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ABSTRACT

Dynamical systems that are used to model power grids, the brain, and other physical systems can exhibit coexisting stable states known as
attractors. A powerful tool to understand such systems, as well as to better predict when they may “tip” from one stable state to the other,
is global stability analysis. It involves identifying the initial conditions that converge to each attractor, known as the basins of attraction,
measuring the relative volume of these basins in state space, and quantifying how these fractions change as a system parameter evolves.
By improving existing approaches, we present a comprehensive framework that allows for global stability analysis of dynamical systems.
Notably, our framework enables the analysis to be made efficiently and conveniently over a parameter range. As such, it becomes an essential
tool for stability analysis of dynamical systems that goes beyond local stability analysis offered by alternative frameworks. We demonstrate
the effectiveness of our approach on a variety of models, including climate, power grids, ecosystems, and more. Our framework is available as
simple-to-use open-source code as part of the DynamicalSystems.jl library.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0159675

Dynamical systems are ubiquitous to model natural phenom-
ena ranging from climate, ecosystems, and more. Global stability
analysis is the study of their attracting states over the full state
space. It goes beyond local bifurcation analysis and provides
insight into the resilience of the states, i.e., how close they are
to “tip” to a different, perhaps undesirable stable state such as
population death in ecosystems or circulation shutdown in cli-
mate. In this work, we develop an accurate and flexible framework
for global stability analysis of dynamical systems that we believe
will accelerate multistability and tipping point research in many
fields. We also provide a software implementation that is fast and
easy to use in the open-source DynamicalSystems.jl library.

I. INTRODUCTION

Multistable dynamical systems exhibit two or more co-existing
stable states, formally called attractors. Multistability is ubiquitous

in nature and in mathematical models,1,2 with examples ranging
from power grids,3–5 the climate,6,7 ecosystems like the Amazon rain
forest,8,9 the brain and neuronal circuits therein,10–12 or metabolic
systems.13–15 Some attractors of these systems can be desirable, such
as synchronized oscillations in power grids, crucial for their proper
functioning.16 However, they can also be undesirable, as, for exam-
ple, the extinction of a certain species in ecological models or the
collapse of circulation in climate models.17 In a multistable system,
the attractor at which the system ends up depends on the initial con-
ditions (ICs), but perturbations of the state may enforce switching
between attractors, a phenomenon called “tipping.”1,9,18 Alterations
in the parameters of a dynamical system can trigger tipping. Hence,
it becomes important to evaluate how “resilient” attractors are to
perturbations, either to parameters or to the system’s variables. This
is a crucial problem of practical importance in several areas of
research.9,19

A traditional solution to this problem is the continuation-based
bifurcation analysis (CBA). It identifies fixed points and (under
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some requirements) limit cycles and describes their linear (also
called exponential) stability dependence on a system parameter via
the eigenvalues of the Jacobian.20 One major downside is that, by
definition, it cannot be applied to chaotic attractors.20 In the major-
ity of cases, this analysis must be done numerically via one of several
software, e.g., AUTO,21 MATCONT,22 CoCo,23 or Bifurcationkit.jl.24

Continuation tools can be combined with other numerical tech-
niques to enrich the exploration of the parameter space as shown
in Ref. 25. The information provided by these frameworks is use-
ful but incomplete: rigorously speaking, local stability only conveys
information about the system’s response to infinitesimally small
perturbations. It cannot yield insight into the response to finite
perturbations in the state space, which are predominant in practice.

For such responses, it is necessary to study the global stability26

of the system’s attractors, which involves the nonlinear dynamics
over the full state space of the system.27 A proxy for global stability
of an attractor is the portion of all possible initial conditions end-
ing up at this attractor, i.e., the fraction of the state space that is in
the basin of said attractor. When the state space is infinite, the con-
cept of the state space fraction becomes a pragmatic one: we need to
define a finite-volume box of physically plausible initial conditions
for the system under study, and we are concerned about the frac-
tions of these plausible initial conditions. In this analysis, attractors
with larger basins fractions are globally more stable because stronger
perturbations are typically needed to switch the system to another
attractor.26 Frequently, this measure is also a much better indicator
of the loss of stability as a system parameter is varied when com-
pared to the local stability analysis of the system (see, e.g., Ref. 26 or
Chap. 12 of Ref. 20).

Analyzing global stability as a function of a parameter demands
extensive effort from researchers, as it requires the creation of algo-
rithms that can find system attractors and their global stability,
“continue” them across a parameter and also perform the expen-
sive numerical simulations required for such algorithms. In the
literature, the only framework so far that can aid this analysis is
the featurizing and grouping approach, proposed first by Gelbrecht
et al.28 as MCBB (Monte Carlo Basin Bifurcation Analysis) and then
later very similarly by Stender and Hoffmann29 as bSTAB (basin sta-
bility). The method integrates randomly sampled initial conditions
(ICs) of a dynamical system for a preset time span. The trajecto-
ries of these ICs are then mapped onto features, numbers describing
the trajectories, such as the mean or standard deviation of some
of the system variables. All the feature vectors are clustered using
the DBSCAN algorithm30 so that ideally each cluster corresponds
to an attractor of the system. The fractions of ICs in each cluster
approximate the basin fractions and, hence, the global stability of
each attractor. More details on the method are given in Sec. IV.

This method works well in a variety of circumstances and can
also be applied across a parameter range. However, it comes with
significant downsides. One is that it is not clear a priori which
features should be chosen to correctly separate the attractors into
clusters, requiring a lot of trial and error. Another downside is that
the method cannot guarantee that the clusters of features really cor-
respond to unique attractors and that it is not mixing two or more
attractors together. An alternative method for finding attractors and
their basins of attraction is the recurrence-based approach recently
proposed.31 The method locates attractors by finding recurrences in

the system’s state space, assuming the Poincaré recurrence theorem
holds for the system attractors. The input to this method is a state
space box, and its tessellation, defining a grid to search for recur-
rences. Hence, the method will only find attractors within the given
box, although the box can initially be arbitrarily large. We describe
the method in more detail in Sec. IV B and provide a comparison
between the two techniques in Sec. III B. The main advantage of
the recurrences method is that it locates the actual system attractors
and only requires as an input a state space box that may contain the
attractors. So far, however, it has not been clear how to “continue”
attractors across a parameter range with this method.

