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ABSTRACT

The significance of the PageRank algorithm in shaping the modern Internet cannot be overstated, and its complex network theory foun-
dations continue to be a subject of research. In this article, we carry out a systematic study of the structural and parametric controllability
of PageRank’s outcomes, translating a spectral graph theory problem into a geometric one, where a natural characterization of its rank-
ings emerges. Furthermore, we show that the change of perspective employed can be applied to the biplex PageRank proposal, performing
numerical computations on both real and synthetic network datasets to compare centrality measures used.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0156226

The rise of complex network theory owes much to the develop-
ment of the Internet. While several factors contributed to this,
one of the most significant was the introduction of the PageRank
algorithm, which became a crucial measure of centrality in the
network theory. Borrowing from both spectral theorems and the
theory of random walks, this algorithm is both simple and effi-
cient, making it a favorite of the network theory community. This
led a myriad of researchers to scrutinize the properties, limita-
tions, and implications of PageRank. In this article, we address
one crucial aspect that has not been explored: the parametric con-
trollability of PageRank rankings. By examining this issue, we can
provide yet another argument for the reliability of PageRank as a
ranking measure.

I. INTRODUCTION

Almost 25 years have passed since the PageRank algorithm
was devised.1 It brought about two revolutions: on the industry
side, it shaped the Internet landscape making Google the giant it
is today. On the academic side, it triggered an enormous cascade

of studies, interested in understanding its properties, its limita-
tions, and its implications.2–6 Furthermore, it has been shown to
be relevant beyond its original goal of webpage ranking: indeed,
it has found applications in very diverse fields such as biology,
engineering, and even literature (see Ref. 7 for an extensive survey).

The academic research poured in the PageRank algorithm
coincided with both the development of the interdisciplinary
field of complex networks and the advent of accessible comput-
ing resources. This allowed for both theoretical and numerical
results2,4,6,7 that have many direct applications in the economic and
social world, since the PageRank algorithm is in the core of most
popular web engines. One of these direct implications in marketing
and economics is the so-called Search Engine Optimization Problem
or Web Positioning Problem8–10 that tries to find out the strategies
that can be performed in a network in order to maximize PageR-
ank of a specific node (or set of nodes). This theoretical problem
has huge real applications with severe economic impact in the global
markets. In our nowadays on-line world, for any company not only
it is crucial to be present in the WWW, but also to appear highest
in the ranking of any web engine; the web-master of a site is, thus,
interested in increasing the PageRank of website by connecting it
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properly with other webpages, since the highest the ranking of a
website the biggest economic revenue the corresponding company
gets.11 This major search engine optimization problem belongs to
a more general class of problems related with centrality measures
of networks: the control of a centrality measure. This general prob-
lem deals with the ability to modify at our wish the centrality of a
specific node (or set of nodes) of a given network by slightly chang-
ing the link structure of the network or by modifying the intrinsic
parameters of the centrality measure. Note that the search engine
optimization problem is related to the control of centrality measures
by changing the link structure, while in this paper, we will focus on
the control by modifying the intrinsic parameters of the centrality
measure.

While search engine optimization problem has attracted broad
attention by the scientific community, the control of a centrality
measure by modifying its intrinsic parameters has been less consid-
ered despite the fact that it also has some potential real applications,
since, for example, it gives valuable information for a web engine
administrator about how to modify the ranking of a webpage (or a
set of webpages) simply by tuning the parameters of the centrality
measure that is behind his web searcher. It is well known that most of
the web engines work with algorithms that modify their ingredients
in order to improve the results,6 so a detailed analysis of the influ-
ence and sensibility of each parameter of these centrality measures
must be considered. In particular, in the case of PageRank central-
ity, there are two parameters of this measure to be considered:6,7 the
damping factor α ∈ (0, 1) and the personalization vector v ∈ R

n. The
damping factor has been extensively studied, discussed, and inter-
preted (see e.g., Ref. 4), but the role of personalization vector has
always remained understudied.12

In this article, we attempt to shed some light on the relation-
ship between the centrality vectors resulting from PageRank and
the choice of personalization vectors. This is actually intertwined
with the subject of centrality control in complex networks:13 prob-
ing the space of possible centrality vectors with suitable changes
in either the underlying graph or the centrality measure. There are
already a number of studies discussing the possibility of increasing
a node’s own PageRank score14–17 as well as some advances regard-
ing PageRank competitors12 (nodes whose relative ranking position
depend on the value of the algorithm’s parameters). While these
approaches are interesting on their own, they focus on specific nodes
and their scores or rankings. In this work, we discuss centrality vec-
tors and their rankings as a whole, without reference to individual
improvements or detriments.

