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Abstract

We exploit tools from nonlinear dynamics to the detailed analysis of cold atom experiments. A

powerful example is provided by the recent concept of basin entropy which allows to quantify the

final state unpredictability that results from the complexity of the phase space geometry. We show

here that this enables one to reliably infer the presence of fractal structures in phase space from

direct measurements. We exemplify the method with numerical simulations in an experimental

configuration made of two crossing laser guides and originally used as a matter wave splitter.
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I. INTRODUCTION

At the beginning of this century, splitters for guided propagating matter waves were thor-

oughly investigated in the thermal regime [1–5]. In the following decade, the Bose-Einstein

condensate regime was explored using optical waveguides [6, 7]. Despite the quantum nature

of these systems, some results could be understood using classical mechanics. For instance,

a classical approximation was employed to unveil the chaotic dynamics underlying the ex-

perimental results [7]. An estimation for positive Lyapunov exponents was also found [6],

highlighting the chaotic nature of the system. The recent development of new techniques of

nonlinear dynamics allows to extract much more information from the same kind of exper-

iments and, more importantly, to indicate how we can infer these signatures of chaos not

only by numerical simulations but from direct measurements.

One of these powerful tools is the basin entropy [8]. The framework of the basin entropy

allows to quantify the unpredictability associated to the different outcomes in a dynamical

system. Here we extend the basin entropy methodology to scattering problems. Using

only the data that could be measured in real experiments such as the crossed laser beams

setting of Ref. [7], we can classify the complexity of the phase space for different parameters.

Namely, the basin entropy takes into account variations in the geometry of the phase space

and the number of escapes. These factors contribute to the final state predictability of the

system. We show that our approach enables one to reliably detect the presence of fractal

structures in phase space, given an experimental resolution. Using the same data set it is

also possible to test the Wada property [9, 10], a more restrictive property than fractality.

The experimental investigation of factuality is usually considered as a tour de force since

data should be collected for a very large variation of the parameters (over a few orders of

magnitude).The method presented here and based on the concept of basin entropy circum-

vents this difficulty. The organization of the article is as follows. In Sec. II, we introduce

the experimental setup made of two crossing guides and its modeling. Section III is devoted

to the adaptation of the concept of basin entropy to scattering situations. The application

of this technique to the considered experimental cold atom system is detailed in Sec. IV. In

Sec. V, we explain how this approach enables one to experimentally characterize the fractal

geometry of the phase space. Finally, a discussion about the application of these techniques

to real experiments is presented.
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II. THE CROSSED BEAM CONFIGURATION

In this section we introduce the system studied along this work. It corresponds to the

motion of atoms into two crossed laser beams acting as waveguides, as experimentally im-

plemented in Ref. [7]. The atoms in the presence of the two Gaussian dipole beams crossing

at an angle θ have a potential energy given by (see Fig. 1a)

U(x, y, z) = −U1
w2
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w2
1(x)

e−2(y2+z2)/w2
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(x) − U2

w2
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w2
2(x

′)
e−2((y′)2+z2)/w2(x′)2) (1)

with x′ = x cos θ−y sin θ, y′ = x sin θ+y cos θ, Ui = ηPi/w
2
i0 and w2

i (x) = w2
i0(1+x2/x2

Ri) for

i = 1, 2. Subindexes 1 and 2 account for the two lasers, while θ is the angle between them.

The parameter wi0 refers to the waist of the Gaussian dipole laser i, λi to its wavelength, and

xRi = πw2
i0/λi to its Rayleigh length. The η parameter has a value that depends both on the

atom and on the wavelength of the dipole laser (η = 1.3 × 10−36 JW−1m2 for rubidium-87

with λ = 1064 nm [12]).

For the sake of simplicity, we shall use a two-dimensional model that captures the main

features of the experimental system [7, 13]. For this purpose, we assume that the propagation

is performed on a small distance with respect to the Rayleigh length so that w2
i (x) ≃ w2

i0.

Only one transverse direction y is considered and x is the direction of propagation. We

follow a dimensionless procedure by introducing the length scale ℓ and the time scale τ in

Eq. (1). We define αi = mUiτ
2/ℓ2 and βi = 2ℓ2/w2

i0, so that the potential of Eq. 1 finally

yields the following Hamiltonian:

H =
1

2

(

ẋ2 + ẏ2
)

− α1e
−β1y2 − α2e

−β2(x sin θ+y cos θ)2 . (2)

Now, the features of each laser are condensed into two characteristic parameters: α

related to the depth of the potential and β to the laser waist. Along this work, we will use

αi = βi = 1, which means wi0 = w0, Ui = U0 and therefore ℓ = w0

√
2 and τ = w0(2/mU0)

1/2.

