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A B S T R A C T

Similar to what happens in the pairwise network domain, the communities of nodes of a hypergraph (also
called higher-order network) are formed by groups of nodes that share many hyperedges, so that the number
of hyperedges they share with the rest of the nodes is significantly smaller, and therefore these communities
can be considered as independent compartments (or super-clusters) of the hypergraph. In this work we present
a method, based on the so-called derivative graph of a hypergraph, which allows the detection of communities
of a higher-order network without high computational cost and several simulations are presented that show
the significant computational advantages of the proposed method over other existing methods.
1. Introduction

In the last thirty years, Network Science has grown and developed
in such a way that it has become one of the hottest and most successful
research fields, with interdisciplinary applications in areas as different
as genetics and neuroscience, systems biology, artificial intelligence,
meteorology or cybersecurity [1–8]. Complex network models have
become indispensable elements for the representation and simulation
of the different types of interactions and relationships between the
different parts of a system, being applied in many fields such as engi-
neering, linguistics, social networks or economics [6,9–16]. However,
there are many contexts and situations in which it is not possible
to represent the relationships between the different components of a
system in terms of pairwise interactions, so that to obtain an adequate
model of the system it is necessary to consider interactions of an order
higher than two [17–24]. The emergence of new structures and models
with multiple applications have made it possible to represent different
types of interactions between the constituent elements of a complex
system in a very efficient way. Thus, by extending the concept of
interaction between two nodes of a network to an interaction of more
than two nodes, the concept of hypergraph or higher-order network
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appears naturally [17,18,25,26]. It is noteworthy that, as in the case of
networks with pairwise connections, in real higher-order networks the
connections between nodes are very heterogeneous, with some nodes
having multiple connections, while others have a much lower degree of
interaction, resulting in groups of nodes with a high concentration of
interactions between them and a limited number of interactions with
nodes in other groups. Thus, a more or less clear division of the nodes
into different groups appears, revealing a community structure that
allows the higher-order network to be analyzed at the mesoscale level.
At this level, it is possible to study the higher-order network from a
new graph in which the vertices are the communities and the edges
represent an appropriate and specific size of connections or interactions
between them. The underlying idea is that each community clusters
nodes that share an important number of properties and that probably
play a similar role in the functioning of the network.

It is worth noting that the problem of identifying clusters and
modules within a network from its topology has a long tradition. This
problem has been studied in relation to phenomena and in the field of
very different disciplines (in the context of combinatorial graph theory
vailable online 2 November 2023
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this problem is known as ‘‘graph partitioning’’). Thus some approaches
to this problem are based on optimization, statistical inference, random
walkers, building a hierarchical dendrogram or even obtaining the com-
munities from a local seed by adding nodes until a local optimal result
with respect to some quality function is obtained [27–29]. In any case
the community structure in networks with pairwise interactions has
been extensively studied in the literature [27–37]. In fact, algorithmic
methods for community detection have been developed hand in hand
with the many disciplines in which this tool has applications [2,4,8,11,
27,29,33,34]. On the other hand, within the study and identification
of groups of nodes that interact closely and probably play a similar
role in the considered structure, the detection of communities in the
context of higher-order networks has also received some attention from
the network science community [38–41]. In this paper we present a
new method for community detection in higher-order networks based
on the concept of derivative graph associated to a hypergraph [10,42],
which, in addition to being naturally adapted to higher-order networks,
presents certain computational advantages over other algorithms used
in this context.

The structure of this paper is as follows. After this introduction, Sec-
tion 2 is devoted to develop some ideas about the concept of derivative
of a hypergraph and to establish the fundamentals for a new method
to detect communities in a hypergraph through its derivative graph.
In Section 3 we apply the mathematical concepts and the structures
defined in the previous sections to obtain a new algorithm to detect
communities existing in a higher order network. Section 4 is devoted
to applying the instruments and tools developed to obtain the cor-
responding characteristic communities to several practical examples,
both synthetic and from the real world. Finally in Section 5 we present
some conclusions of this work.

2. Basic concepts and some preliminary results

A graph (or network) is a pair of sets 𝐺 = (𝑋,𝐸) in which 𝑋 =
{1,… , 𝑁} is a finite set of nodes and 𝐸 = {𝑒1,… , 𝑒𝑚} is a set of edges (or
links between certain pairs of nodes). In the following, we will denote
by 𝑒𝑖𝑗 ∈ 𝐸 the edge between nodes 𝑖 and 𝑗, although sometimes we
will also denote the edge 𝑒𝑖𝑗 by {𝑖, 𝑗}. Finally, a weighted graph is a
graph in which each edge 𝑒𝑖𝑗 has associated with it a numerical value
𝑤(𝑒𝑖𝑗 ) = 𝑤𝑖𝑗 called its weight.