This paper is structured as follows: In Sec. II, we establish some
notation and basic graph-theoretical concepts as well as introduce
the terminology that will be used throughout the paper. Section III
presents the mathematical definition of the PageRank algorithm and
then explores some routes toward controlling its resulting central-
ity, with either structural or parametric changes. Theoretical results
connecting PageRank and personalization vectors are proven, and
network datasets are then used for numerical comparisons and dis-
cussion of implications. In Sec. IV, we apply the same techniques to
the case of the biplex PageRank,18 an alternative centrality measure
based on the PageRank algorithm. We conclude with a discus-
sion and comparison between the results obtained with each of the
different approaches.

II. PRELIMINARIES AND NOTATION

Let G = (V, E) be a graph (irregardless of directionality or
weights), with node set V = {1, . . . , n}, for some n ∈ N and adja-
cency matrix A = (aij) such that

aij =

{

wij if (i, j) ∈ E,

0 otherwise,
(2.1)

where wij is the weight corresponding to edge (i, j), by default wij = 1
if unweighted.

The in-degree (number of incoming links) and out-degree
(number of outgoing links) of node i ∈ V are defined as

degin(i) =

n
∑

j=1

aji, degout(i) =

n
∑

j=1

aij, (2.2)

respectively. For undirected graphs, we clearly have degin(i)
= degout(i). Nodes in a graph with no outgoing links, i.e., such that
degout(i) 6= 0, are called dangling nodes. As will be pointed out later,
only networks without dangling nodes will be considered, since sim-
ilar results can be obtained for general settings simply by using some
standard techniques.12

By using these definitions, we can introduce the first ingredi-
ent of PageRank, the row-normalized adjacency matrix P, which is
defined as

P = (pij) =

(

aij

degout(i)

)

∈ Mn×n(R). (2.3)

In the theory of Markov processes (i.e., memory-less stochas-
tic processes) this matrix is referred to as the “transition matrix” of
the random walker, as its component pij provides the probability of
transitioning from state j to state i. Due to the intrinsic random walk
nature of the PageRank algorithm (as discussed in Ref. 19, 20), we
will use that notation from now on.

We will denote vectors as v = (v1, . . . , vn)
T ∈ R

n and the
canonical basis of R

n as {e1, . . . , en}. The vector with 1 in all
components will be e = (1, . . . , 1)T. In will denote the identity
matrix. Finally, we will say that a vector is positive if it is positive
components-wise, and we will say that it has unit norm if its 1-norm
is equal to 1.

III. STANDARD PAGERANK

The best way to introduce the PageRank algorithm1 is through
the lens of a random walker with random teleportation. Let us for-
get about the teleportation step for a while and consider a random
walker on a network G: starting at node i, at each step, it will choose
an outlink from those available in its current node, with probability
proportional to the weight of each outlink. This is a Markovian pro-
cess, whose steady state gives a measure of the “centrality” of each
node. In other words, the more the walker passes through node i,
the more important or central it is.

The PageRank algorithm corresponds to a personalized version
of this centrality measure, consisting of a biased random walker:
with probability α, it will follow the previously described rules of
standard random walks, and with probability 1 − α, it will “teleport”
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or “jump” to a random node in the network, with associated proba-
bilities given by a distribution v, sometimes called the teleportation
vector. The mathematical formulation of this idea is the following:

Definition 3.1 (PageRank vector): Let G be a graph with no
dangling nodes, v a positive, unit norm vector, and α ∈ (0, 1). Then,
the PageRank vector of G with damping factor α and personalization
vector v is the only positive, unit norm vector (i.e. π > 0, |π |1 = 1)
such that satisfying

π
T = π

T
(

αP + (1 − α)evT
)

, (3.1)

where P is the transition matrix of the graph.
Note that existence and uniqueness of π are guaranteed by the

classic Perron Theorem, as αP + (1 − α)evT is a positive matrix (see,
for example, Refs. 21 and 6).