Figures 1(a)-(b) show an example of a classical trajectory of this Hamiltonian. The cou-

pling of the longitudinal and the transverse degrees of freedom that occurs at the crossing

region is responsible for the complex dynamics. In [7], it was shown that due to the rela-

tively short time spent in the scattering region by the wave packet and the 3D dynamics,

interference effects were marginal in most cases and the classical description could account

for most of the experimental results. In that work, the parameters governing the poten-

3



(a) (b)

Figure 1. (Color online) Example of a trajectory in the crossed beam configuration.

(a) An atom is shot from the beam 1 and its trajectory is depicted in black. The color code

(grayness) accounts for the depth of the potential, being deeper for cold colors. (b) A zoom in

the crossing region showing chaotic trajectories. The parameters of the Hamiltonian of Eq. 2 are

α1 = α2 = β1 = β2 = 1, θ = 45◦. The dashed circle represents the scattering region
√

x2 + y2 < 3σ,

with σ =
√

2
βi
.

tial in Eq. 2, i.e., the parameters of the waveguides α1, α2, β1, β2, were changed in order to

produce different kind of dynamics. In particular, for low values of the ratio of intensities

α2/α1 the waves were only slightly perturbed, for similar intensities of both lasers α2/α1 ≈ 1

the splitter regime was found, and finally, for large values of α2/α1 the switch regime was

dominant (see Fig. 2). In the present paper, we adopt a different perspective by keeping

the potential unchanged (α1 = α2 = β1 = β2 = 1) and varying the initial horizontal speed

vx0, which is more in the spirit of the scattering problems. This is feasible in experiments

by setting different gradients to accelerate the atoms [14, 15]. The initial horizontal speed

vx0 > 0 can be considered as a parameter of the system: the dynamics depends strongly

on this value. Namely, when particles are shot with a low speed vx0, trajectories have more

time to explore the scattering region and to display chaotic dynamics. For high speed vx0,

particles are barely affected by the potential.
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Perturbative regime Splitter regime Switch regime

Figure 2. (Color online) Qualitative presentation of the different experimental regimes.

In Ref. [7], where atom lasers propagate in a X-shape configuration, three regimes were observed

depending on the power ratio α2/α1 (see experimental pictures). The position of the boundaries

between these different regimes also depends on the initial horizontal speed vx0. Here we keep

α2/α1 = 1 and modify vx0, which is also feasible in real experiments.

Therefore, by considering vx0 and θ as parameters and assuring sufficiently long shooting

distances x0 from the crossing region, we can analyze the dynamics in terms of (y0, vy0).

The set of initial conditions (y0, vy0) that yields an escape through a given exit is referred to

as an escape basin [16]. Given the Gaussian profile of the potentials, we define unbounded

trajectories as those going further than 3σi of each laser beam i = 1, 2, with σi =
√

2
βi
.

An example of such a scattering region is delimited in Fig. 1 by dashed lines. Graphical

representations of escape basins are provided in Fig. 3-(a)-(c), where each color represents

an exit according to the color code of Fig. 3-(d). White pixels are for such unbounded

trajectories that provide atom losses and also for what we call sticky trajectories, i.e., that

spend more than 2 · 106 time steps without escaping. These two kinds of trajectories will

not be considered for the calculations of the basin entropy due to their negligeable influence.

Their corresponding basin is however interwoven with the other basins, as shown in Fig. 3-

(b), but it is only important for extremely low values of vy0 and large initial transverse

positions y0. In the following, we will restrict our study to the parameter ranges vy0 ∈
[−1.5, 1.5], y0 ∈ [−1.5, 1.5].

The presence of fractal structures is evident for low speed basins (see Fig. 3-(a)), but
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Figure 3. (Color online) Escape basins. The parameters for these basins are θ = 45◦, x0 =

−500, α1 = α2 = β1 = β2 = 1. (a) Escape basin for a low shooting speed vx0 = 0.1. (b) Zoom in

the basin depicted in (a). (c) Escape basin for a high shooting speed vx0 = 1. (d) Color code used

to label the basins.

harder to appreciate in the case of high speed, e.g., Fig. 3-(c). Quantifying the different

degrees of fractality can be done with the help of basin entropy.
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III. THE CONCEPTOF BASIN ENTROPY FOR SCATTERING EXPERIMENTS

The idea of basin entropy [8] was introduced in order to answer a simple question: how is

it possible to affirm that one basin is more unpredictable than another? To this aim, a new

quantitative measure was defined. To calculate the value of the basin entropy, we proceed

in several steps. First, the basin must be divided into smaller parts that we call boxes.