In this work, in Sec. III A, we present a novel global stability
analysis and continuation algorithm that utilizes the recurrences-
based method for finding attractors.31 In Sec. III C, we apply it to
exemplary models of climate, ecosystem dynamics, and more. As
detailed in Sec. III, this novel continuation algorithm is the most
accurate in finding the actual attractors of a dynamical system, the
most transparent in matching attractors across parameter values,
and requires the least amount of guesswork from the researcher.
We believe that this novel continuation of global stability, much like
global stability analysis itself,26 is a crucial new tool for the analysis of
dynamical systems. In some cases, it supersedes CBA, and in others,
it can be complemented by CBA, as we discuss in Sec. III A.

This continuation method is part of a novel automated frame-
work that performs global stability analysis and continuation, which
we present in Sec. III B. Our framework significantly advances
existing methodology, including the featurizing methods, thereby
including all upsides of current literature while addressing most
downsides (Secs. IV C and IV D describe the improvements in
detail). Its design is based on modular components that can be
configured or extended independently. This allows researchers to
simply compose the methodology that is best suited to their problem
and then let an automated algorithm execute the process. The frame-
work is accompanied by an extensively tested, well documented,
and highly optimized open-source software implementation, part
of the DynamicalSystems.jl32 general purpose library for nonlinear
dynamics (see Sec. IV for code example and documentation).

II. RESULTS

A. Novel global stability continuation algorithm

A major contribution of our framework is the novel algorithm
for global stability analysis and continuation that we name
recurrences-based attractor find-and-match continuation, RAFM for
short. This algorithm can be applied to any system whose attractors
satisfy the Poincaré recurrence theorem. As illustrated in Fig. 1(a), it
works as follows.

Step 0: the starting point of the algorithm. Attractors and their
basins, or basins fractions, are already known at a parameter
p = p1 using the recurrences-based algorithm.31

Step 1: new initial conditions are seeded from the existing attrac-
tors. Then, we set the system parameter to p = p2.

Step 2: evolve the seeded initial conditions according to the
dynamic rule of the system. The seeds are evolved until
they converge to an attractor using the recurrences-based
method (the grid reflects the tessellation of the state space
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FIG. 1. (a) The recurrences-based find-and-match (RAFM) algorithm for global stability continuation described in Sec. III A. (b) Schematic illustration of themodular framework
for global stability analysis and continuation described in Sec. III B.

that is decided by the user; the finer the grid, the more accu-
rate the results31). The main performance bottleneck of the
recurrences-based method is finding the attractors. Once
found, convergence of other initial conditions is generally
much faster.31 To address this in the continuation, we use the
observation that, unless a bifurcation is occurring, attractor
size, shape, and position, typically depend smoothly on p.
Hence, the seeded initial conditions at each new parameter
will most likely converge the fastest to the new attractors.

Step 3: with the main bottleneck of the algorithm (finding the
attractors) being taken care of, now compute the basins frac-
tions by formally applying the recurrence-based algorithm31

to randomly sampled initial conditions. It can be arbitrarily
configured how to randomly sample initial conditions, but
typically the samples are drawn uniformly from a state space
box. Importantly, the algorithm may still find new attractors
during this step (here the “dark green” one) that did not exist
before.

Step 4: match attractors in current parameter p2 to those in param-
eter p1. Matching is arguably the most sophisticated part of
the algorithm. Attractors are matched by their “distance” in
state space, with distance any arbitrary metric on the space
of state space sets, see Sec. III D for more details. In this illus-
tration, the “red” attractor is matched to the “purple” one of
Step 0, while neither the “yellow” or “dark green” attractors
match to the previous “teal” one, because their state space
distance is beyond a pre-defined threshold.

The end result is the (matched) system attractors, and their
basins fractions (or full basins if computationally feasible), as
functions of the parameter. The attractors and basins are labeled

with the positive integers (enumerating the different attractors),
and the basins always sum to 1. Note that because RAFM works
on a parameter-by-parameter basis, it can be used to perform
continuation across any number of parameters, not just one (we
present one here as the simplest conceptual example).

B. Global stability continuation framework

To perform global stability analysis, several tasks need to be
taken in sequence [see Fig. 1(b) for an overview]. We have abstracted
and generalized the tasks to allow researchers different possibilities
of how to achieve them.

The first task is the creation of a dynamical system for the global
stability analysis. For our framework, this is achieved for free sim-
ply by making the implementation part of the DynamicalSystems.jl
library32 (see Sec. IV E).

The second task is the creation of a mechanism to find attrac-
tors and map initial conditions to them. Possibilities for this mecha-
nism are: (1) featurizing and grouping initial conditions into attrac-
tors (as discussed in the introduction), (2) finding attractors using
the recurrences algorithm,31 or (3) mapping initial conditions to
previously known attractors by proximity: once the evolution of an
initial condition comes close enough to a pre-determined attrac-
tor, the initial condition is mapped to that attractor. Note that in
(1) or (2), attractors are found via random sampling in the state
space. For the typically used uniform sampling, the probability to
find an attractor with basin fraction f after n samples is 1 − (1 − f)n.
However, users may use system-specific knowledge to adjust the
sampling into something that may find attractors with better scaling
with respect to sample number n.
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Mechanism (1) is paired with instructions on how to group
features. Currently, the possibilities are: (a) clustering features into
groups using DBSCAN (as done in MCBB or bSTAB), (b) group-
ing features by histograms in the feature space, so that features that
end up in the same histogram bin belong to the same group (novel
grouping approach), or (c) mapping features to their nearest feature
in feature space, from a set of pre-defined features (as done in
bSTAB). Having more grouping possibilities than only clustering
can be useful, as discussed in Sec. III D.

