Lemma 5.1(1), a contradiction. We have
shown that, if n is even, n ≡ 2 (mod 4) is not possible.

• If n is odd, n = 2t− 1, and for any x ∈ R,((
n

t− 1

)
−
(

n

t− 2

))
at−1xat+1 = 0.

Since
(

n
t−1

)
−
(

n
t−2

)
is a divisor of 2

(
n
t

)
and R is free of 2

(
n
t

)
-torsion, we have that

at−1xat+1 = 0 for all x. Therefore at+1 = 0 by semiprimeness, hence s ≤ t+1. On
the other hand s > t− 1 since otherwise ad2t−2

a (R) = 0, a contradiction.
If at = 0 then a is already an ad-nilpotent element of R of index n. In this case

n ≡ 1 (mod 4) or n ≡ 3 (mod 4) by Proposition 4.3(2). Furthermore, if a is pure in
K then a is pure in R by Lemma 3.3.

Suppose from now on that at ̸= 0. Let us show that n ≡ 3 (mod 4). By
Proposition 2.10 there exists an idempotent ϵ ∈ H(C(R), ∗) such that ϵat = at and
AnnR(IdR(a

t)) = (1− ϵ)R (so at = ϵat generates an essential ideal in ϵR). Notice
that ϵa ̸= 0 (otherwise 0 = (ϵa)t = ϵat = at, a contradiction). For every k ∈ K we



DESCRIPTION OF AD-NILPOTENT ELEMENTS IN SEMIPRIME RINGS 17

have

0 = adnϵa k =

n∑
i=1

(
n

i

)
(−1)n−iϵaikan−i =

=

(
n

t− 1

)
(−1)tϵat−1kat +

(
n

t

)
(−1)t−1ϵatkat−1 =

=

(
n

t

)
(−1)t−1(−ϵat−1kat + ϵatkat−1).

Since R has no
(
n
t

)
-torsion, ϵat−1kat = ϵatkat−1 for every k ∈ K. Moreover,

multiplying by a on the right we get ϵatkat = atkat = 0, so atKat = 0, which
by Lemma 5.1(1) is only possible if at ̸= 0 is symmetric, hence t is even and
n ≡ 3 (mod 4).

If (1 − ϵ)a ̸= 0 then ad2t−1
(1−ϵ)a(R) = 0 and (1 − ϵ)a is an ad-nilpotent element of

R of index not greater than 2t− 1.
If a is a pure ad-nilpotent element of index n in K then (1−ϵ)a is ad-nilpotent of

K of index n and therefore (1− ϵ)at−1 ̸= 0. From this the index of ad-nilpotence of
(1−ϵ)a in R must be n = 2t−1. Then by Lemma 3.3 (1−ϵ)a is a pure ad-nilpotent
element of R of index n. □

Remark 5.4. Let a ∈ K be a nilpotent element of index s. If we denote its index
of ad-nilpotence in K by n, we obtain from Proposition 5.3 that, under the right
torsion hypothesis, 2s− 3 ≤ n ≤ 2s− 1 and n+1

2 ≤ s ≤ n+3
2 .

Proposition 5.5. Let R be a semiprime ring with involution ∗ and free of 2-
torsion, let R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element
of K of index n > 1. Then:

(1) There exists an idempotent ϵ ∈ H(C(R), ∗) such that (1 − ϵ)a is an ad-

nilpotent element of R̂ of index ≤ n and ϵa is nilpotent with adnµϵa(R̂) ̸= 0
for every µ ∈ C(R) such that µϵa ̸= 0.

(2) Moreover, if a is pure ad-nilpotent in K and R is free of
(
n
t

)
-torsion and

t-torsion for t := [n+1
2 ], when we write a = ϵa+ (1− ϵ)a we have:

(2.1) If ϵa ̸= 0 then ϵa is nilpotent of index t+ 1.

(2.2) If (1 − ϵ)a ̸= 0 then (1 − ϵ)a is pure ad-nilpotent in R̂ of index n.
In this case n is odd and there exists λ ∈ Skew(C(R), ∗) such that
((1− ϵ)a− λ)t = 0.