Each box contains in principle infinitely many different initial conditions, leading to a finite

number of final destinations. In every box i, the proportion of initial conditions leading to

each final destination j defines the probability pi,j of a trajectory inside that box ending in

that particular final destination. By means of the Gibbs entropy we can define the entropy

of a box as Si = −
NA
∑

j=1

pi,j log pi,j, where NA is the number of possible final destinations of

the system, and for our scattering problem the number of exits. The two guides give rise to

four possible exits, that is NA = 4 in our case, so here the entropy of every box Si ranges

between 0, if all the initial conditions inside a box lead to the same exit, to logNA for an

equiprobable distribution of the initial conditions inside the box. Next, we add the entropies

of all the boxes considered S =
N
∑

i=1

Si. Finally, in order to get a quantity ranging from 0

to logNA, we divide that quantity S by the total number of boxes N , obtaining the basin

entropy Sb = S/N .

The basin entropy can be computed numerically by integrating the equations of motion

and obtaining the escape basins. This quantity can also be inferred from experimental data,

as we will show in the next section. But before that, we must discuss some technical details

concerning the basin entropy calculation in scattering problems. First, when we compute

numerically the basin entropy we usually work with flat distributions, in the sense that

initial conditions are uniformly distributed in the four dimensional space (x0, vx0, y0, vy0).

When particles advance through the horizontal waveguide, before arriving to the scattering

region, these distributions evolve in time. Indeed, the transverse Hamiltonian is close to

integrability and possesses invariant curves which do not correspond to the original distri-

bution. Trajectories follow these invariant lines towards a quasi stationary regime where

they are uniformly distributed on these curves. This happens for sufficiently long times, i.e.,

for sufficiently long launching distances. If the particles do not have enough time to evolve

to these asymptotic distributions, the values of the basin entropy can be largely modified,

but for long enough times the basin entropy remains as a constant for every initial shooting
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speed vx0, as shown in Fig. 4.

Another different issue is the number of trajectories per box. In order to get a reliable

value of the basin entropy, it is necessary to have reliable values of the probabilities of

each four dimensional box. However, in numerical simulations we must reach a compromise

between computational cost and statistical convergence. Results remain unaltered for values

of the trajectories per box larger than 54, which will be the standard value used along this

work.

Finally, another fundamental parameter for the basin entropy calculation is the number

of boxes N . The larger the number of boxes N , the more precise will be the description.

However, both in experiments and in numerical simulations we must take into account

practical considerations concerning the number of experiments and the computational effort.

In this respect, it has already been shown [8] that a Monte Carlo procedure for the choice

of the boxes in phase space leads to accurate values of the basin entropy minimizing the

efforts.

IV. BASIN ENTROPY FROM EXPERIMENTAL COLD ATOM DATA

The procedure to calculate the basin entropy and the scattering experiments with cold

atoms share some important similarities. In both cases we consider ensembles of trajectories

instead of single trajectories. In the experiments we have clouds of atoms with different

values of position and velocity, and for the basin entropy calculation we must compute

many trajectories with different initial conditions inside every box. Scattering experiments

essentially study the output of the trajectories in order to gain knowledge about the system,

just as the basin entropy does. We propose to use as the equivalent of boxes in the basin

entropy scheme, wave packets of atoms which are launched in the scattering region. Indeed,

these wave packets correspond to a group of atoms distributed around a mean value of the

velocity and the position following a Gaussian distribution. The experimental measurement

through absorption pictures provides access to the population of different branches, and thus

to the probabilities inside every box.

As we have described in the previous section, we must pay attention to some technical

details concerning the basin entropy computation in scattering problems. In experiments,

the problem of the stationarity of the distributions before its arrival to the scattering region
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Figure 4. (Color online) Basin entropy for different launching distances. The angle of the

beams is θ = 45◦, vy0 ∈ [−1.5, 1.5] and y0 ∈ [−1.5, 1.5]. Other parameters are α1 = α2 = β1 = β2 =

1, as used throughout the paper. For each horizontal speed vx0, we compute the basin entropy Sb

for different launching distances x0, so that the atoms take a time t to reach the scattering center

in x = 0. In our regime of parameters, the basin entropy saturates for a time t ≈ 500 regardless of

the initial horizontal speed vx0.

can be solved by varying the launching distance appropriately. The number of trajectories

per box is not a limit, since this number is related to the number of atoms in a wave

packet, which in real experiments is in the thousands. In fact, it can be further increased

by repeating the experiment for a wave packet with same initial mean values.