At this point, one can analyze global stability at a given param-
eter and also analyze the basin boundaries of attractors for fractal
properties. From here, the third task is to “continue” the attractors
and basins across a parameter range. Our framework currently has
two continuation algorithms; however, due to an extendable design,
more may be added in the future. The first continuation algorithm
is what has been employed so far by the MCBB or bSTAB algo-
rithms, but with significantly increased accuracy (see MatMeth), and
extended to allow any kind of instructions for how to group fea-
tures. We will call this “Featurize and Group Across Parameter”
(FGAP). In this approach, trajectories from the dynamical system
are generated by sampling random ICs across all parameter values
of interest. All these trajectories are mapped to features, and all these
feature vectors are then grouped using one of currently three group-
ing instructions (clustering, histogram, nearest feature). Each group
is representing an attractor. The grouped ICs are then re-distributed
into the parameter slices they came from, providing the fractions
of each group at each parameter value. The second continuation
algorithm is the RAFM algorithm that we described in Sec. II A.
These two approaches are compared in detail in Sec. III B.

C. Application on exemplary systems

In Fig. 2, we apply RAFM on some exemplary systems. We
stress that we could characterize the different attractors in accu-
rate detail because RAFM finds the actual system attractors, not
some incomplete representation of them (i.e., features used in the
featurizing-and-grouping approach).

To illustrate a concrete application of the method, we discuss
how the example of the Lorenz 84 dynamical system in Fig. 2(a)
was generated. Along with the following step by step “tutorial,” we
provide the computer code for this example in Listing 1. First, a
continuous time dynamical system object ds (whose equations are
provided in Sec. IV F) is created, and we choose the ODE integrator
according to the system specifics (here we use the Verner 9th order
solver38). Next, we choose the state space box, and its tessellation,
that will be used both for the recurrences-algorithm31 as well as for
sampling random initial conditions when estimating the basin frac-
tions. For this example, the box ranges from −3 to +3 divided into
600 points along each dimension.

With the grid and the dynamical system, we construct a
mapper object that maps initial conditions to attractors using
the recurrences method.31 To decide the meta-parameters of this
algorithm, we consult our previous publication specifically about
the algorithm.31 For this example, the presence of a chaotic attrac-
tor involves longer recurrence times, so we set high values for
the parameters mx_chk_fnd_att and mx_chk_loc_att to
improve the precision of the characterization of the attractors.

FIG. 2. Basins fraction continuation for exemplary dynamical systems using the
novel recurrence-based continuation algorithm. The fractions of the basins of
attraction are plotted as stacked band plots (hence, summing to 1). Each color
corresponds to a unique attractor that is found and continued (but not plotted
here). Each simulation scanned 101 parameter values, and in each, it sampled
randomly 100 initial conditions. The fractions fluctuate strongly vs parameter not
due to lack of convergence, but because the basin boundaries are fractal in all
systems considered. The systems used are: (a) three-dimensional paradigmatic
chaotic model by Lorenz (Lorenz8433) with a co-existence of a fixed point, limit
cycle, and chaotic attractor, undergoing a crisis with the chaotic attractor merging
into the limit cycle; (b) 33-dimensional climate toy model34 featuring bistability of
chaotic attractors; (c) three-dimensional multistable cell-division model,35 where
each cell type is considered to be a distinct attractor in the gene activity state
space; (d) nine-dimensional model for turbulent shear flow model in which the
fluid between two walls experiences sinusoidal body forces;36 (e) eight-dimen-
sional ecosystem competition dynamics model37 featuring extreme multistability
(due to the number of attractors, we made no effort to label them further).

Sometimes, transient trajectories may spend some time outside the
defined grid. In this case, we can either provide a larger state space
box or set the parameter mx_chk_lost to a higher value. Very
small time steps may lead to the identification of false attractors if
the orbit stays too long in a grid cell. To prevent these artifacts, we
specify that during time integration, a non-adaptive method with a
fixed time step of Dt should be used (note that the value of Dt will
depend on the system’s internal timescale.

We chose 100 values of the parameter G in the range [1.34; 1.37]
and construct a continuation object rsc, which instructs how to
perform the continuation (in this case, this corresponds to using
the RAFM algorithm). During the construction of rsc, we could
also specify how to match attractors (which is something we only
discuss in Sec. II D and in this example, we used the default
matching). We also specify how to sample random initial con-
ditions via the sampler object, which in this case is randomly
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drawn initial conditions within the limits of the provided state
space box. The continuation output is obtained after the call of the
continuation function. This workflow is identical for the other
examples used, in addition to the obvious changes of the dynami-
cal system, state space box, parameter range, and possible tuning of
meta-parameters. We also stress that the best place to learn how to
choose optimal meta-parameters of all these algorithms is the doc-
umentation of the associated software, which is constantly updated
with best practices.39

D. Matching and grouping attractors

Traditional CBA has a rigid “matching” procedure: it always
matches the next point found along a “continuation curve” to the
previous point. This is often correct for infinitesimal perturbations
of fixed points but becomes problematic for global stability analysis,
which attempts to find all attractors in a state space box and then
continue them. In this case, matching attractors from one parameter
to the next becomes a crucial part of the algorithm. For instance, the
analysis presented in Fig. 2 is only coherent because of the powerful
matching procedure implemented in our framework. Without it, the
colors would alternate arbitrarily at each parameter value.

In the featurize-and-group algorithm, matching and grouping
are the same process. In RAFM, matching is rather sophisticated and
operates on a parameter-by-parameter basis. Each time the param-
eter is incremented and the new attractors are found, a matching
sub-routine is launched. The distance between attractors before and
after the parameter change is estimated, with “distance” being any
symmetric positive-definite function defined on the space of state
space sets. By default, the Euclidean distance of the attractor cen-
troids is used because it is extremely fast and in the majority of
cases, it works very well. A more rigorous metric is the Hausdorff
distance,40 which is also provided out of the box. Additionally, “dis-
tance” is not limited to state space distances. It could be the distance
across dynamic invariants. For example, one can track the Lyapunov
spectrum or the fractal dimension20 of each attractor and define a
distance in terms of their absolute difference. This is easily possible
in our code implementation because it is part of DynamicalSys-
tems.jl, which offers algorithms for computing Lyapunov spectra or
fractal dimensions out of the box.