Proof. Notice that n ≥ 3 since ad2a(K) = 0 implies a ∈ Z(R) by [17, Corollary 4.8]
and so ada(K) = 0, which is not possible because n > 1 by hypothesis.
(1) Let us suppose first that R is a ∗-prime ring and, without loss of generality,
that it is centrally closed.
(1.a) Case 1: adna(R) = 0 and we get the claim for the idempotent ϵ = 0.
(1.b) Case 2: adna(R) ̸= 0 implies that there are no nonzero skew elements λ in
C(R), since otherwise (by 2.4) R = K+λK would imply adna(R) = 0; in particular
R is prime. Since adna(K) = 0, by the second formula of Remark 5.2 and Corollary
2.9, a is an algebraic element of R over the field F := C(R). Let us consider
the minimal polynomial p(X) ∈ F[X] of a. Let F be the algebraic closure of
C(R) and let µ1, . . . , µt ∈ F such that p(X) = (X − µ1)

k1 · · · (X − µt)
kt . Let
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q1(X) := p(X)/(X − µ1), so q1(a)a = µ1q1(a). Now, for any x ∈ R⊗ F,
0 = adna(ax+ xa)q1(a)

= a

n∑
i=0

(
n

i

)
(−1)n−iaixan−iq1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaixan−iaq1(a)

= a

n∑
i=0

(
n

i

)
(−1)n−iaixµn−i

1 q1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaixµn−i

1 µ1q1(a)

= a

n∑
i=0

(
n

i

)
(−1)n−iaiµn−i

1 xq1(a) +

n∑
i=0

(
n

i

)
(−1)n−iaiµn−i

1 µ1xq1(a)

= a(a− µ1)
nxq1(a) + (a− µ1)

nµ1xq1(a) = (a− µ1)
n(a+ µ1)xq1(a)

and therefore, since R ⊗ F is a centrally closed prime ring (see [5, pp. 445–446]),
(a−µ1)

n(a+µ1) = 0. If µ1 = 0 then a is nilpotent of index at most n+1. If µ1 ̸= 0,
since the involution is of the first kind on R, it extends to R⊗F via (r⊗λ)∗ := r∗⊗λ,
hence 0 = ((a − µ1)

n)∗(a + µ1)
∗ = (a∗ − µ1)

n(a∗ + µ1) = (−a − µ1)
n(−a + µ1)

implies (a + µ1)
n(a − µ1) = 0. From the conditions (a − µ1)

n(a + µ1) = 0 and
(a + µ1)

n(a − µ1) = 0 we obtain p(X) = (X − µ1)(X + µ1). Thus a2 = µ2
1, but

then ad3a(k) = 4µ2
1[a, k] for every k ∈ K, a contradiction with n ≥ 3.

Let us study the semiprime case, and suppose without loss of generality that
R is centrally closed: If a is already ad-nilpotent in R of index n, take ϵ = 0
and the claim holds. Suppose from now on that adna(R) ̸= 0. By Proposition
2.10 let ϵ ∈ H(C(R), ∗) be an idempotent such that ϵ adna(x) = adna(x) for every
x ∈ R, AnnR(IdR(ad

n
a(R))) = (1− ϵ)R and AnnC(R)(ad

n
a(R)) = (1− ϵ)C(R). Then

adn(1−ϵ)a(R) = (1− ϵ) adna(R) = 0.

Let us study the element ϵa: First notice that adnµϵa R ̸= 0 for every µ such that
µϵa ̸= 0, since otherwise µϵ adna(R) = adnµϵa R = 0 implies µϵ ∈ AnnC(R)(ad

n
a(R)) =

(1−ϵ)C(R) and hence µϵ = 0, a contradiction. Let us see that ϵa is nilpotent. Since
R is semiprime, the intersection of all ∗-prime ideals of R is zero. Consider the
essential ∗-ideal S := IdR(ad

n
a(R))⊕AnnR(IdR(ad

n
a(R))) = IdR(ad

n
a(R))⊕(1−ϵ)R.