In the same way, following [20], a hypergraph is a pair of sets
 = (𝑋, 𝜀) in which 𝑋 = {1,… , 𝑁} is a finite set of nodes and
𝜀 = {ℎ1, ℎ2,… , ℎ𝑛} is a collection of subsets of 𝑋 such that ℎ𝑖 ≠ ∅ (𝑖 =
1, 2,… , 𝑛) and 𝑋 =

⋃𝑛
𝑖=1 ℎ𝑖. The elements of 𝜀 are called hyperedges.

Thus, hypergraphs appeared as the natural extensions of graphs to
describe group interactions between sets of nodes.

Rather than working directly with these sets, it is common to
resort to some matricial representation of the graph or hypergraph.
In hypergraph contexts, the incidence matrix 𝐼() ≡ (𝐼𝑖ℎ) ∈ R𝑁×|𝑒|

is usually defined as

(𝐼𝑖ℎ) =

{

1 if 𝑖 ∈ ℎ,
0 otherwise.

(2.1)

It is not difficult to check that

𝐼()𝑡 ⋅ 𝐼() = 𝐴() = (𝑎𝑖𝑗 ) ∈ R|𝜀|×|𝜀|

and

𝐼() ⋅ 𝐼()𝑡 = 𝐴() = (𝑎𝑖𝑗 ) ∈ R𝑁×𝑁 ,

where

𝑖̂𝑗 =
{

|ℎ𝑖| if 𝑖 = 𝑗,
|ℎ𝑖 ∩ ℎ𝑗 | if 𝑖 ≠ 𝑗,

and

𝑎𝑖𝑗 =
{

|{ℎ ∈ 𝜀 ∣ 𝑖 ∈ ℎ}| if 𝑖 = 𝑗, (2.2)
2

|{ℎ ∈ 𝜀 ∣ 𝑖, 𝑗 ∈ ℎ}| if 𝑖 ≠ 𝑗.
The matrix 𝐴() = (𝑎𝑖𝑗 ) ∈ R𝑁×𝑁 , hereinafter denoted by 𝐴 = (𝑎𝑖𝑗 ), is
called frequency matrix of . The concept of derivative graph makes
it possible to quantify the degree of dissimilarity between the nodes
of a hypergraph. In fact, it can be said that, since the introduction of
Jaccard’s index [43], through different adaptations and generalizations
of this concept, it can be said that quantifying the similarity between
models and structures is one of the most important aspects that has
contributed to the development of theories and models in science and
technology [43–46].

In the following we will consider the methodology introduced
in [10,42] in order to analyze and quantify the similarity between two
nodes 𝑖, 𝑗 of a hypergraph. The concept of derivative of a hypergraph
with respect to two nodes allows us to quantify the heterogeneity
and similarity between two nodes of the considered hypergraph. Thus,
if  = (𝑋, 𝜀) is a hypergraph whose associated frequency matrix is
𝐴 = (𝑎𝑖𝑗 ), the derivative of  with respect to the pair of nodes 𝑖, 𝑗 ∈ 𝑋 is
he numerical value 𝜕

𝜕{𝑖,𝑗} obtained by applying the following formula:

𝜕
𝜕{𝑖, 𝑗}

=
𝑎𝑖 − 𝑎𝑖𝑗 + 𝑎𝑗 − 𝑎𝑖𝑗

𝑎𝑖𝑗
=

𝑎𝑖 − 2𝑎𝑖𝑗 + 𝑎𝑗
𝑎𝑖𝑗

. (2.3)

The numerical value of 𝜕
𝜕{𝑖,𝑗} is called degree of independence of 𝑖 and

𝑗 with respect to . Obviously, if there is not at least one hyperedge
∈ 𝜀 such that 𝑖, 𝑗 ∈ ℎ, it happens that 𝜕

𝜕{𝑖,𝑗} = ∞, and if ∀ℎ ∈ 𝜀 (𝑖 ∈
⇔ 𝑗 ∈ ℎ) then we will have 𝜕

𝜕{𝑖,𝑗} = 0.
Note that ∀𝑖, 𝑗 ∈ 𝑋 we have that 𝜕

𝜕{𝑖,𝑗} ≥ 0.
In general, it is possible (and natural) to consider each hyperedge
∈ 𝜀 as a property that a node may or may not have, or even

as an event or a process in which a particular node may or may
not participate. Thus, the value of 𝜕

𝜕{𝑖,𝑗} characterizes the (relative)
eterogeneity of the properties simultaneously satisfied by the nodes 𝑖
nd 𝑗 represented by the hyperedges of 𝜀 to which such nodes belong.
n the other hand, the smaller the value of the derivative with respect

o the pair of nodes 𝑖, 𝑗, the greater the identification and similarity
etween these corresponding nodes 𝑖, 𝑗 with respect to the considered
et of properties (in fact, if 𝜕