After the distance is computed between all new-old attractor
pairs, the new attractor labels are matched to the previous attractor
labels that have the smallest distance to them, prioritizing pairs with
the smallest distance. The matching respects uniqueness, so that
once an attractor from the previous parameter has been matched,
this attractor is removed from the matching pool and cannot be
matched to an additional new attractor. Additionally, a distance
threshold value can be provided, so that old-new pairs of attractors
whose distance is larger than this threshold are guaranteed to get
assigned different IDs. Note that in principle finding the attractors
and matching them are two completely independent processes. If
after the continuation process is finished the user decides that the
chosen matching procedure was unsuitable, they can launch a “re-
matching” algorithm with different matching “distance” function,
without having to re-do any computations for finding the attractors
or their fractions (i.e., matching only renames attractor labels but
leaves the attractors themselves untouched).

The last thing to highlight in this section is the desirable
post-processing of grouping similar enough attractors. This hap-
pens automatically if one uses the featurize-and-group continuation
method. However, taking as an example Fig. 2(e), the RAFM method
finds countless individual attractors. For the researcher, the individ-
ual attractors may be useful for careful analysis, but it is sometimes
desirable to group similar enough attractors. In our framework,
it is possible to use exactly the same grouping infrastructure uti-
lized by the featurizing-and-grouping continuation, but now applied
to the outcome of RAFM as a post-processing step. In Fig. 3,

FIG. 3. Highlights of the matching or grouping components of the framework.
(a) Matching attractors of the Hénon map based on their period. In the chosen
parameter range, an attractor is transformed from chaotic, to period 3, 7, and 14.
The attractor stays in approximately the same state space location, so whether we
consider the centroid distance or the Hausdorff distance, the attractor would be
matched to itself in all parameter values due to the very small distance evaluation.
Here, however, we use as distance f(A, B) =

∣

∣log2(len(A)) − log2(len(B))
∣

∣,
with len measuring the amount of cells (of the state space tessellation) the attrac-

tor covers, and threshold t = 0.99̄. This effectively means that matched attractors
must have periods with a ratio less than 2. (b) Grouping attractors of Fig. 2(e) so
that attractors are grouped into those whose third species has a population of
less than 0.01 or more. (c) A replication of the MCBB28 results for a second-order
Kuramoto oscillator network representing a power grid, using the featurize-and-
group continuation implementation from our framework. Features extracted from
sampled trajectories are the means of the frequencies. (d) Same system as (c),
but using the recurrence continuation and matching attractors by their centroid
distance (i.e., as in Fig. 2). The only extra step was to post-process the results so
that all attractors with basins fractions less than 4% are aggregated [as was done
in Ref. 28 and in panel (c)]. (e) Attractor basin fractions for a network of first-order
Kuramoto oscillators; the attractors here are found and matched using the recur-
rences continuation and then grouped via a histogram of their synchronization
order parameter R (Chap. 9 of Ref. 20). Attractors whose order parameter R fall
in the same histogram bin are aggregated.
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we highlight examples that utilize the powerful matching and/or
grouping components offered by our framework.

III. DISCUSSION

A. Comparison with traditional continuation-based

bifurcation analysis

In Table I and Fig. 4, we provide a careful comparison between
CBA and RAFM. A direct comparison of the two approaches is

difficult, since their operational basis, main output, and even the
way stability is quantified, are fundamentally different. On one hand,
CBA finds and continues the curves of individual fixed points or
limit cycles across the joint state-parameter space on the basis of
Newton’s method. The stability is quantified in terms of local stabil-
ity (also called exponential stability via the Jacobian eigenvalues). On
the other hand, RAFM first finds attractors at all parameter values
using the original system equations and then matches appropriately
similar attractors across different parameters, giving the illusion
of continuing them individually. Additionally, the curves of stable

TABLE I. A comparison between CBA and RAFM as tools for analyzing the stability of a dynamical system vs a parameter. Entries are colored blue when they contain advantages

of CBA over RAFM, and green when they contain advantages of RAFM over CBA.

# Traditional continuation-based bifurcation analysis (CBA) Recurrences-based attractor find-and-match continuation (RAFM)

1 Provides curves of unstable fixed points/limit cycles. Only finds attracting sets in the formal attractor sense (i.e., saddles,
stable/unstable manifolds are excluded).

2 Several possibilities for how to continue bifurcation curves. Does not explicitly detect bifurcation points.
3 Does not put limits on state space extent. Needs as an input a state space box that may contain attractors.
4a Likely to find fixed points/limit cycles with small or even

zero basins.
Probability to find attractor is proportional to its basins fraction.

5 Detects and classifies local bifurcation points. Does not compute Jacobian eigenvalues at all.
6b Finds and continues fixed points and periodic orbits. Finds and continues any kind of attractors, including quasiperiodic

or chaotic.
7c User must manually search for multistability. Different attractors are automatically detected (via random

sampling).
8 Does not compute the basins of attraction or their fractions. Computes the fractions and, if computationally feasible, also the full

basins.
9d Limited use in indicating loss of stability. More likely to indicate loss of stability as the basin fraction

approaches 0.
10e Parameter change may not affect linear stability of all fixed

points.
Parameter change is more likely to affect global stability of all

attractors.
11 No sophistication on matching fixed points. Sophisticated, user-configurable matching of attractors.
12f Requires expertise and constant interventions. Conceptually straightforward even in advanced use-cases.