Let us consider the families

∆1 := {I ◁∗ R | R/I is ∗-prime and S ̸⊂ I}
and

∆2 := {I ◁∗ R | R/I is ∗-prime and S ⊂ I}.
Since S ⊂

⋂
I∈∆2

I and S is essential,
⋂

I∈∆1
I = 0 and R is a subdirect product of

R/I with I ∈ ∆1. Let us see that in any ∗-prime quotient ϵa is nilpotent of index
not greater than n + 1. Take I ∈ ∆1 and consider R̄ := R/I. We may have two
cases:

• If ϵ = 0 then ϵa = 0.
• If ϵ ̸= 0 then ϵ = 1 ∈ R/I and 1− ϵ = 0, so (1 − ϵ)R ⊂ I. More-
over, adnϵa(R/I) ̸= 0 since otherwise adnϵa(R/I) = 0 would imply S ⊂ I,
a contradiction. Let us see that R/I is prime: if R/I is ∗-prime and not
prime there would exist a nonzero skew element λ in C(R/I), which im-
plies that R/I = Skew(R/I, ∗)⊕ λSkew(R/I, ∗) (see 2.4), so adnϵa(R/I) =
adnϵa(Skew(R/I, ∗) ⊕ λ Skew(R/I, ∗)) = 0, a contradiction. So R/I is a
prime ring with involution and adnϵa(R/I)) ̸= 0 which implies that ϵa is
nilpotent of index not greater than n+ 1.
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In conclusion, for any I ∈ ∆1 we have ϵan+1 ∈ I and therefore ϵan+1 = 0.
(2) Suppose now that a is a pure element of K of index n and R is free of 2

(
n
t

)
-

torsion and free of t-torsion for t := [n+1
2 ]. If a is already ad-nilpotent of R of

index n then a is pure in R by Lemma 3.3 and we can use Theorem 4.4 to find that
n is odd and there exists λ ∈ Skew(C(R), ∗) such that (a − λ)t = 0. Otherwise
write a = ϵa + (1 − ϵ)a as before. Since ϵa is nilpotent and ad-nilpotent of K of
index n (because we are assuming that a is pure in K), ϵa is nilpotent of index
t + 1 (it has index t or t + 1 by Proposition 5.3, but adnϵa(R) ̸= 0). Moreover,
(1− ϵ)a is a pure ad-nilpotent element of R of index n (if it is nonzero, its index of
ad-nilpotence cannot be lower than n since (1 − ϵ)a is ad-nilpotent in K of index
n), and we can apply Theorem 4.4 and Lemma 2.6 to get that n is odd and there
exists λ ∈ Skew(C(R), ∗) such that ((1− ϵ)a− λ)t = 0. □

Theorem 5.6. Let R be a semiprime ring with involution ∗ and free of 2-torsion,
let R̂ be its central closure, and let a ∈ K be a pure ad-nilpotent element of K of
index n > 1. If R is free of

(
n
t

)
-torsion and t-torsion for t := [n+1

2 ] then:

(1) If n ≡ 0 (mod 4) then at+1 = 0, at ̸= 0 and atKat = 0. Moreover,
there exists an idempotent ϵ ∈ H(C(R), ∗) such that ϵa = a and the

ideal generated by at is essential in ϵR̂. In addition ϵR̂ satisfies the GPI
atxatyat = atyatxat for every x, y ∈ ϵR̂.

(2) If n ≡ 1 (mod 4) then there exists λ ∈ Skew(C(R), ∗) such that (a−λ)t = 0
(a is an ad-nilpotent element of R of index n).

(3) It is not possible that n ≡ 2 (mod 4).
(4) If n ≡ 3 (mod 4) then there exists an idempotent ϵ ∈ H(C(R), ∗) making

a = ϵa+ (1− ϵ)a ∈ R̂ such that:
(4.1) If ϵa ̸= 0 then ϵat+1 = 0, ϵat ̸= 0 and ϵatkϵat−1 = ϵat−1kϵat for every

k ∈ Skew(R̂, ∗). The ideal generated by ϵat is essential in ϵR̂ and ϵR̂

satisfies the GPI atxatyat = atyatxat for every x, y ∈ ϵR̂.
(4.2) If (1 − ϵ)a ̸= 0 then there exists λ ∈ Skew(C(R), ∗) such that ((1 −

ϵ)a−λ)t = 0 ((1− ϵ)a is a pure ad-nilpotent element of R̂ of index n).

In particular, for all n > 1 there exists λ ∈ Skew(C(R), ∗) such that (a−λ)t+1 = 0,
(a− λ)t−1 ̸= 0.