In what follows, we will restrict ourselves to graphs with no
dangling nodes. Were there any, they can be dealt with in the usual
way.22 This does not affect the results discussed here, and we will,
thus, omit it for the sake of clarity.

We are interested in understanding the conditions under which
an arbitrary stochastic vector can be set to be the PageRank centrality
of a given graph. We can state this more formally:

Problem 3.2 (PageRank centrality control): Can we modify
the graph G = (V, E) or the components of the PageRank measure
(damping factor or personalization vector) such that an arbitrary
positive, unit norm vector π 0 is the PageRank vector?

Changing the structure of the graph in some way (adding/
removing edges, changing weights) would be considered as a
structural change, whereas changing the parameters of the PageRank
measure, such as the damping factor or its personalization vector,
would be a parametric change.

In the context of the Eigenvector centrality, it was proven13 that
by a rather mild structural change as changing edge weights, one
is able to fully fix the resulting centrality vector at will, so long as
the network is directed and strongly connected. In the present case,
where we instead deal with the PageRank centrality, things are not
that simple due to the row-normalization of the adjacency matrix:
the construction of P normalizes out any weight placed on out-edges
coming from nodes with out-degree equal to 1. The simplest way to
see this is considering directed rings, as in Fig. 1.

We could consider controlling the centrality by means of other
types of structural changes, such as adding nodes, rewiring edges,
etc. However, those are considerably more drastic modifications and

FIG. 1. Simple example of a network (the directed cycle C6) whose PageRank
centrality is unaffected by any modification of edge weights.

go out of the scope of this paper. Instead, we will now focus on para-
metric changes, i.e., modifications in the parameters of the centrality
measure.

A. Constraints on the personalization vector

It is clear that suitable adjustments of the damping factor α

and the personalization vector v will be needed in order to fix the
PageRank centrality of the given network G (see, for example, Refs. 4
and 12). What we attempt to do is quantifying the balance between
the adjustment of both parameters. In other words, we want to
understand what ranges of α provide the desired centrality vector
for suitable v.

By operating with Eq. (3.1), it is straightforward to obtain the
following formula:4

π
T(In − αP) = (1 − α)vT. (3.2)

Traditionally, this equation can be viewed as an equation for π

given α, v, and P. However, we can also view it as an equation for v
given α, π , and P,

vT =
1

1 − α
π

T(In − αP). (3.3)

This equation tells us which personalization vector is required
to obtain a desired PageRank vector for a fixed network and damp-
ing factor. This raises a question: can we always find such non-
negative personalization vector that gets a prescribed PageRank
centrality? This natural question is summarized in the following
problem:

Problem 3.3 (Centrality control via personalization vector):
Given a graph G, a damping factor α ∈ (0, 1), and a positive, unit
norm vector π 0, does it always exists a positive, unit norm v such that
the π 0 is the PageRank outcome?

In other words: can any PageRank vector be set for a given
graph and damping factor if we have control over the personaliza-
tion vector used in the algorithm?

The answer is no, since there is no positive (vi > 0, ∀i) solu-
tion in some cases. Nevertheless, we can study the conditions under
which π 0 actually has an associated personalization vector v, and the
following result give a characterization of the existence of positive
personalization vectors that give a prescribed PageRank centrality
π 0 in terms of the size of its components.

Theorem 3.4 (Existence of the personalization vector):
Given a graph G and a positive, unit norm vector π 0 then there exists
a positive, unit norm personalization vector v such that π 0 is the
PageRank vector if and only if π

T
0 ej > απ

T
0 Pej for all j.

Proof. First, we prove that Eq. (3.3) leads to unit norm person-
alization vectors, since

|v|1 = vTe =
1

1 − α
π

T
0 (In − αP)e =

1

1 − α
π

T
0 (e − αPe)

= π
T
0 e = |π 0|1 = 1, (3.4)

where we used the row-stochasticity in Pe = e. We now require that
all of vs components are positive, so

vj = vej =
1

1 − α
π

T
0 (In − αP)ej > 0, (3.5)

which completes the proof. �
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It is also remarkable to point out that Theorem 3.4 presents
some analytical interplay between the damping factor and person-
alization vectors, since if we take a positive, unit norm π 0 and
0 < α ≤ minj