𝜕{𝑖,𝑗} = 0, these nodes turn out to be, from
he point of view of the structure of , indistinguishable). In other
ords, the higher the value of the derivative, the greater the number
f hyperedges (or properties) that these nodes do not share. Therefore,
t makes sense to consider the following definition [10]:

efinition 2.4. If  = (𝑋, 𝜀) is a hypergraph, the weighted graph
btained by considering the derivative of  with respect all the pairs

of nodes 𝑖, 𝑗 ∈ 𝑋, and by setting ∀𝑖, 𝑗 ∈ 𝑋 the corresponding numerical
value of 𝜕

𝜕{𝑖,𝑗} on the edge {𝑖, 𝑗} is called the derivative graph 𝜕 of ,
n such a way that if 𝜕

𝜕{𝑖,𝑗} = 0, then the nodes 𝑖 and 𝑗 collapse into a
ingle node (𝑖𝑗), and having in mind that if 𝜕

𝜕{𝑖,𝑗} = ∞, then the edge
𝑖, 𝑗} does not exist in the derivative graph.

Comprehensively, it can be said that the derivative graph 𝜕 gives
s a representation of the level of heterogeneity of participation of the
odes over the different hyperedges of .

Let us showcase this idea through the following example:

xample 2.5. Consider the hypergraph  = (𝑋, 𝜀) from Fig. 1,
here 𝑋 = {1, 2, 3, 4, 5, 6}, 𝜀 = {ℎ1, ℎ2, ℎ3, ℎ4}, and ℎ1 = {1, 2, 6}, ℎ2 =
2, 4}, ℎ3 = {3, 4, 5}, ℎ4 = {3, 5}. We have that

()𝑡 =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0 1
0 1 0 1 0 0
0 0 1 1 1 0
0 0 1 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

,

() ⋅ 𝐼()𝑡 = 𝐴() =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

1 1 0 0 0 1
1 2 0 1 0 1
0 0 2 1 2 0
0 1 1 2 1 0
0 0 2 1 2 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

.

⎝ 1 1 0 0 0 1 ⎠
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Fig. 1. Hypergraph from Example 2.5 and its corresponding derivative graph, where ‘‘identical’’ nodes (as seen by the derivative operation) have been collapsed together.
The values of the derivatives of  with respect to all the pair of
nodes of 𝐺 are, respectively:

𝜕
𝜕{1, 2}

= 1, 𝜕
𝜕{1, 3}

= +∞, 𝜕
𝜕{1, 4}

= +∞, 𝜕
𝜕{1, 5}

= +∞, 𝜕
𝜕{1, 6}

= 0,

𝜕
𝜕{2, 3}

= +∞, 𝜕
𝜕{2, 4}

= 2, 𝜕
𝜕{2, 5}

= +∞, 𝜕
𝜕{2, 6}

= 1, 𝜕
𝜕{3, 4}

= 2,

𝜕
𝜕{3, 5}

= 0, 𝜕
𝜕{3, 6}

= +∞, 𝜕
𝜕{4, 5}

= 2, 𝜕
𝜕{4, 6}

= +∞, 𝜕
𝜕{5, 6}

= +∞.

Note that nodes 1, 6 have collapsed into a single node in the derivative
network, and likewise nodes 3, 5.

As we stated before, the derivative graph implements a measure of
similarity between nodes. It is therefore natural to ask if we can lever-
age the information provided by this structure to partition the nodes of
the hypergraph into distinct classes, separated by this similarity: this
will constitute the basis of the two community detection methods that
we are going to discuss next.

3. Different approaches to detect communities in hypergraphs

Now that we have established some useful concepts and notation,
we will start describing the two algorithms we are putting forward
in order to obtain hypergraph communities. Both of them have a
hierarchical clustering background, although a different approach to
the partitioning itself: the first is essentially a data-driven algorithm,
while the second one does take into account the hypergraph nature
of the problem. In the following, we will also briefly describe an
alternative method of community detection in hypergraphs presented
in [47], which we will use to compare our results.

3.1. Community detection through unsupervised clustering

Within hierarchical clustering, there are two procedures: agglomer-
ative and divisive. Agglomerative clustering, which is the focus of this
text, merges the pair of closest clusters in each step until there is one
final node left, which comprises the entire dataset.

The agglomerative hierarchical clustering method is particularly
useful for partitioning datasets for which merely two pairwise distance
functions are defined. One distance function to measure distances
between nodes and a second to measure distances between clusters
depending on the distance between points, traditionally called linkage
function. There are several functions that can be found in the literature
(single link, average link or UPGMA, Ward, . . . ) [48–50]. In our study
we will focus on the average link function, for reasons we will discuss
in the next paragraphs.