aNewton’s method transforms the dynamical system into a discrete time system with different basins, making attractors with very small or
zero basin sizes have much larger ones instead.
bThe CBA method may also find tori but this scenario is highly specific to the exact system and bifurcations it undergoes and not applicable
in the general sense. Additionally, the word “finds” should be taken with a grain of salt. The user needs to provide an initial condition that
would be in the Newton-method-transformed basin of attraction of, e.g., the limit cycle the method has to find. This basin cannot be related
with the real system dynamics in any obvious way, requiring an arbitrary degree of trial-and-error to find an initial condition leading to a
limit cycle. Alternatively, the user must find the limit cycle prior to using CBA and provide a point on the cycle for the continuation.
cIn RAFM, attractors that are not being continued from a previously found one, are found via random sampling of initial conditions in the
given state space box. The probability to find an attractor is equal to 1 − (1 − f)n with f the basins fraction of the attractor and n the amount
of sampled initial conditions.
dChanging a parameter often does not meaningfully increase the unstable eigenvalues of the Jacobian matrix, which would indicate loss of
stability (Chap. 12 of Ref. 20). On the other hand, basin fractions typically decrease smoothly toward zero as an attractor loses stability,26

although this is not guaranteed to be the case,41 in which scenario, neither method indicates loss of stability.
eChange of a parameter may affect the local (exponential) stability of a single fixed point, not all, providing flat lines in the bifurcation diagram
for the unaffected fixed points. On the contrary, loss of global stability of any attractor affects (typically increases) the global stability of all
other attractors.
fAdvanced applications of traditional bifurcation analysis software require several manual interventions during the process and tuning of
several configuration options, many of which do not have an immediately transparent role, requiring an expert user to make several decisions.
The simplicity of our approach comes in part because of the brute-force nature of mapping individual initial conditions to attractors to collect
the fractions, the intuitive nature of how attractors are matched (which is also user configurable), and the lack of necessity of interventions:
after the configuration is decided, the framework runs automatically.
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FIG. 4. Stability analysis of a three-dimensional neural dynamicsmodel,42 plotting as information themaximum of the first variable of the dynamical system. For the parameters
used, the model undergoes saddle-node and Hopf bifurcations and features the bistability of a limit cycle and a fixed point. Left: analysis using the BifurcationKit.jl24 Julia
package for CBA. The analysis must happen in two steps; first, the branch of a fixed point is found and continued, and then, using a different algorithm, the branch of the
limit cycle is continued from the Hopf bifurcation. We scatterplot special points found and labeled by the process. The computation required ∼19 s on an average laptop.
Right: analysis of the same model using our framework. The analysis happens in one fully automated step, after deciding the state space box and other meta-parameters.
For the analysis, we purposefully demanded unnecessarily high accuracy, using a ninth-order ODE solver38,43 with tolerances of 10−9, and requiring 1000 recurrences before
claiming convergence in the recurrence algorithm.31 The process integrated in total 101 000 initial conditions, yet required ∼16 s on the same laptop. Attractor matching
utilized a threshold: attractors whose distance in terms of their maximum value of the first variable (i.e., same information plotted in the figure) exceeding 3.0 are not matched.

fixed points in the joint parameter space (Fig. 4) are only a small part
of the information our framework provides. Important, provided
information is the basin fractions and how they change, which is
completely absent in CBA.

Based on this comparison, we argue that the RAFM algorithm
and the global stability framework we provide is an essential tool for
stability analysis of dynamical systems. We further believe that in
some application scenarios, RAFM will supersede CBA, especially
given the difference in required user expertise, required interven-
tions, and steepness of the learning curve that CBA has over RAFM.
In other scenarios, we envision that RAFM can be used as the default
analysis method, providing the majority of information, and CBA
then becomes a more in-depth analysis of fixed points, limit cycles,
bifurcations, and even stable/unstable manifolds, if such analysis is
required.

B. Comparison between attractor-finding methods

Our framework provides two radically different methods for
finding attractors: the recurrence-based and the featurize-and-
group approach. Generally speaking, the recurrence-based method
should be preferred when possible, because of its accuracy (find-
ing the actual attractors), and the possibility for follow-up analy-
sis of found attractors. However, the featurize-and-group method
should be preferred when the recurrence-based method fails,
because, e.g., the provided state space tessellation is ill-defined, or
because computational demands exceed what is available, such as in
higher-dimensional systems with chaotic attractors. In Table II, we
provide a comprehensive comparison between the two methods.

IV. MATERIAL AND METHODS

A. Featurizing methods for finding attractors

We group together two similar methods that have been recently
proposed in the literature for finding attractors. One is called Monte
Carlo basin bifurcation analysis (MCBB),28 the other is basin stabil-
ity analysis (bSTAB).29 Both methods work by identifying attractors
as clusters of user-defined-features of trajectories. Their first step
is to integrate N randomly chosen initial conditions inside a cer-
tain box in state space. The integration is done for some time T,
after a transient Ttr. Both T need to be sufficiently large so that
the trajectories correspond to the systems’ long-term behavior and
also Ttr needs to be large to avoid the transient regime. Each trajec-
tory Ex(t) is then transformed into a vector of K features EF, specified

by some featurizer function Ef such that Ef(Ex(t)) = EF that has to be
defined by the user. Each vector of features EF describes a point in
the K-dimensional space of features f1 × f2 × · · · × fK. The key idea
is that features belonging to the same attractor cluster together in
state space, so that each attractor forms a distinct cluster (a cloud
of points) in feature space. The final step in the method is to there-
fore cluster the features. The clustering algorithm chosen for this
is the Density-based Spatial Clustering of Applications with Noise
(DBSCAN).30 It first classifies two points as neighbors if their dis-
tance if smaller than a radius ε. Then, it clusters together points with
many neighbors (equal or more than a parameter minPts), and leave
as outliers points with too few neighbors (less than minPts). The
radius ε is a crucial parameter for the algorithm and often needs
fine tuning for proper clustering. The methods by Refs. 28 and 29
use two different ways to identify a value for ε. Authors in Ref. 28
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TABLE II. Comparison the two main methods of finding and continuing attractors.

Aspect Recurrences-based attractors find and match (RAFM) Featurize and group across parameter (FGAP)

Valid systems Dynamical systems whose attractors satisfy the
Poincaré recurrence theorem, irrespective of their

basin structure.

Anything, including stochastic systems, provided the user
has found features that can distinguish different

“attractors” (which could be actual attractors or something
similar in the case of stochastic systems).

Accuracy Highly accurate: finds actual attractors using their
unique property of their state space location.

Less accurate, as trajectories are transformed into features,
and attractors correspond to groups of features. The
correspondence is not guaranteed to be unique or

reversible.
Info stored Stores samples of points on the found attractors. Stores a user-provided function of the group of features (by

default: the centroid of the group).
Speed Very fast for low-dimensional systems and for

systems whose attractors are fixed points or periodic
orbits. Becomes slow for attractors with long

recurrence times, such as high-dimensional systems
(&80-D) with chaotic attractors or very fine state

space tessellations.

