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Abstract

Progress in development of building-integrated photovoltaic systems is still hin-

dered by the complexity of the physics and materials properties of the photo-

voltaic (PV) modules and its effect on the thermal behavior of the building.

This affects not only the energy generation, as its active function and linked to

economic feasibility, but also the thermal insulation of the building as part of the

structure’s skin. Traditional modeling methods currently presents limitations,

including the fact that they do not account for material thermal inertia and that

the proposed semi-empirical coefficients do not define all types of technologies,

mounting configuration, or climatic conditions. This article presents an artifi-

cial intelligence-based approach for predicting the temperature of a PV module

based on local outdoor weather conditions (ambient temperature, solar irradia-

tion, relative outdoor humidity and wind speed) and indoor comfort parameters

(indoor temperature and indoor relative humidity) as inputs. A combination of

two algorithms (Grammatical Evolution and Differential Evolution) guides to

the creation of a customized expression based on the Sandia model. Different

data-sets for a fully integrated PV system were tested to demonstrate its per-

∗L. Serrano-Luján: lucia.serrano@urjc.es; C. Toledo: agrivoltaics.project@enea.it

Preprint submitted to Applied Energy November 28, 2023



formance on three different types of days: sunny, cloudy and diffuse showing

relative errors of less than 4% in all cases and including night time. In compar-

ison to Sandia model, this method reduces the error by up to 11% in conditions

of variability of sky over short time intervals (cloudy days).

Keywords:

BIPV, PV module temperature, Module temperature estimation, Grammatical

evolution, Differential evolution, Machine learning

1. Introduction

Photovoltaic (PV) technology is considered a mature technology, with in-

stalled capacity worldwide growing exponentially in the past decades and reach-

ing 760.4 GWp at the end of 2020 [1]. Although 2020 could see a slight decline

in the growth rate due to COVID19 negative impact, it had nevertheless added

an extra 140 GWp in 2020, and it is expected that the TeraWatt milestone

could be reached in 2024 according to the International Energy Agency forecast

[2]. Similarly, the global 9% (2020) share of installed capacity for the genera-

tion of electricity by photovoltaic systems continues to increase, as well as the

electricity production yield of this installed capacity, which is improving due to

advances in the technological optimization of the PV systems. Those advances

have led to a very good capacity factor, in the range of more than 25% for

many countries. One of the main impacts on the performance of operating sys-

tems are the temperature losses, which arise from the high temperatures that

the modules may reach when irradiance and ambient temperature are high; any

module operating at temperature above T = 25◦C (the standard test conditions

at which nominal power is measured) will have a loss with respect its nominal

peak power. The correct determination of the operating module temperature is

necessary to calculate the losses which will affect the output power of the PV

module and the electricity generated in a certain period of time. The environ-

mental conditions at which the PV module operates change daily and seasonally

and make difficult to obtain good prediction of thermal losses in a given geo-
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graphical location although good databases of daily or monthly average values

of environmental parameters are available [3, 4, 5]. In particular, the error of

thermal model predictions depends strongly on the ambient conditions: sunny,

cloudy or variable days create a different thermal pattern which makes precise

calculations very challenging.

Along with the PV conversion process (partly converted into heat by recom-

bination and other internal mechanisms), the heat transfer mechanisms (defined

by the system configuration) and the characteristics of module encapsulating

material determine the PV module temperature. The coexistence of complex

interacting processes is the main difficulty to achieve a simple, general and ac-

curate method to predict the temperature of PV modules integrated in built

structures, this task has been elusive to date. Prior research efforts have fo-

cused on the development of models based on empirical correlations of different

parameters by different approaches, normally taking a steady state approach

and expressing the PV module temperature as a function of ambient conditions

(ambient temperature, wind speed and incident solar irradiance) and including

some adjustment by encapsulation material or system properties. In this sense,

Skoplaki and Palyvos [6] reviewed a wide set of correlations that have been pro-

posed in the literature for specific mounting conditions, and, in another study,

the authors proposed a semi-empirical correlation independent of the system

configuration by introducing a dimensionless mounting parameter that define

the integration level of the installation [7]. This highlights the need for predic-

tive tools for non-conventional applications, as is the case of building integrated

photovoltaics (BIPV), because of the difficulty to obtain accurate predictions of

the thermal behavior at outdoor operating conditions.