Proof. We can suppose without loss of generality that R = R̂, i.e., R is centrally
closed. By Proposition 5.5 there exists an idempotent ϵ ∈ H(C(R), ∗) such that
ϵ adna x = adna x for every x ∈ R and AnnR(IdR(ad

n
a(R))) = (1− ϵ)R, and moreover:

• If ϵa ̸= 0, it is nilpotent of index t + 1 and ad-nilpotent of K of index
n. By Proposition 5.3 this may happen if either n ≡ 0 (mod 4), in which
case at+1 = 0, at ̸= 0, atKat = 0 and (1 − ϵ)a = 0 (because (1 − ϵ)a is
ad-nilpotent of R and its index cannot be even), or n ≡ 3 (mod 4). The
case n ≡ 1 (mod 4) is not possible because ϵat ̸= 0.

• If (1−ϵ)a ̸= 0 then (1−ϵ)a is a pure ad-nilpotent element of R, n is odd and
there exists λ ∈ Skew(R, ∗) with ((1−ϵ)a−λ)t = 0. By Proposition 5.3 this
may happen if either n ≡ 1 (mod 4) (in this case ϵa = 0) or n ≡ 3 (mod 4).
The decomposition (1 − ϵ)a − λ = a1 + a2 given by Proposition 5.3(4)
occurs with a1 = 0 since otherwise the index t + 1 of a1 would contradict
((1− ϵ)a− λ)t = 0.
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In the particular case of n ≡ 3 (mod 4) with ϵa ̸= 0, the idempotent ϵ1 produced in
Proposition 5.3(4) for the nilpotent element ϵa satisfies ϵ1ϵa

t = ϵat, so (1− ϵ1)ϵ ∈
AnnR(IdR(ad

n
a(R))) = (1− ϵ)R, thus ϵ1ϵ = ϵ and ϵat = ϵ1ϵa

t generates an essential
ideal in ϵR. On the other hand, we know from Proposition 5.5 that (ϵa)t−1k(ϵa)t =
(ϵa)tk(ϵa)t−1 for every k ∈ K; in particular (ϵa)tK(ϵa)t = 0. Therefore, by Lemma
5.1(2) the identity

atxatyat = atyatxat

holds in ϵR.
In the particular case of n ≡ 0 (mod 4) the idempotent ϵ produced in Proposition

5.5 satisfies ϵatxat = ϵat for every x ∈ R and AnnR IdR(a
tRat) = (1 − ϵ)R. On

the other hand, (1− ϵ)a must be zero because adn(1−ϵ)a(R) = 0 and a is a pure ad-

nilpotent element (so a = ϵa). Therefore, the ideal generated by at in ϵR is essential
in ϵR and the identity atxatyat = atyatxat holds in ϵR by Lemma 5.1(2). □

Remark 5.7. It is worth noting that in the semiprime case, when n ≡ 3 (mod 4)
there can exist elements a with two nonzero parts ϵa and (1 − ϵ)a behaving as in
Theorem 5.6(4.1) and Theorem 5.6(4.2). This is no longer true in the prime case,
see [29, Main Theorem].

In the next corollary we recover Lee’s main result by taking into account that
every ad-nilpotent element can be expressed as a sum of pure ad-nilpotent elements
of decreasing indices.

Corollary 5.8. ([27, Theorem 1.5]) Let R be a semiprime ring with involution ∗
and free of n!-torsion, let R̂ be its central closure, and let a ∈ K be an ad-nilpotent
element of K of index n. Then there exist λ ∈ Skew(C(R), ∗) and an idempotent
ϵ ∈ H(C(R), ∗) such that (ϵa − λ)t+1 = 0 and (ϵa − λ)t−1 ̸= 0 for t := [n+1

2 ], and

(1− ϵ)R̂ is a PI-algebra satisfying the standard identity S4.

Proof. We can suppose without loss of generality that R = R̂, i.e., R is centrally
closed. By Proposition 3.4 there exists a family of orthogonal symmetric idempo-

tents {ϵi}ki=1 of the extended centroid such that a =
∑k

i=1 ϵia, with ϵia a pure ad-
nilpotent element of index ni (n = n1 > n2 > . . . ) of Skew(ϵiR, ∗). If nk = 1 then
ϵka can be decomposed as ϵka = ϵk1a+(1−ϵk1)a, where ϵk1a ∈ Z(R) and (1−ϵk1)R
is a PI-algebra satisfying the standard identity S4 by [9, Theorem 4.2(i),(ii) and
(*)]. The claim follows now from Theorem 5.6. □

Let us extend this last result to Lie algebras of the form K/(K ∩ Z(R)) and
[K,K]/([K,K] ∩ Z(R)).