(

π
T
0 ej

)

, then it can be checked that for any graph with-
out dangling nodes there exists a positive, unit norm personalization
vector v such that π 0 is the PageRank vector. In fact, if we consider
a graph without dangling nodes, note that Pej is the jth column of P,
that is

Pej =

(

a1j

degout(1)
,

a2j

degout(2)
, . . . ,

anj

degout(n)

)T

, (3.6)

so we have that π
T
0 Pej ≤ π

T
0 e = 1, since 0 ≤ aij/ degout(i) ≤ 1, and

hence, if we take α < minj

(

π
T
0 ej

)

, then

απ
T
0 Pej ≤ α<

(

π
T
0 ej

)

, ∀1 ≤ j ≤ n; (3.7)

hence, there exists a personalization vector v such that π 0 is the
PageRank vector, simply by using Theorem 3.4.

B. The ranking control problem

In this section, we will analyze the centrality control problem
by using Theorem 3.4, as seen in Sec. III A.

Centrality measures typically return a list (vector) of central-
ity scores: numbers between 0 and 1 specifying the importance of
each node in the network with respect to the chosen measure. How-
ever, for most applications, the actual score of a node is not relevant;
instead what matters is its relative position with respect to the rest
of the nodes. In other words, the ranking of nodes based on their
centrality.

The subject of ranking control has remained fairly unexplored
due to its technical complexity (as lifting the constraint of fixing con-
crete centrality vectors makes the problem harder to tackle), but in
the PageRank case, Theorem 3.4 provides us with a valuable tool to
investigate in this direction by using some techniques from convex
geometry.

Consider the following milder version of Problem 3.3, where
we are now only interested in rankings rather than concrete
PageRank vectors.

Problem 3.5 (Ranking control via personalization vector):
Given a graph G, a damping factor α ∈ (0, 1) and an ordering of the
nodes (allowing for ties), does it always exists a positive, unit norm
personalization vector v such that the PageRank outcome follows the
prescribed order?

In order to study this problem we will now change the view-
point of the discussion to a geometric one: consider the n-simplex
defined as

1n = {x ∈ R
n, such that x > 0, |x|1 = 1}. (3.8)

This set represents the convex span of vectors {e1, . . . , en}, and thus,
it is the space of all possible personalization vectors and the space of
all possible PageRank vectors of graphs with n nodes. Therefore, we
can understand Eq. (3.2) as the following map from 1n to itself:

π(G, α, ·) : 1n −→ 1n

v ↪−→ π(G, α, v). (3.9)

FIG. 2. Depiction of map π(G,α, ·) for n = 3.

This map is injective (however, in general, it is not surjective)
and linear in v, so π(G, α, 1n) is a polytope (i.e., the convex hull
of a finite number of points) in 1n ⊂ R

n. Figure 2 illustrates this
geometrical interpretation of π(G, α, ·) in case n = 3.

The key point in this geometric viewpoint is that we can asso-
ciate each possible ranking to a portion of the simplex. If we consider
the center point (barycenter) of the simplex 1n, given by the nor-
malization of e, i.e., e0 ≡ e/n =

∑n
i=1 ei/n, then we can define the

hyperplanes bisecting the simplex through the center e0 and any
combination of n − 2 vertices as

H
i,j
n =















n
∑

k=0
k 6=i,j

λkek, such that λk ∈ R















⊆ R
n. (3.10)

The relevance of this construction is that it provides us with a
way to classify the points π ∈ 1n according to their ranking. To see
this, consider, for instance, the hyperplane H

1,2
4 . It can be identified

as the region of ranking space where c1 = c2, by definition. If we
move away from it in the direction of e2, we will have c1 < c2 and
viceversa.

In general, the
(

n

2

)

planes H
i,j
n uniquely determine the pairwise

inequalities between components i, j of the PageRank vector. The
original simplex 1n is then divided into n! regions (the number of
permutations of the components of the PageRank vector), each of
them determining a different ranking. A depiction of these regions
for the n = 3 case can be seen in Fig. 3.

In this light, we can see that there is Ranking control if and
only if

e0 =
1

n
e ∈ Im(π) and e0 =

1

n
e /∈ ∂Im(π). (3.11)

The argument here is identical to that of the hyperplanes:
π = e0 is the point in ranking space where c1 = c2 = · · · = cn.