Performance is independent of system attractors. It linearly
scales with the number of features, the amount of initial
conditions, the transient integration time, and the total

integration time. Parallelizable. In addition is the cost of the
grouping process, which is huge for clustering but trivial
for histograms or nearest feature. See also the benchmark

comparison in Sec. IV.

Memory Memory allocation scales as (1/ε)1, with ε the state
space tessellation size and 1 the capacity dimension
of the attractor, which is often much lower than the

state space dimension.20

Memory allocation of the trajectories scales linearly with
integration time and sampling rate. Additionally,

specifically for clustering used as the grouping mechanism,
the total memory allocated is proportional to the square of

(initial conditions × parameter values) which, if one
attempts to obtain accurate results, is often beyond the

available memory on a typical computer (in the software
implementation, we offer the possibility of an on-disk

allocation in this case).
Necessary input

(guesswork)
A state space box that may contain the attractors and

a state space tesselation that is fine enough to
differentiate the location of attractors.

A state space box that may contain the attractors; a function
mapping attractors to features, such that different attractors

produce different features; how much transient time to
discard from time evolution; how much time to evolve and

record the trajectory for, after transient.
Meta-parameters The parameters of the finite state machine of the

recurrences algorithm31 and the time stepping 1t.
All are crucial, but all are conceptually

straightforward.

The integration time, sampling rate, and all parameters of
the grouping procedure (such as those for DBSCAN or the
histogram bin in feature space). Integration parameters are

straightforward, but optimal parameters related to the
grouping are much harder to guess.

Trouble-shooting Easy to troubleshoot. At any point, the actual
trajectories and attractors are accessible and why a
failure occurs is typically easy to find out. Matching

of attractors happens parameter-by-parameter;
hence, individual parameter slices can be isolated

and analyzed to identify where matching has failed
and why (distances between attractors is also

provided information).

Difficult to troubleshoot. It does not find the actual system
attractors, so the user must always reason in terms of

features. When grouping using clustering (DBSCAN), the
grouping process essentially operates as a black box after

the features have been computed, making it harder to
comprehend failures. Matching of attractors happens at the

same time as grouping, making it nearly impossible to
understand why an expected matching failed during the

continuation process.
Failures Algorithm may fail if state space tessellation is not

fine enough and a grid cell may contain points from
different attractors. Chaotic saddles and other sticky
sets generate very long transients44 and the algorithm

can interpret them as attractors. Additionally, the
algorithm is sensitive to the time step 1t and the

used integrator. For limit cycles, it is often the case
that a non-adaptive integrator needs to be used.

Sticky sets that are formally not attractors will be
interpreted as attractors. Additionally, for ill-defined

features, any group of trajectories could be interpreted as
an attractor, which is not desirable in the context of this
paper. Clustering via DBSCAN may fail unexpectedly or
finding the optimal radius for the clustering may yield

incorrect results.
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use a method that looks at the ordered distance of the k nearest
neighbors to each point in the dataset and finds the first knee (high
derivative point).30,45 Authors in Ref. 29 iteratively search for the ε

that maximizes a criterion of clustering quality. To calculate this cri-
terion, they evaluate the silhouette of each cluster, which measures
how similar each point is to the cluster it currently belongs to, com-
pared to the other clusters, and ranges from −1 (worst matching) to
+1 (ideal matching). This leads to one silhouette value per feature;
the authors then take the minimum value as the representative for
the clustering quality for each radius. The chosen radius is, thus, the
value that leads to the highest minimum silhouette. In both methods,
the clusters found by DBSCAN are considered then as attractors.

B. Recurrence-based method for finding attractors

The inputs to this method are a dynamical system, a state space
box that may contain the attractors (although initially it may be arbi-
trarily large) and a tessellation of the given box into cells. An initial
condition of the system is evolved step-by-step with time step 1t.
At each step, the location of the trajectory in state space is mapped
to its cell and that the cell is labeled as visited. If the dynamical sys-
tem has attractors and they satisfy the Poincaré recurrence theorem
(Chap. 9 of 20), the trajectory is guaranteed to revisit cells it has
visited before. Once a pre-decided number of recurrences nf have
been accumulated consecutively (i.e., enough previously visited cells
are visited again), the method claims to have found an attractor. It
then proceeds to locate the attractor accurately, by collecting a pre-
decided number nl of points on the attractor [Fig. 1 of Datseris and
Wagemakers31 and panel (3) of Fig. 1]. A finite state machine for-
mulation keeps track of coexisting attractors, so that each attractor is
unique. It also keeps track of divergence to infinity by counting steps
nd outside the box, ensures algorithm termination by setting a total
nm of max amount of 1t iterations, and makes convergence faster
by utilizing information already encoded in the grid: if the trajec-
tory visits consecutively a relatively small number nr of cells already
labeled as an attractor, convergence is already eagerly decided, i.e.,
converging to an already found attractor is much faster than find-
ing that attractor for the first time. Hence, 1t, nf, nl, nd, nm, and nr

are the meta-parameters of the algorithm and have sensible default
values that work in most cases. More information on the method
can be found in Ref. 31. Notice that the recurrence method is dif-
ferent at a fundamental level from the Global Analysis of Invariant
Objects (GAIO)46 and other cell mapping techniques.47 We expand
more on this in Sec. IV. Also, note that the method is not perfect; it
may identify two attractors when only one exists due to, e.g., choos-
ing too low convergence criteria nl, nf, or due to a commensurate
period of attractor and integrator time step. However, once again
the importance of finding the “actual” attractors becomes appar-
ent: further analysis by, e.g., plotting the attractors, immediately
highlights such a failure and how to deal with it, and we also pro-
vide several tips in the documentation of our method in the code
implementation.39

C. Improvements to the recurrences method

A large drawback of the recurrences method was that it scaled
poorly with the dimension D of the dynamical system. If an ε-sized
tessellation of the state space is chosen, then memory allocated

scaled as 1/εD. We now use sparse arrays to store accessed grid loca-
tions. This changes the memory scaling to 1/ε1, with 1 the capacity
dimension20 of the attractor, which is typically much smaller than D
(and is only 1 for limit cycles).