Corollary 5.9. Let R be a semiprime ring with involution free of n!-torsion, let
R̂ be its central closure, and consider the Lie algebra L := K/(K ∩ Z(R)). If ā
is an ad-nilpotent element of L of index n then there exist λ ∈ Skew(C(R), ∗) and
an idempotent ϵ ∈ H(C(R), ∗) such that (ϵa − λ)t+1 = 0 and (ϵa − λ)t−1 ̸= 0 for

t := [n+1
2 ], and (1− ϵ)R̂ is a PI-algebra that satisfying the standard identity S4.

Proof. Let us prove that adna(K) ⊂ Z(R) implies adna(K) = 0: Suppose first that
R is ∗-prime and, without loss of generality, centrally closed. If adna(K) ̸= 0,
there would exist 0 ̸= λ ∈ adna(K) ∩ Z(R), so R = K + λK by 2.4 and hence
adna(R) ⊂ Z(R), which implies by Lemma 4.6 that adna(R) = 0, a contradiction.
The same result follows for semiprime rings because they can be expressed as sub-
directs product of ∗-prime quotients.
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The claim follows now from Corollary 5.8. □

Now we turn to Lie algebras of the form [K,K]/([K,K] ∩ Z(R)). We first need
a technical lemma.

Lemma 5.10. Let R be a semiprime ring with involution ∗ and a ∈ K be such that
adna([K,K]) ⊂ Z(R), n > 1. If R is free of (n+ 1)!-torsion then adna(K) = 0.

Proof. Let us first suppose that R is a ∗-prime ring and, without loss of generality,
that it is centrally closed. If Skew(C(R), ∗) ̸= 0 then R = K + λK for any 0 ̸=
λ ∈ Skew(C(R), ∗) (see 2.4); thus adna([R,R]) ⊂ Z(R), and by Lemma 4.7 a is
an ad-nilpotent element of R of index n. Otherwise Skew(C(R), ∗) = 0, in which
case R must be prime and K ∩ Z(R) = 0, so adna([K,K]) = 0. From adn+1

a K ⊂
adna([K,K]) = 0 and Skew(C(R), ∗) = 0 we get from Proposition 5.5 that a is a
nilpotent element of R. Let s be its index of nilpotence. If adna K = 0 we are done;
suppose it is not and let us compare the index of ad-nilpotence of a in K with its
index of nilpotence s (see Proposition 5.3) to get a contradiction:
(a) If n+1 ≡ 0 (mod 4) then s = n+3

2 and as−1Kas−1 = 0. From
(

n
s−2

)
=
(

n
s−1

)
we

get, for every x ∈ R, that adna x = (−1)s−1
(

n
s−2

) (
as−2xas−1 − as−1xas−2

)
. Then,

for every k, k′ ∈ K,

2(adna k)k
′(adna k) =

= 2

(
n

s− 2

)(
n

s− 2

)(
as−2kas−1k′as−2kas−1 + as−1kas−2k′as−1kas−2

)
= 2

(
n

s− 2

)(
n

s− 2

)
as−2k(as−1k′as−2 − as−2k′as−1)kas−1+

+ 2

(
n

s− 2

)(
n

s− 2

)
as−1k(as−2k′as−1 − as−1k′as−2)kas−2 =

= 2(−1)s−2

(
n

s− 2

)
(as−2k(adna k

′)kas−1 − as−1k(adna k
′)kas−2) =

= (−1)s−2

(
n

s− 2

)
(as−2 ad2k(ad

n
a k

′)as−1 − as−1 ad2k(ad
n
a k

′)as−2) =

= adna(ad
2
k(ad

n
a k

′)) ∈ adna([K,K]) = 0

because a adna k = 0 = (adna k)a, a
s−1Kas−1 = 0 and s ≥ 3 implies as−1as−2 = 0.

Therefore (adna k)K(adna k) = 0 and hence adna k = 0 for every k ∈ K by Lemma
5.1(1).
(b) If n+1 ≡ 1 (mod 4) then s = n

2+1. For every x ∈ R, adna x = (−1)s−1
(

n
s−1

)
as−1xas−1.