Usually, the hierarchical clustering method works on a set of data
that can be seen as R𝑛 points. Because of this, a classical choice for
modeling the distance between points in the dataset is to use the Eu-
clidean distance. The successive steps in which the nodes are clustered
can be represented using a diagram, called a dendrogram. Specifically,
on one of the axes the points of the dataset will be represented and on
a perpendicular axis the height, i.e. the distance between clusters.
3

We propose to use the derivative between nodes as a semi-distance
between points of the dataset. More precisely, let  = (𝑋, 𝜀) be a
hypergraph and let 𝜕𝑋 be the set of vertices of the derivative graph.
Let us consider the function 𝑑 ∶ 𝜕𝑋 × 𝜕𝑋 → R defined as

𝑑(𝑖, 𝑗) ∶= 𝜕
𝜕{𝑖, 𝑗}

. (3.1)

Then 𝑑 is a semidistance, i.e., for every 𝑖, 𝑗 ∈ 𝜕𝑋,

• it is symmetric, 𝑑(𝑖, 𝑗) = 𝑑(𝑗, 𝑖),
• it is positive, 𝑑(𝑖, 𝑗) ≥ 0 and 𝑑(𝑖, 𝑗) = 0 if and only if 𝑖 = 𝑗,

The derivatives do not define a distance on 𝜕𝑋 since the triangle
inequality does not hold as can be seen in the following example.

Example 3.2. Let us consider the following hypergraph with 4 nodes
and 5 hyperedges

𝐻 = (𝑋, 𝜀), 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝜀 = {{𝑎, 𝑏}, {𝑎, 𝑏, 𝑑}, {𝑏, 𝑐}, {𝑎, 𝑐}, {𝑎, 𝑐, 𝑑}}.

In this example we have
𝜕

𝜕{𝑎, 𝑏}
= 3

2
, 𝜕

𝜕{𝑎, 𝑐}
= 4, 𝜕

𝜕{𝑏, 𝑐}
= 3

2
,

and as we have anticipated, we find

4 = 𝜕
𝜕{𝑎, 𝑐}

≰ 𝜕
𝜕{𝑎, 𝑏}

+ 𝜕
𝜕{𝑏, 𝑐}

= 3

Since 𝑑 is just defined on a discrete set, it does not make sense
to consider linkage functions that are using auxiliary elements, such
as centroids, to compute the distance between clusters. Thus, the
appropriate selection for the linkage function in the case at hand will
be the average (UPGMA).

To initiate the agglomerative hierarchical clustering algorithm, each
initial cluster will be a singleton containing a node. In each step it will
be computed the distance between clusters using the average linkage,
i.e.,

𝐷(𝐶𝑖, 𝐶𝑗 ) =
1

|𝐶𝑖 ∥ 𝐶𝑗 |

∑

𝑥∈𝐶𝑖 ,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦) (3.2)

Hence, we will establish the communities through the dendrogram.
It is worth noting that the selected approach gives us the flexibility

to select different relationships as to represent the distances between
nodes. For example, it is possible to consider the distance defined as
𝑑(𝑖, 𝑗) ∶= 1 −  (𝜀(𝑖), 𝜀(𝑗)) where  is the Jaccard index and 𝜀(𝑖) = {ℎ ∈
𝜀 |𝑖 ∈ ℎ}. However, in this specific case, after extensive evaluation and
computation, the results obtained for this distance were worse for the
datasets considered in this work.

3.2. A general criterion to cut the dendrogram: highest gap cut

Before pointing out a criterion to cut the dendrogram, and as
pointed out in [51] in agglomerative hierarchical clustering, there is
no uniqueness for pair-group methods when two or more distances
between different clusters coincide during the clustering process. The
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usual approach to solve this drawback is to take any arbitrary criterion
to break the ties between distances, which results in different hierar-
chical rankings depending on the criterion followed. Although it would
be possible to consider other criteria, such as grouping more than two
clusters at the same time when ties occur (as proposed in [51]) it is
computationally more efficient to use, in Algorithm 1 considered, the
sorting criterion given by an internal variable in the case of coincidence
of two or more distances between different clusters.

In any case, in a broad context, we can apply a criterion to select
a specific partition of the dendrogram. Although this approach does
not use additional information from the hypergraph, its results may
be sufficiently accurate to be borne in mind. Despite its simplicity, the
criterion is intuitive and worth explaining.