Given that all hyperplanes H
i,j
n pass through e0 by construction, all

ranking regions are ε > 0 away from it. Thus, moving ε > 0 away in
any direction will lead to different rankings.

This idea may be easier to visualize if we take into account
Fig. 2. Notice that in that case, the resulting triangle (right) contains
points associated to any ranking (as shown in Fig. 3). The condition
necessary and sufficient for this to happen is for it to contain the
centerpoint of the bigger triangle.

Next, we can give an analytical characterization of the existence
of a prescribed ranking of nodes in terms of the relationship between
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FIG. 3. Different ranking regions in the n = 3 case. For instance, if ∂A denotes
the (topological) boundary of A ⊆ 1n in the containing plane of A, then
π = (π1,π2,π3) ∈ A \ ∂A corresponds to π2 > π1 > π3, while the intersec-
tion between triangles would lead to equal scores, e.g., π ∈ B ∩ C would
correspond to π2 = π3 > π1 .

the damping factor and the column sums of P, which is analogous to
Theorem 3.4 but for the ranking problem.

Theorem 3.6 (Characterization of ranking control): Given
a graph G and damping factor α = (0, 1), then it is possible to obtain
any ranking of the nodes under the PageRank if and only if

1

α
> max

j

(

n
∑

i=1

Pij

)

. (3.12)

Proof. Using π 0 = e0 in Theorem 3.4 yields

eT
0 ej =

1

n
> αeT

0 Pej =
1

n
α

n
∑

i=1

Pij, (3.13)

for all 1 ≤ j ≤ n, which already gives us the characterization of the
existence of a personalization vector that gives any prescribed rank-
ing of nodes. By virtue of the aforementioned theorem, we can
also conclude it to be a sufficient condition for the existence of a
personalization vector allowing for any desired ranking. �

Given that
∑

i Pij is the total probability that a random walker
visits node j, this theorem can be interpreted as an upper bound for
α in terms of the maximum of these total probabilities. This upper
bound tells us that, provided we have α < 1/ maxj

∑

i Pij, we can
always find any desired ranking with an appropriate choice of per-
sonalization vector. It is important to note that this is not a statistical
result, in the sense that as long as there is one node targeted by many
others with low out-degree, there will be almost no room for rank-
ing control, regardless of the topology of the rest of the network. As
we will see later, this is very reminiscent of the scale-free23 network
paradigm: indeed, scale-free networks present these high in-degree
nodes pointed to by low out-degree ones.

It is also remarkable to point out the fact that if we denote

α0 =
1

maxj

∑

i Pij

, (3.14)

then α0 ∈ (0, 1] is a measure of the controllability of the PageRank
in graph G, since the bigger α0 is the wider range of damping factors
allow Ranking control of PageRank in G.

C. Real network datasets

Having found a network-specific upper bound for the value of
the damping factor α, which would allow the PageRank of the net-
work to be ranking-controllable tinkering with the personalization
vector, it is left for us to find out whether it is a hard or soft bound.

The standard value considered for the damping is α = 0.85,6

whose interpretation in terms of Internet hyperlink networks is that
of a surfer clicking on hyperlinks ∼8 times before losing interest and
searching for something else; this value corresponds to constraining
the maximum of the column sum of P to around 1.17. This is clearly
a very strict condition.

In fact, we have computed the maximum of the column sums
of P for a variety of networks,24 publicly available from different
Internet sources (all fetch from the KONECT network repository25

and the CASOS network repository26). We can extract the maximum
value of the damping factor α which would enable us to have rank-
ing control over each network’s PageRank rankings. This is shown
in Fig. 4.

As expected from the above discussion, the maximum values
of the damping factor are generally small compared to the standard
α = 0.85, regardless of the network size. There are a couple of excep-
tionally high values but still lower than such value. We see, on the
other hand, that the smaller the network the more controllable it is.
This can also be understood from Theorem 3.6: a higher number
of nodes means that the maximum column sum of P is likely to be
higher (specially due to the number of edges growing also linearly
with the number of nodes), hindering controllability.

While our results are of a theoretical nature and, thus, are
not related to any specific implementation or application of PageR-
ank, it might also be interesting to address the implications of this
bound in some specific use cases of PageRank (and more concretely,
understanding the teleportation vector in them).