Then, for every k, k′ ∈ K,

2(adna k)k
′(adna k) = 2

(
n

s− 1

)(
n

s− 1

)
as−1kas−1k′as−1kas−1 =

=

(
n

s− 1

)(
n

s− 1

)
as−1 ad2k(a

s−1k′as−1)as−1 =

= adna(ad
2
k(ad

n
a k

′)) ∈ adna([K,K]) = 0

because as−1as−1 = 0. Therefore (adna k)K(adna k) = 0 and hence adna k = 0 for
every k ∈ K by Lemma 5.1(1).
(c) The case n+ 1 ≡ 2 (mod 4) is not possible.
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(d) If n+1 ≡ 3 (mod 4) then, by primeness of R, either s = n
2 +2 and as−2kas−1 =

as−1kas−2 for every k ∈ K (case (4.1) in Theorem 5.6) or s ≤ n
2 + 1 (case (4.2) in

Theorem 5.6).
(d.1) Suppose s = n

2 + 2 and as−2kas−1 = as−1kas−2 (1) for every k ∈ K. For

convenience write α :=
(

n
s−3

)
, β :=

(
n

s−2

)
and observe that α ̸= β (since n ̸= 2s−5).

For every k, k′ ∈ K we have

0 = adna([k, k
′]) = αas−3[k, k′]as−1 − βas−2[k, k′]as−2 + αas−1[k, k′]as−3. (2)

Multiplying on the left by a and applying (1) to the second term afterwards,

0 = a adna([k, k
′]) = αas−2[k, k′]as−1 − βas−1[k, k′]as−2 =

= αas−2[k, k′]as−1 − βas−2[k, k′]as−1 = (α− β)as−2[k, k′]as−1,

which gives as−2[k, k′]as−1 = 0 (3) since R is free of (α−β)-torsion. Now we study
two separate cases:
If n = 2 then s = 3 and a ∈ K satisfies ad3a(K) = 0 and a2 ̸= 0, a3 = 0, so it is
a Clifford element (see [8]). Since R is free of 2, 3-torsion there is a twin element
b ∈ K of a such that aba = a and a2b2a2 = a2 ([8, p. 289 and Proposition 3.7(6)]).
Then, by (3),

0 = a[[b, a], b]a2 = 2(aba)ba2 − a2b2a2 − ab2a3 = 2aba2 − a2 = a2,

a contradiction.
If n > 2 then n ≥ 6 and s ≥ 5, so 2s− 4 > s and (as−2)2 = 0. We see that

as−2[k1, k
′
1]a

s−2[k2, k
′
2]a

s−2[k1, k
′
1]a

s−2 = 0 (4)

for every k1, k
′
1, k2, k

′
2 ∈ K: from (2) we can write βas−2[k2, k

′
2]a

s−2 as a linear
combination of as−1[k, k′]as−3 and as−3[k, k′]as−1, so (4) follows since R is free
of β-torsion and as−2[k1, k

′
1]a

s−1 = 0 = as−1[k1, k
′
1]a

s−2 by (3) and (1). Since
for each k1, k

′
1 ∈ K we have that b := as−2[k1, k

′
1]a

s−2 ∈ K is such that b2 = 0
and b[K,K]b = 0 by (4), by Lemma 5.1(4) we get b = 0 for each k1, k

′
1 ∈ K, so

as−2[K,K]as−2 = 0, and as−2 = 0 again by Lemma 5.1(4), a contradiction.
(d.2) Suppose s ≤ n

2 + 1. In this case, the proof follows as in (b): adna x =

(−1)
n
2

(
n
n
2

)
a

n
2 xa

n
2 for every x ∈ R, (adna k)K(adna k) = 0 and hence adna k = 0 for

every k ∈ K by Lemma 5.1(1).
In any case adna(K) = 0. Finally, the semiprime case follows because R is a

subdirect product of ∗-prime rings. □

From this lemma and Corollary 5.8 we get:

Corollary 5.11. Let R be a semiprime ring with involution ∗, let R̂ be its central
closure, and consider the Lie algebra L := [K,K]/(Z(R) ∩ [K,K]). If ā is an ad-
nilpotent element of L of index n > 1 and R is free of (n+1)!-torsion then there exist
λ ∈ Skew(C(R), ∗) and an idempotent ϵ ∈ H(C(R), ∗) such that (ϵa − λ)t+1 = 0

and (ϵa − λ)t−1 ̸= 0 for t := [n+1
2 ], and (1 − ϵ)R̂ is a PI-algebra satisfying the

standard identity S4.
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