The agglomerative hierarchical clustering, in each step, will merge
two different clusters minimizing the distance between clusters, which
will hereinafter be denoted by 𝐷. For instance, in the first step it looks
for the minimum value of

𝐷(𝐶0,𝑖, 𝐶0,𝑗 ) ∶= 𝐷0
𝑖𝑗 (3.3)

for 𝑖, 𝑗 ∈ {1,… , |𝜕𝑋|} and merge those two cluster related to the
minimum value. In general, after 𝑘 steps, we will end up with |𝜕𝑋|− 𝑘
lusters. Recall that in the dendrogram, the height is coinciding with
he distance values. Therefore when two clusters are merging it means
hat the distance between those two are the height.

Notice that in the dendrogram, the height between branches arises
rom the (𝑘 − 1)-th and 𝑘th steps can be expressed as

𝑘 = 𝜆𝑘 − 𝜆𝑘−1 ⩾ 0 (3.4)

where 𝜆𝑘 = min𝑖,𝑗∈{1,…,|𝜕𝑋|−𝑘} 𝐷(𝐶𝑘,𝑖, 𝐶𝑘,𝑗 ) = min𝑖,𝑗 𝐷𝑘
𝑖𝑗 , and 𝐶𝑘,𝑖, 𝐶𝑘,𝑗

are two clusters from the 𝑘th step. Bigger values of 𝜏 means that the
distances between clusters are bigger, i.e., it can be interpreted as to
make the next clustering is more expensive. As a unified criterion we
suggest to stop the algorithm for the step 𝑛 where

𝜏max = max
𝑘=1,…,|𝜕𝑋|

𝜏𝑘 (3.5)

Therefore the dendrogram should be cut at height

ℎcut = 𝜆𝑘−1 +
𝜏max
2

, with 𝑘 such that 𝜏𝑘 = 𝜏max (3.6)

This choice seems reasonable enough since it coincides when we
ave the longest height between steps. Nevertheless, if all these gaps
re similar enough, i.e., for 𝜀 > 0 small |𝜏𝑖 − 𝜏𝑗 | < 𝜀, this criterion may
ot be useful.
Algorithm 1: Community detection at largest dendrogram gap
Data: Hypergraph , linkage method
Result: node partition
/* Compute the derivative graph */
derivatives ← ;
/* Compute the linkage function */
𝑍 ← linkage(derivatives, linkage method);
/* Find the largest gap, and its middle height */
ℎcut ← largest_gap_cut(𝑍);
/* Find partition associated to said height */
node partition ← cut_tree(𝑍, ℎcut);

3.3. A criterion based on modularity to cut the dendrogram

Modularity is a concept used in traditional network analysis to
quantify the presence of community structure or modular organization
within a network. A modular network is characterized by the division
of nodes into distinct groups or communities, where nodes within a
community are more densely connected to each other than to nodes in
other communities.

The modularity of a pairwise network measures the strength of this
community structure. It is a scalar value that ranges from −1 to 1, with
4

higher values indicating a stronger modular structure. A modularity
value close to 1 suggests a clear separation of communities, while
values close to 0 or negative values indicate a more random or poorly
defined community structure. It is defined as

𝑄 = 1
2𝑚

∑

𝑖𝑗

[

𝑎𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

]

𝛿(𝐶𝑖, 𝐶𝑗 ), (3.7)

here 𝐴 = (𝑎𝑖𝑗 ) is the adjacency matrix of the network, 𝑚 is the number
f edges, 𝑘𝑖 and 𝑘𝑗 are the degrees of nodes 𝑖 and 𝑗, 𝛿 is the Kronecker

delta (whose value is equal to 1 if 𝑖 and 𝑗 are in the same community
and 0 otherwise) and 𝐶𝑘 represent the community where the node 𝑘
belongs.

However, as of yet there is no consensus on the definition of
hypergraph modularity, as there have been different approaches to
define it through the use of (3.7) with certain pairwise adjacency matrix
constructed from the hypergraph. In particular, Kumar et al. [47] define
the hypergraph modularity using the clique reduction of a hypergraph,
applying a few extra changes since the degree of each node in the graph
arising from the clique reduction does not coincide with the degree in
the hypergraph. More precisely, they define the graph with adjacency
matrix

𝐴𝑟𝑒𝑑𝑢𝑐 = 𝐼()𝑊 (𝐷𝑒 − I)−1𝐼()𝑡 (3.8)

here 𝐼() is the incidence matrix of the hypergraph , 𝑊 is the
yperedge weight matrix, 𝐷𝑒 is the hyperedge degree matrix and I

is the identity matrix of size |𝜀| × |𝜀|. Thus, hypergraphs containing
a large number of hyperedges will directly impact the computational
complexity of algorithms utilizing the modularity score.