• World Wide Web and similar data: Here, the purpose of
PageRank is mainly identifying websites of interest for a given
user. The teleportation, therefore, allows for tweaking the pref-
erences of the user, providing different rankings to a user with
a different personalization vector. The bound (3.12) in this
case tells us that the ordering is robust: the ranking cannot be
completely altered by the choice of personalization.

• Genetical or Protein–Protein Interaction networks: As explained
in Ref. 7, PageRank has been applied in a variety of biological
networks.27,28 In these applications, the teleportation vector is
designed to focus the search on specific areas of the network.
Given that, as discussed in the aforementioned paper, the damp-
ing used in these applications is high (α ≈ 0.8), we can also to
conclude that the ranking will also be robust with respect to
changes in the personalization vector.
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FIG. 4. Scatterplot showing the number of edges against the number of nodes for 84 different real networks obtained from the KONECT network repository25 and the CASOS
network repository,26 with datapoints colored based on the maximum value of α providing ranking control.

• Knowledge information systems: It is also discussed in Ref. 7
that PageRank has found a way to be used in semi-supervised
learning tasks (for instance, in graphs where each node is an
image and two are connected if they share a caption label29).
These studies present a different phenomenology to the previ-
ously discussed cases, as they employ very low values of α ≈ 0.1.
Although we have no datasets of this type, our results force us to
conclude that it is quite likely that the rankings obtained will be
highly dependent on the personalization vector used.

• There are plenty other applications (see Ref. 7), most of them
using high α. We can draw similar conclusions to the previous
cases, the robustness of the ranking.

Some of the datasets used in Fig. 4 fall into these or other categories.
The specific data used in each of them can be found in our GitHub
repository (which can be found in the Data Availability section of
this article), and the information about each dataset is in Ref. 25
and 26.

IV. BIPLEX PAGERANK

In Ref. 18, a novel version of the PageRank vector was put
forward by establishing an analogy between the standard PageR-
ank algorithm and a random surfer on a “virtual” biplex network,
constructed from the initial graph G.

Although we will not discuss it here, this algorithm was shown
to be useful in order to extend the notion of PageRank centralities

to multiplex networks. Multiplex networks are networks where the
interactions between nodes fall into different categories.30 Hence,
they can be represented as different layers, each containing the same
nodes but with a particular set of connections. Standard complex
network algorithms (such as centrality measures, community detec-
tion algorithms, and others) need to be extended to account for these
more intricate structures, and the biplex PageRank18 is one of such
proposals.

Nevertheless, the application of this algorithm to monoplex
networks provides yet another extension of PageRank, which can
serve as a playground for novel ideas related to centrality. In our
case, it will be clear that the geometrical solution to the ranking
problem described in Sec. III B is not restricted to just the vanilla
PageRank algorithm: it can serve as a guiding principle in more
complicated, although related, measures.

In the biplex PageRank algorithm, the auxiliar biplex network
considered consists of two layers: one with the actual edge connec-
tions between the n nodes (this layer essentially accounts for the
teleportation-less random walk), while the other contains a fully
connected graph between them (this is the “teleportation layer”).
The biased random walker with teleportation then chooses, at each
step, whether to follow the links in the usual transition layer or the
teleportation layer.

This construction led to the following definition:
Definition 4.1 (Biplex PageRank centrality18): Let G be a

graph with no dangling nodes, with transition matrix P. Let v be a
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positive, unit norm vector and β ∈ (0, 1). Then, the biplex PageRank
vector of G with damping factor β and personalization vector v is the
vector,

πBPR = πu + πd, (4.1)

where [πT
u , πT

d ] ∈ R
2n is the only positive, unit norm eigenvector of

MBPR =

(

βP (1 − β)In

βIn (1 − β)evT

)

. (4.2)

Note that πu corresponds to the centrality of the nodes in the
transition layer, while πd corresponds to the centrality of the nodes
in the teleportation layer.

It is remarkable to point out that existence and uniqueness of
the Biplex PageRank centrality are granted by the Perron–Frobenius
theorem. This alternative version of the biased walker leads to a dif-
ferent centrality measure, whose technical details we will skip, only
keeping the necessary ones and referring the interested reader to
Ref. 18 for them.