D. Improvements to the featurizing methods

First, we have changed the criterion used for finding the opti-
mal radius in the clustering method. We have found the knee
method consistently more unreliable than the iterative search. We
have also found that the mean, instead of the minimum, silhouette
value as the measure of clustering quality leads to better cluster-
ing. For instance, this leads to correct clustering in the Lorenz86
system, whereas the minimum value criterion did not. Further-
more, our method searches for the optimal radius with a bisection
method, instead of the linear method used by authors in Ref. 29. This
significantly speeds up the code. Another simple modification we
introduced is to rescale the features in each dimension (f1, f2, . . . , fK)
into the same interval, for instance, [0, 1]. We noticed that the clus-
tering method performs poorly if the features span different ranges
of values, and this simple modification proved to be a very powerful
solution. Third, we allow the integration of all initial conditions to
be done in parallel, using several computer cores, which speeds up
the solution. Last, grouping in our framework can also happen based
on a histogram in feature space.

E. Code implementation

The code implementation of our framework is part of the
DynamicalSystems.jl library32 as the Attractors.jl package.39 The
code is open-source code for the Julia language, has been developed
following best practices in scientific code,48 is tested extensively, and
is accompanied by a high quality documentation. An example code
snippet is shown in Listing 1.

In addition to the quality of the implementation, three more
features of the code are noteworthy. First, that it is part of Dynam-
icalSystems.jl instead of an isolated piece of code. This integration
makes the simplicity and high-levelness of Listing 1 possible and
makes the input for the code easy to set up. Moreover, the direct
output of the code can be used with the rest of the library to fur-
ther analyze attractors in terms of, e.g., Lyapunov exponents or
fractal dimensions. Indeed, in the provided code example Listing 1,
we compute the Lyapunov spectra of all found attractors, across all
parameter values, in only two additional lines of code. Second, uti-
lizing the Julia language’s multiple dispatch system,49 the code is
extendable. It establishes one interface for how to map initial condi-
tions to attractors and one for how to group features, both of which
can be extended, and yet readily be usable by the rest of the library
such as the continuation methods. Third, a lot of attention has been
put into user experience, by establishing a short learning curve via
a minimal user interface, by carefully considering how to provide
the output in an intuitive format, as well as providing easy-to-use
plotting functions that utilize the code output. More overview and
information on the code or its design can be found in its online
documentation or source code.39
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F. Simulated systems

In this section, we state the dynamic rules (equations of
motion), parameter values, and state space boxes used for all systems
in the main text.

1. Chaotic Lorenz84

This model due to Lorenz33 is an extremely simplified represen-
tation of atmospheric flow as a low-dimensional dynamical system
with equations,

ẋ = −y2 − z2 − ax + aF,

ẏ = xy − y − bxz + G,

ż = bxy + xz − z,

and parameters F = 6.846, a = 0.25, b = 4.0, and G ranging from
1.34 to 1.37. The state space box and tessellation was from −3 to
+3 discretized into 600 points in each dimension.

2. Climate toy model

The high-dimensional toy model of global climate is due to
Gelbrecht et al.,34

Ẋn = (Xn+1 − Xn−2)Xn−1 − Xn + F

(

1 + β
T − T̄

1T

)

,

n = 1, . . . , N; n ± N ≡ i,

Ṫ = S
(

1 − a0 + a1

2
tanh

(

T − T̄
)

)

− σT4 − α

(

E(X)

0.6F
4
3

− 1

)

,

E(X) = 1

2N

N
∑

n=1

X2
n,

with parameter values identical to those in Table 1 of Ref. 34; how-
ever, we used N = 32 X variables. The parameter we varied was the
solar constant S from 5 to 19. The initial dynamical system above
was transformed to a projected dynamical system to the space of T,
E and M = ∑

n Xn/N, as also done in Ref. 34. In this projected space,
the box and tessellation we used was from −2 to 10 for M, 0 to 50
for E, and 230 to 350 for T with 101 points in each dimension.

3. Cell genotypes

The cell differentiation model MultiFate proposed in Ref. 13 is
given by

Ȧi = α + β
Bn

i

1 + Bn
i

− Ai, i = 1, 2, 3,

with, for each i,

Bi = 2A2
i

Kd + 4(A1 + A2 + A3) +
√

K2
d + 8(A1 + A2 + A3)Kd

,

with parameters α = 0.8, β = 20, Kd = 1, n = 1.5. The state space
grid ranged the interval [0, 100] for all 3 dimensions, with 100 grid
cells per dimension.

4. Turbulent flow

We reproduce here the equations resulting of a Galerkin projection of a stream function of a fluid limited to a finite cell volume, describing
a low-dimensional turbulent shear flow model by36

da1

dt
= β2

Re
− β2

Re
a1 −

√

3

2

βγ

καβγ

a6a8 +
√

3

2

βγ

κβγ

a2a3,

da2

dt
= −

(

4β2

3
+ γ 2

)

a2

Re
+ 5

√
2γ 2

3
√

3καγ

a4a6 − γ 2

√
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6καγ καβγ
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√

3

2
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κβγ
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√
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2
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κβγ
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dt
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6

αβγ

καγ κβγ

(a4a7 + a5a6) + β2(3α2 + γ 2) − 3γ 2(α2 + γ 2)√
6καγ κβγ καβγ

a4a8,

da4

dt
= −3α2 + 4β2

3Re
a4 − α√

6
a1a5 − 10α2

3
√

6καγ

a2a6 −
√

3

2

αβγ

καγ κβγ

a3a7 −
√

3

2

α2β2

καγ κβγ καβγ

a3a8 − α√
6

a5a6,

da5

dt
= −α2 + β2

Re
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6
a1a4 + α2

√
6καγ

a2a7 − αβγ√
6καγ καβγ

a2a8 + α√
6
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6καγ κβγ

a3a6,

da6
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3Re
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6
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√

3

2
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√
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da8

dt
= −α2 + β2 + γ 2

Re
a8 + 2αβγ√

6καγ καβγ

a2a5 + γ 2(3α2 − β2 + 3γ 2)√
6καγ κβγ καβγ

a3a4,

da9

dt
= −9β2

Re
a9 +

√

3

2

βγ

κβγ

a2a3 −
√

3

2

βγ

καβγ

a6a8,

καγ =
√

α2 + γ 2,

κβγ =
√

β2 + γ 2,

καβγ =
√

α2 + β2 + γ 2.