Thus, in this method we will choose the partition (given by the
dendrogram) that maximizes the modularity with (3.8). Note that,
although the derivative graph (Definition 2.4) provides us with an
adjacency matrix, we cannot use it to calculate the modularity value
since, taking into account the definition of the derivative graph, some
nodes of the hypergraph could collapse into new nodes in the derivative
graph, in addition to the fact that smaller values of a derivative mean
more similarity between nodes, as opposed to smaller values of a
derivative in 3.8 meaning a weaker community structure. Furthermore,
considering that we want to compare our method with that of [47], we
need to use the same adjacency matrix to make such a comparison.
Algorithm 2: Community detection at the maximum modularity
Data: Hypergraph , linkage method
Result: Node partition
/* Compute the derivative graph */
derivatives ← ;
/* Reduced graph */
𝐺reduc ← 
/* Compute the linkage function */
𝑍 ← linkage_function(derivatives, linkage method);
/* Iterate over the number of clusters in the
dendrogram */

modularity ← empty_list
for 𝑛 in 1, ..., 𝑁 do

node partition ← cut_tree(𝑍, n)
𝑄 ← compute_modularity(𝐺reduc, node partition)
modularity ← append(𝑄)

nd
* Find 𝑛 associated to the maximum modularity */
um clusters ← index(modularity == max(modularity))
* Find partition associated to said number of
clusters */
ode partition ← cut_tree(𝑍, num clusters)

Iterated partitioning. Note that, depending on the level of granularity
one desires for the communities, Algorithm 2 can be applied iteratively
to each of the obtained communities (considering the sub-hypergraph
associated to them). This generally does increase the obtained modu-

larity.
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3.4. Other methods: Iteratively reweighted modularity maximization [47]

In the literature there is already a hypergraph community detection
method maximizing the modularity based on the clique reduction
(3.8), the Iteratively Reweighted Modularity Maximization (IRMM)
algorithm [47]. We will briefly summarize it as we will later use it for
comparison with our methods.

The idea of the IRMM algorithm is to apply on the clique reduced
graph of  the Louvain algorithm [52] to get a partition that maximizes
the modularity. It then recalculates the weights of the hyperedges
using a reweighting function that depends on the current partitioning.
The reweighting aims to emphasize the importance of hyperedges that
are well captured by the current clusters and reduce the influence of
less informative hyperedges. By iteratively reweighting the hyperedges
maximizing the modularity, the IRMM algorithm aims to discover a par-
titioning that maximizes the community structure in the hypergraph.
The iterative process helps refine the clustering by gradually adapting
the hyperedge weights and node assignments.

4. Applications and real world examples

Now that we have established the theoretical basis of both types of
community detection algorithms 1 and 2, we now turn to their appli-
cation to both synthetic and real networks, together with a comparison
with the previously proposed community detection method [47].

We will begin by applying them to a ‘‘handcrafted’’ hypergraph,
where we will find that it achieves the partitioning one would expect
by simple visual inspection, with both algorithms. We afterwards use
a real, labeled dataset of Primary School students [53,54], where we
see that it predicts with high accuracy the node labels (individual
classes). We finally end this section with the application to a more
heterogeneous dataset, a scientific collaboration network.

All numerical simulations were performed on a dedicated server
(4.0 GHz Intel Xeon Gold 5220R), with data and codes available at
https://github.com/LaComarca-Lab/HyperGraph-Communities for the
sake of reproducibility.

4.1. A simple toy model

As a playground for the ideas introduced and discussed in the
previous section, we have considered a ‘‘toy model’’, i.e. a hypergraph
designed with the communities we expect in mind. This hypergraph has
14 nodes (labeled as letters in alphabetical order) and 21 hyperedges,
and it is shown in 2, we also show the dendrogram one obtains from
its associated derivative graph.

With the general method (cutting the dendrogram at the highest
gap) we find the partition

𝐶1 = {𝑎, 𝑏, 𝑐, 𝑑}, 𝐶2 = {𝑒, 𝑓 , 𝑔}, 𝐶3 = {ℎ, 𝑖, 𝑗, 𝑘}, 𝐶4 = {𝑙, 𝑚, 𝑛}.

(4.1)

If we instead use the maximum modularity the partition we find is
he same (meaning that cutting the tree at the highest gap provides the
artition with maximum modularity, as evidenced by Fig. 2d), with a
odularity value of 𝑄 = 0.34056.

Using the Kumar algorithm, we find a different set of communities:
′
1 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑚}, 𝐶 ′

2 = {𝑒, 𝑓 , 𝑔, 𝑙, 𝑛}, 𝐶 ′
3 = {ℎ, 𝑖, 𝑗, 𝑘} (4.2)

ith a modularity value of 𝑄 = 0.32944.
It is easy to see that the only difference between the two partitions

s the fact that in the first one we have an extra community 𝐶4, which
s split between communities 𝐶 ′

1 and 𝐶 ′
2 in the second one. Given that

here is always some subjectivity in the question community detection
and the fact that there is no ground truth in this concocted example),
discrepancy like this is within a reasonable margin.