Vectors πu and πd satisfy the following relations: πue = β and
πde = 1 − β .

Later in Ref. 31, a closed form formula for the Biplex PageRank
vector, in resemblance to formula (3.2), was found as

π
T
BPR = (1 − β)2vT (βIn + Y) Z−1, (4.3)

where Y = In − βP, Z = γ In − βP, and γ = 1 − β(1 − β). It is
straightforward to check that (βIn + Y) is invertible in the β ∈ (0, 1)
range, so we also have the formula

vT =
1

(1 − β)2
π

T
BPR Z (βIn + Y)−1 . (4.4)

With this, we can state the following theorem that character-
izes when a personalization vector exists for a prescribed biplex
PageRank centrality.

Theorem 4.2 (Existence of the personalization vector–biplex
case): Given a graph G and a positive, unit norm πBPR, then there
exists a positive, unit norm personalization vector v such that π 0 is
the biplex PageRank vector if and only if π

T
BPRej > βπ

T
BPRPej for all j,

where P = (2 − β)(βIn + Y)−1.
Proof. First we prove that Eq. (4.4) leads to unit-norm per-

sonalization vectors. Note that Pne = e due to row-stochasticity;
therefore, if we use the resolvent expansion

(βIn + Y)−1 =
1

β + 1

∞
∑

m=0

(

β

1 + β
P

)m

,

we end up with

|v|1 = vTe =
1

(1 − β)2
π

T
BPR Z (βIn + Y)−1 e

=
1

(1 − β)2
π

T
BPR Z

1

β + 1

∞
∑

m=0

(

β

1 + β
P

)m

e

=
1

(1 − β)2
π

T
BPR (γ In − βP)e

1

β + 1

∞
∑

m=0

(

β

1 + β

)m

=
1

(1 − β)2
π

T
BPR (1 − β)2e = π

T
BPRe = 1.

We now require that all components of the required personal-
ization vector are positive,

vj = vTej =
1

(1 − β)2
π

T
BPRZ(βIn + Y)−1ej > 0. (4.5)

It will now be convenient expanding the Z(βIn + Y)−1 expres-
sion in with the previously mentioned resolvent series, multiplying
and re-summing. Doing so, we find

Z(βIn + Y)−1

=
1

β + 1
(γ In − βP)

∑

m=0

(

β

β + 1

)m

Pm

=
1

β + 1

∑

m=0

[

γ

(

β

β + 1

)m

Pm − β

(

β

β + 1

)m

Pm+1

]

=
1

β + 1

[

γ In − β(β − 2)In + β(β − 2)

∞
∑

m=0

(

β

β + 1

)m

Pm

]

= In + β(β − 2)(β + Y)−1.

Plugging this in the above equation, we find the condition

[

πBPR + β(β − 2)πBPR(βIn + Y)−1
]

ej > 0, (4.6)

which with the identification P = (2 − β)(βIn + Y)−1 concludes
the proof. �

Again, by using the geometric approach proposed in Sec. III B,
we can interpret the biplex PageRank vector as the linear map
between simplices (3.8),

πBPR(G, β , ·) : 1n −→ 1n

v ↪−→ πBPR(G, β , v). (4.7)

This map is again injective and linear in v and, consequently,
allows us to employ the same kind of argument for the existence of
ranking controllability,

e0 =
1

n
e ∈ Im(πBPR), e0 =

1

n
e /∈ ∂Im(πBPR). (4.8)

It is straightforward to find an analytic characterization of
ranking control in the biplex PageRank case in terms of the rela-
tionship between β and the column sums of matrix P, simply by
following the same reasoning used in the standard PageRank setting.
In fact, following similar arguments that those used in the proof of
Theorem 3.6, it can be easily proved the following result:

Theorem 4.3 (Characterization of biplex ranking control):
Given a graph G and a damping factor β = (0, 1), then it is possi-
ble to obtain any ranking of the nodes under the biplex PageRank if
and only if

1

β
> max

j

(

N
∑

i=1

Pij

)

. (4.9)
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By using the definition of P, the condition that appears in
Theorem 4.3 can be rewritten as

1

β
> max

j

(

N
∑

i=1

Pij

)

=

(

2 − β

1 + β

)

max
j

N
∑

i=1

[

(

In −
β

1 + β
P

)−1
]

ij

,

(4.10)

but we cannot expect a more simplified expression of the maximal β
in terms of Pij since matrix P depends itself on the damping factor,
unlike what happened in the standard PageRank case.