Remarkably, the Monte Carlo sampling of phase space can be done experimentally by

selecting different sets of initial conditions with different mean velocity vy0 and mean position

y0. In practice, small clouds of atoms shall be successively delivered from a trap that

accommodates a reservoir of atoms such as a Bose-Einstein condensate placed upstream.

The transverse position for outcoupling the atoms can be tuned by modifying by optical

means the reservoir trap geometry while the mean transverse velocity can be transferred to

the packet of atoms by applying a well-calibrated transverse magnetic gradient pulse. By

repeating successively such outcoupling procedures until the reservoir is empty, it is possible

to reduce drastically the number of experimental runs. As shown in Fig. 5, for a realistic
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Figure 5. Convergence with the number of the Monte Carlo scheme. The relative error

of the basin entropy εrel =
|Sb−Sb(RS)|

Sb
× 100 as the number of sampled boxes N is represented.

Sb is taken as a reference value of the basin entropy computed for 10000 boxes, and Sb(RS) is

the basin entropy for the random sampling procedure. We can see that for a realistic number of

experimental runs (50-100) the relative error is below 10%. In gray, five different runs made for

θ = 45◦ and vx0 ∈ [0.09, 0.11], x0 ∈ [−250,−200], vy0 ∈ [−1.5, 1.5], y0 ∈ [−1.5, 1.5]. In black, the

mean of the five runs in gray.

number of experimental runs (∼ 50) the relative error in the basin entropy computation is

below 10%.

Another important point is the size of the boxes used in the basin entropy computation,

that is, the minimal resolution that can be reached in this experimental procedure. This

corresponds to the size of the wave packet relative to the size of the range of phase space that

we want to explore. To access the best achievable resolution, we focus on the velocity space

since a similar argument will apply to the position space. Typically, the range of variation

of the velocity is of the order of ∆v =
√

U0/m, associated to the depth U0 of the guide. For

a quantum packet in the transverse ground state, the velocity dispersion of the wave packet

δv0 = ω0a0 where a0 = (~/mω0)
1/2 is the oscillator length and ω0 = (4U0/mw2

y)
1/2 is the

transverse angular frequency obtained by expansion of (1). The realization of a monomode

atom laser has proved the experimental feasibility of the production of such packets [17–22].

Using the parameters from Ref. [7], we find ∆v/δv0 = (U0mw2
y/4~

2)1/4 ≃ 65 (wy = 100
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(a) (b) (c)

Figure 6. Random sampling computation using different values of the launching speed.

The volume of the phase space investigated is vy0 ∈ [−1.5, 1.5], y0 ∈ [−1.5, 1.5], x0 ∈ [−760,−750].

For each mean value of 〈vx0〉 we consider that vx0 ∈ [〈vx0〉− 〈vx0〉 /10, 〈vx0〉+ 〈vx0〉 /10]. The basin

entropy Sb is computed using 100 boxes (experimental runs) for each represented point, and this

procedure is repeated three times so that we get the error bars displayed in the figures. (a) As we

increase the horizontal speed vx0 the basin entropy decreases. (b) The boundary basin entropy Sbb

is above the log 2 threshold (dashed line) for low speeds vx0, and is below for high speeds. (c) The

fraction of boxes, R, lying on the boundary decreases as we increase vx0.

µm and U0/kB = 10 µK). In practice, a linear resolution of several tens can therefore be

obtained up to a maximum of one hundred. This means that the experimental escape basins

would have a resolution between 10× 10 and 100× 100.

In short, to compute the basin entropy Sb in the crossed beam configuration, one should

perform a sufficient number of experiments. Each of these experiments consists in sending

a wave packet with some mean transversal velocity and position. The experiments must

be carried out for sufficiently long launching distances to assure the stationarity of the

distributions. Then, the population escaping through each channel should be measured by

absorption images, for instance. Each experimental run provides a value of the basin entropy

in a box Si. With an appropriate sampling of the region of phase space considered, the total

basin entropy can be computed by adding the basin entropy associated to each run.
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(c) (d)

Figure 7. (Color online) Escape basins for different resolutions. We depict the escape basins

in the (y0, vy0) subspace for θ = 45◦, x0 = −250, vx0 = 0.1. The resolutions are (a) 1000 × 1000,

(b) 200× 200, (c) 100× 100 and (d) 50× 50. The experimental resolution is probably close to (d),

but still fractal structures are present.