Having shown that in a simple example everything works as ex-
ected, we now turn to more realistic use cases.
5

Table 1
Comparison between the two methods in terms of the number of communities found,
their modularity value, the time taken for each of them (averaged over 100 realizations)

Method Number of communities Modularity Average time

Height-based cut 1 8 0.428 0.008 s
Max. modularity 2 6 0.435 8.256 s

4.2. Validation of the partitioning with real data

One of the main issues one faces when applying community de-
tection to a real network is whether the partition obtained ‘‘makes
sense’’. This sense is usually derived from information outside the
graph, often related to the characteristics of the network discussed
and/or the information or labels contained in the data which were not
used to construct the graph or hypergraph.

It is thus interesting, for the sake of validating the proposed meth-
ods, to apply them to a real (not handcrafted, like the previous Toy
Model) dataset where there could be some ‘‘universal agreement’’ on
the obtained communities, based on the information on the dataset.

For this purpose, we will analyze data on face-to-face interactions
between 232 children and 10 teachers over two-day period at a Primary
School in Lyon, France [53,54]. The dataset includes a total of 10
different classrooms, with two classrooms for each grade level from first
to fifth grade. The interactions were measured using proximity sensors,
and each sensor is associated with a group: either a specific classroom
for students or the label ’teachers’ for the teachers. Thus, the hy-
pergraph consists on these 242 nodes, representing students as well as
teachers, and 12699 hyperedges representing face-to-face interactions
captured by the proximity sensors in a 20-second timeframe.

Applying Algorithms 1 and 2, we obtained meaningful results. With
the height-based cut Algorithm, we identified 8 communities. Six of
them correspond to individual classes 1 A, 1B, 2 A, 2B, 4 A, 4B. The
remaining two correspond to the agglomeration of 3 A with 3B, and
5 A with 5B. It should be noted that some communities contain few
‘‘outliers’’ from other classes, but the vast majority falls within their
peers. If we instead used the modularity maximization Algorithm, we
would find that 1 A, 1B, 2 A and 2B would be fused together.

The conclusions that we can draw from this analysis are twofold:
From a community detection perspective, we can see that these Al-
gorithms lead to sensible classification, as they (specially the highest-
based cut, in this particular example) match the expectations of com-
munity detection applied to a Primary School. From a social network
perspective, this hints at the fact that younger children may have
communities spanning different levels, whereas older ones are more
differentiated by age.

A more quantitative comparison between both methods applied
to this dataset can be found in Table 1. It is remarkable to notice
that, despite the amount of hyperedges present in the hypergraph,
the highest-based cut method performs the community detection task
very efficiently. The maximum modularity method suffers from the fact
that the construction of the clique-reduction graph (3.8), necessary to
compute the modularity, is computationally expensive.

Now that we have verified the sensibility of the obtained partitions
in a real dataset, we turn to a more heterogeneous one for the final com-
parison of the advantage of our methods against the ones previously
found in the literature.

4.3. Further results with real data

In order to showcase and compare our algorithm when applied to a
real, we have considered Prof. Stefano Boccaletti’s co-authors network
as a playground to detect communities. We will first describe the main
features of this dataset and the different choices made in order to
construct the hypergraph. We will then put our algorithm to the test,
and compare it with the other proposals which have been put forward,

as we did with the Toy Model previously.

https://github.com/LaComarca-Lab/HyperGraph-Communities
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Fig. 2. (a) Toy example hypergraph. (b) Partition into communities using either of the two methods based on the derivative graph. (c) Dendrogram corresponding to the average
(UPGMA) clustering via the derivative graph, as discussed in the main text. (d) Modularity at each partition of the toy hypergraph given by its dendrogram, where 𝑛 is the number
of communities. The modularity given by the partition at the highest gap is also explicitly shown.
.

The dataset. We have constructed an initial collaboration hypergraph,
where each node is an author who has collaborated with Prof. Boc-
caletti, with each hyperedge being a scientific publication. The source
of the data is Scopus, and it amounts to a total of 338 publications with
413 co-authors.

In order to give additional structure to the hypergraph, we included
another set with all publications, this time not including Prof. Boc-
caletti, of each of the co-authors (which could in principle include other
authors which have never collaborated with Prof. Boccaletti, although
we do not include them in the hypergraph). The hypergraph is thus
enlarged, containing now a total of 15237 hyperedges.

While our algorithm can work with the hypergraph as-is, we have
found that the IRMM algorithm proposed in [47] does not converge in
reasonable time (more than 24 h in a dedicated server with 4.0 GHz
Intel Xeon Gold 5220R) when applied to it. In view of a comparison
between both methods, we decided to filter the hypergraph based on
the following criteria: we only keep authors with 5 or more publica-
tions in common with Prof. Boccaletti (i.e. we are considering frequent
co-authors). This filtered hypergraph contains 67 authors with 1685
publications among them and/or Prof. Boccaletti.