A. Comparison to the monoplex result

After presenting the analytic result for the biplex ranking prob-
lem (Theorem 4.3), we now turn to numerics in order to develop
some understanding for this result. In particular, we are interested
in how it compares to the usual PageRank, whether it is more
controllable or not, in terms of the maximal damping factor that
allows full ranking control. A similar comparative analysis was per-
formed in terms of the controllability based on the personalization
vector between the (classic) PageRank and the Biplex PageRank by
Flores et al.32

As we have pointed out before, Theorem 3.6 shows that the
value α0 introduced in Eq. (3.14) is a measure of the controllabil-
ity of the PageRank in G. Similarly, if we consider β0 the maximal
value that verifies Eq. (4.10), then it is also a measure of the con-
trollability of the Biplex PageRank in G since the bigger β0 is the

wider range of damping factors that allow Biplex Ranking control
of PageRank in G. A numerical comparison between α0 and β0

for the same real network datasets used in the standard PageRank
case (all fetch from the KONECT network repository25 and the
CASOS network repository26) is presented in Fig. 5. Note that,
for most cases, the maximal value of the damping factor α0 is
smaller than the corresponding maximal β0 for the Biplex PageRank,
so we see that in these cases Biplex PageRank is more control-
lable than (classic) PageRank, which is consistent with the results
obtained in Ref. 32 for the controllability related to personalization
vectors.

It is also interesting to point out that although the datasets
come from very heterogeneous sources, there is a clear tendency
in the data, following a curve that we found to be (via a quadratic
polynomial fit) y = 1.014x2 + 0.492x − 0.041. This is perhaps more
surprising when we take into account that some of the sam-
pled networks are weighted, yet the quadratic behaviour remains
unchanged.

In order to delve deeper in this result, we will consider another
batch of network data, this time synthetic networks. We have gen-
erated, with the aid of the NetworkX library in Python, two distinct
sets of networks: some directed random networks (constructed in
the same vein as the undirected Erdös–Renyi version) and some
directed scale-free ones (constructed based on the procedure pre-
scribed in Ref. 33). In both cases, we generated networks with the
number of nodes ranging from 100 to 20 000, with different edge
creation probabilities (see the GitHub repository for specific details

FIG. 5. Comparison between maximum α and β saturating their respective bounds in the cases of Standard and Biplex PageRank for 84 different real networks obtained
from the KONECT network repository25 and the CASOS network repository.26 Red datapoints represent weighted networks and blue represents unweighted ones.
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FIG. 6. Comparison of maximum α and β saturating their respective bounds in the cases of Standard and Biplex PageRank for synthetic networks. Here, red datapoints
represent random networks and blue represents scale-free ones.

of implementation). We again compute their maximum values of
α, β and plot one against the other, obtaining Fig. 6.

We can clearly see that the polynomial fit is very similar to that
of the real networks case, and we could expect them to match even
better had we sampled more networks. Apart from that, it is quite
noticeable that the distinct nature of the generated networks also
separates them in their behavior with respect to both centrality mea-
sures. This was already hinted at in Sec. III: the presence of high
in-degree nodes pointed to by low out-degree ones is very common
in scale-free networks; thus, their maximum values of α and β are
specially low. For random networks, all nodes have, on average, the
same connectivity; thus, they allow for more flexibility in ranking
control. Another byproduct of the randomness in the corresponding
synthetic networks is the higher spread in α for fixed β compared to
that of scale-free ones.

V. CONCLUSIONS

Our research has focused on the controllability of the PageRank
algorithm as a centrality measure in complex networks. Through our
study, we have concluded that full control through weight changes
is impossible. Instead, we have investigated the necessary conditions
to achieve full control through parametric changes, which involve
modifying both the damping factor and the personalization vector.
By shifting our focus to centrality rankings rather than centrality
scores, we found that a less stringent requirement is sufficient for
both standard PageRank and biplex PageRank. However, when we

tested this condition on real or synthetic networks, we found it to be
a challenging constraint. These findings offer further evidence of the
stability of PageRank as an indexing tool.
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