V. CHAOS AND FRACTAL STRUCTURES IN ESCAPE BASINS

In this section, we investigate transient chaos and fractal structures appearing for low

values of the horizontal velocity vx0. A low speed implies that particles spend more time in
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the scattering region, i.e., the crossing region of the two beams. Therefore, the exponential

divergence of trajectories induced by the nonlinear potential makes the system difficult to

predict. We will show that the basin entropy can detect a highly fractalized phase space

indicating a strong unpredictability. As a first approach, we have sampled the basin entropy

in the 2D space (y0, vy0) using a Monte Carlo procedure. The basin entropy Sb for different

shooting speeds vx0 is represented in Fig. 6-(a). We can see that the basin entropy is higher

for lower speeds, providing us a quantitative basis to our intuition: it is more difficult to

predict the final destination of particles with low speed vx0.

Using these data, we can prove the presence of fractal structures in phase space. To

this aim, we must compute the boundary basin entropy, Sbb. This quantity is defined as

Sbb = S/Nb [8], where S comes again from S =
N
∑

i=1

Si and Nb is the number of boxes

containing more than one color. In other words, we are repeating the same procedure used

to compute the basin entropy, but now we are normalizing only by the boxes lying on the

boundary.

The quantity Sbb therefore measures the complexity of the basin boundaries. Now suppose

that our basins were separated by smooth boundaries. In that case, most of the boxes would

contain boundaries separating only two basins, though there might be a finite number of

boxes containing more than two basins. If we take a sufficiently large number of boxes, the

contribution of these boxes separating more than two basins will be negligible. If the basins

are smooth, the most pathological scenario would be to have all boundary boxes with equal

proportions of two basins, which would lead to Sbb = log 2. Therefore, if the computed value

of the boundary basin entropy obeys the inequality Sbb > log 2, then the boundaries must

be fractal. This is referred to as the log 2 criterion [8].

The log 2 criterion is a sufficient but not necessary condition for fractality: some fractal

basins do not pass this criterion, for instance those having only two outcomes. In our case,

the system presents four possible exits, and for low speeds the values of Sbb largely exceed

the log 2 threshold, as shown in Fig. 6-(b). Note that the number of boxes at the boundary

varies with the incident velocity (see Fig. 6-(c)), this information should be taken into

account for the experimental sampling. Moreover, we have checked that the log 2 criterion

can be fulfilled for all the angles θ (except the limit cases θ = 0o, 90o). If such values were

obtained in experiments, it could be considered an experimental demonstration that the

phase space is fractal.
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Nevertheless, it is important to recall that the log 2 criterion detects fractals at a given

resolution. Indeed, given a finite resolution it is impossible to distinguish a real fractal

from something which is not a fractal, but that looks like it at that resolution. The log 2

criterion presents a major advantage compared to other techniques like the box-counting

dimension: it avoids the use of different scales of velocity and position, which, in the context

of experiments with cold atoms, is fundamental. The log 2 criterion is a strong argument

to test fractal structures using minimal requirements. Of course, we will detect fractal

structures at the resolution that could be achieved with the experiments which depend on

the size of the wave packet compared to the size of the region of phase space considered.

To illustrate this point we show in Fig. 7 basins with different resolutions showing that

experimentally achievable resolutions are enough to observe fractal basins.

Some escape basins are not only fractal, but also posses the stronger property of Wada

[8, 10]. This means, that almost all the basins have a common boundary separating them.

The experimental evidence of the Wada property would be that in this regime every time

that more than one branch is populated, all the branches are populated. If the experiment is

in the Wada regime, we will never detect atoms escaping through only two or three different

branches.

VI. DISCUSSION

In this work, we have explained in detail how it is possible to use new techniques from

nonlinear dynamics to characterize the chaotic dynamics of cold atoms directly from ex-

periments. We have focussed on a double guide configuration, where the atoms can escape

through four different exits. In real experiments, we can measure the atom population in

each branch that have escaped from the scattering region. Using these data we can measure

the basin entropy for a given set of parameters. This enables the classification of the final

state unpredictability associated to different experimental regimes. Using the same data set,

for a suitable range of parameters, we have shown how the presence of fractal structures

in phase space can then be detected. An interesting extension of the experimental setting

is the inclusion of more guides. Indeed, with more exits, the log 2 criterion would be more

easily fulfilled, and should facilitate the detection of fractality. Our study motivated by an

experimental work therefore provides a new approach to investigate nonlinear effects such
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as fractal structure or even the intriguing Wada property with cold atom experiments.

In terms of applications, the tools developed here can be used more systematically to

investigate the efficiency and robustness of the switch and splitter regimes of the crossed

beam configuration in order to use it reliably as part of a matter wave circuit [30]. The

protocols that we propose have been designed for a direct implementation with state of the

art experimental techniques.
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