Global parameters are Lx = 1.75π , Lz = 1.2π , α = 2π/Lx; and
β = π/2, γ = 2π/Lz.

5. Ecosystem dynamics

The population dynamics model of competing species is
described by the following equations37 for n species and three
resources:

Ṅi = Ni[µi(R1, R2, R3) − m], i = 1, . . . , n,

Ṙj = D(S − Rj) −
n
∑

i=1

cjiµi(R1, R2, R3)Ni, j = 1, 2, 3.

The term µi(R1, R2, R3) is given by, for each i = 1, . . . , n,

µi(R1, R2, R3) = min

(

rR1

K1i + R1

,
rR2

K2i + R2

,
rR3

K3i + R3

)

.

The parameters used in the figure are: n = 5, m = 0.25, S = 10,
r = 1.0,

K =





0.20 0.05 1.00 0.05 1.20
0.25 0.10 0.05 1.00 0.40
0.15 0.95 0.35 0.10 0.05



 ,

c =





0.20 0.10 0.10 0.10 0.10
0.10 0.20 0.10 0.10 0.20
0.10 0.10 0.20 0.20 0.10



 ,

FIG. 5. Benchmark comparison between all methods for finding attractors and their basins in DynamicalSystems.jl. Note that the featurizing method scales quadratically
with the number of initial conditions, because the DBSCAN algorithm scales quadratically.
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and D is given in the axis of the figure. The grid in state space was
defined in the interval [0, 60] for all dimensions and discretized to
include 300 grid squares. The initial conditions in a grid in the same
interval, but with only two grid squares to dimension, rendering 28

initial conditions for the eight-dimensional state space.

6. Hénon map

A simple yet famous two-dimensional discrete time map with
constant Jacobian due to Hénon

xn+1 = 1 − ax2
n + yn,

yn+1 = bxn,

with b = 0.3 and a ranging from 1.2 to 1.25. We used the state space
box from −2.5 to 2.5 with 500 cell points in each dimension.

7. Second-order Kuramoto oscillators on networks

This model of coupled oscillators reproduces the dynamics of
synchronous generators coupled over a power grid. The equations
of the nodes are

φ̇n = ωn,

ω̇n = ±1 − 0.1ω − K
∑

j

Aijsin(8i − 8j),

where φn and ωn are the phase and the frequency of the oscillator
n. The adjacency matrix Aij contains all the information about the
coupling of the system and is taken from a random regular graph of
degree 3. The leading coefficient of the second equation is 1 when n
is odd and −1 otherwise. K is the coupling coefficient between oscil-
lators that is used as a parameter for the study of the basins fractions.
The panel (d) of Fig. 3 of the article has been processed such that
basins with less than 4% of the basins fractions are aggregated into
the cluster called “outliers.”

8. Kuramoto coupled oscillators on networks

This is the classical network of N phase oscillator with a global
coupling,

φ̇n = ωn − K

N

∑

j

sin(φi − φj).

Frequencies of the individual oscillators ωn are spread evenly within
the interval [−1, 1].

Listing 1: Julia code snippet showcasing the usage of the Dynami-
calSystems.jl implementation of our framework. The code produces
panel (a) of Fig. 2. The main output of the code are two vectors, con-
taining the basins fractions and attractors at each parameter value,
respectively. The fractions and attractors are formulated as dictio-
naries, mapping attractor labels (the integers) to basin fractions and
sets of points on the attractor, respectively. At its end, the code
snippet computes the Lyapunov spectra of all found attractors by
using the first point on each attractor as initial condition for the
computation of the Lyapunov spectrum.

G. Computational performance comparison

The benchmarks presented in Fig. 5 provide a comparison
between techniques for finding attractors for a discrete and contin-
uous dynamical system.
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H. Comparison with GAIO and cell mapping

techniques

The numerical approximations of the attractors and their
basins of attraction can be achieved with other well known
numerical tools. The cell mapping and the GAIO algorithms rely
on a subdivision of the state space. In its simplest form,47 the cell
mapping technique transforms the dynamical system into a dis-
crete mapping. Each cell of the state space is mapped to another
cell following the dynamics during a fixed time T. The new repre-
sentation of the dynamical system is a directed graph where each
node represents an initial condition on the tessellated phase space
and a single edge starts from this node to another one in the graph.
Once the full mapping has been obtained, efficient search algorithms
inspired from graph theory approximate the basins and the attrac-
tors. The computational effort is centered around the construction
of the mapping and depends directly on the discretization of the
state space. The computational complexity explodes with the system
dimension and, hence, limits its practical use to low-dimensional
systems.

The Global Analysis of Invariant Objects (GAIO) algorithm50

is also based on the discretization on a region but only a subset of
cells is subdivided following the dynamics of the system. An iterative
process allows us to approximate accurately the attractor manifold
and also other invariant sets embedded in the state space. The com-
plexity only depends on the dimension of the manifold not on the
dimension of the state space, which is a considerable gain over the
cell mapping. Since the method is focused on global attracting sets,
it is not usable for multistable systems, which are the main focus of
our work.

These two techniques are hard to apply in estimating the basins
fractions across a parameter value. The cell mapping technique
requires a full description of the state space for each parameter, mak-
ing the random sampling of the phase space impossible. The GAIO
technique can continue a global attractor but will fail if two or more
exist at any parameter value.46

We should mention another algorithm using interval arith-
metic for continuation of the dynamics.51 The continuation is
performed in a database space using Conley indices and Morse
decomposition. Although very effective for low-dimensional maps,
it lacks the flexibility and ease of use of our proposed method.
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