Community detection. We are going to apply the four methods (deriva-
tive graph highest gap cut, maximum modularity, iterated maximum
modularity, IRMM), to the Stefano Boccaletti’s coauthors hypergraph.
Before showing the actual partitions (Fig. 3), let us present some
quantitative results and metrics of each of them.

It is clear from Table 2 that, while the best partitioning in terms of
modularity is the IRMM one, its computational cost is not worth that
slight increase in modularity, being around 320 times slower than our
maximum modularity method. It should also be remarked that it could
be expected that the IRMM would achieve the greatest modularity, as
it is an algorithm specifically designed to optimize this score, unlike
the other two. It is hence quite impressive that a simple swipe through
the 𝑁 partitions in the dendrogram, picking the one with maximum
modularity, achieves a similar (0.04 off) score so efficiently. Notice
6

Table 2
Comparison between the three methods in terms of the number of communities found,
their modularity value, the time taken for each of them (averaged over 100 realizations)

Method Number of communities Modularity Average time

Height-based cut 1 16 0.642 0.002 s
Max. modularity 2 9 0.678 0.457 s
Max. modularity, iterated 24 0.564 0.719 s
IRMM [47] 9 0.714 146.604 s

that although both IRMM and maximizing the modularity are using the
clique reduction, which was expensive in the Primary School example
(see previous subsection), the decrease in the number of hyperedges
leads to a surprisingly faster computation of the clique reduction. This
speed up is, however, hindered by the fact that the reweighting proce-
dure of IRMM is very computationally expensive, as it requires several
realizations of the Louvain algorithm [52] over the clique reduction
graph.

5. Conclusions

In this paper we present two methods for the detection of higher-
order network communities (in the context of hypergraphs) that relies
on the so-called derivative graph of a hypergraph. As shown through
several examples and simulations, the concept of similarity and the
semi-distance between nodes induced by the derivative graph of the
considered hypergraph are particularly useful for the establishment of
a linkage distance between the clusters obtained in the aggregation
process.

Through several simulations it is shown that, while the method
that gives a slightly better partition in terms of modularity is IRMM,
the original methods presented in this work. The first one consists
of identifying the largest distance between branches. This algorithm
besides being the fastest, is also the most efficient, since it achieves a
very high modularity value, close to that of IRMM. Furthermore, IRMM
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Fig. 3. A visualization of the communities of Prof. Stefano Boccaletti’s network of co-authors classified by the modularity maximization method 2. The sub-communities obtained
by iterating over each of the partitions are also shown, separated by dashed lines. For reference, the authors belonging to each one are listed below.
1.1: Li D., Havlin S.; 1.2: Barzel B., Zhang X.;
2.1: Bragard J., Mendoza C.; 2.2: Kurths J., Zhou C.S.; 2.3: Mancini H., Maza D.; 2.4: Meucci R., Allaria E., Arecchi F.T.;
3: Bortolozzo U., Ramazza P.L., Pampaloni E., Residori S., Giaquinta A.;
4.1: Jusup M., Wang Z., Li X., Dai X., Perc M.; 4.2: Shi L., Guo H., Jia D., Shen C.;
5.1: Sousa P.A.C., Menasalvas E.; 5.2: Papo D., Buldú J.M., Zanin M.; 5.3: del-Pozo F., Gutiérrez R., Maestú F., Bajo R.; 5.4: Jaimes-Reátegui R., Sevilla-Escoboza R.; 5.5: Navas
A., Sendiña-Nadal I., Leyva I., Almendral J.A.;
6.1: Hramov A.E., Koronovskii A.A., Moskalenko O.I.; 6.2: Maksimenko V.A., Makarov V.V.;
7.1: Raigorodskii A.M.; 7.2: Frasca M., Moreno Y., Latora V., Gómez-Gardeñes J.; 7.3: del Genio C.I., Alfaro-Bittner K., Criado R., Romance M.; 7.4: Musatov D.;
8.1: Guan S., Liu Z., Zou Y.; 8.2: Qiu T., Bonamassa I.;
9.1: Chavez M., Amann A., Hwang D.-U.; 9.2: Valladares D.L., Pecora L.M.
3

is much more computationally expensive and, in addition, in one of
the examples shown, it fails to complete the required computation in
reasonable time. On the other hand, the second algorithm presented
in this work produces an improvement in modularity and, although
it incurs in an additional computational cost, this cost is irrelevant
and not comparable to IRMM, that produces slightly better modularity
values, but has a significantly higher computational cost.
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