Commonly, BIPV system configurations suffer from overheating due to the

lack of natural ventilation from the rear surface of the PV module which seri-

ously compromises the energy yield, the thermal comfort of the building and the

degradation of the panel. Some widely-used operating cell temperature methods

have been analyzed in the literature for different BIPV configurations. Davis et

al. [8] analyzed the NOCT (nominal operating cell temperature) procedure for
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crystalline BIPV panels mounted vertically, and showed that the model under-

predicts the module temperature by approximately 20◦C. Alonso-Garćıa and

Balenzategui [9] studied the response of NOCT to different types of model en-

capsulations (including glass-glass and glass-tedlar), technologies, orientation

and tilt angles. They highlighted that the method is not the most adequate for

this kind of application as the working conditions substantially differs to those

defined by the procedure. D’Orazio et al. [10] investigated the thermal perfor-

mance for different roof configurations in Italy for one year using the two most

common predictions models: NOCT and SNL (Sandia National Laboratory).

The experimental results demonstrate a difference between predicted and cal-

culated temperature around 10◦C and suggest an optimization of the empirical

coefficient for the use of SNL model which allows to reduce the error under 2.5%

for these type of PV modules under these climatic conditions. Chatzipanagi et

al. [11] also investigated the thermal behavior in real working conditions for

different BIPV system configuration and technologies using as reference NOCT

and the equivalent cell temperature (ECT) models. In this case, the indoor

temperature of the experimental house is kept nearly constant along the year

and the results show differences around 5◦C. Assoa et al. [12] presented a com-

parison of nine thermal models in a rooftop partially integrated configuration

in France (with two air layers between PV module and roof). The results show

that although good prediction have achieved, the accuracy of the considered

model strongly depends on the season, and most especially the irradiance level.

The authors also presented a dynamic prediction model for different integration

levels, based in the correct choice of the convective heat transfer coefficient, with

an accuracy in a range of 2.6◦C and 4.1◦C for clear sky conditions. The error

increases (around 9◦C) at high irradiation levels which correspond to partial

cloud periods where diffuse component is predominant [13].

As can be noted, the complexity on the estimation of the thermal behavior for

non-conventional applications of PV derives not only from the irradiance levels,

the sky conditions or the convective heat transfer coefficient. The absorbed

radiation as heat inside the layers of the PV module induces a thermal inertia
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which increases the estimation error. This behavior has been observed by some

researchers [14, 9] and studied in detail for different technologies and orientations

by our research group [15]. A short-term variability of the ambient conditions,

such as passing clouds, also represents a key challenge for an accurate estimation

of thermal performance. All this indicates the need for validated predictive

tools based on data-driven approaches which allows to build unbiased statistical

models which help to break down the barriers to widespread application of

BIPV.

The storage of information dealing with historical photovoltaic performance

and environmental parameters, has led to the application of novel computational

techniques in the field. Thousands of studies in the literature show results on

the application of Artificial Intelligence (AI) to photovoltaic generators. They

hunt models with better prediction accuracy than the classic models, which are

based on the physical, chemical, mechanical and/or thermal basis. Most of the

application of AI to PV generators deals with the prediction of the maximum

power point tracking, fault detection and output power/efficiency. The most

applied AI techniques are: artificial neural networks, fuzzy logic, genetic algo-

rithms and their hybrid models [16]. Meanwhile, other studies are focused on

forecasting and modelling of meteorological data, basic modelling of solar cells

and sizing of photovoltaic systems [17].

Previous works focused on the study of the thermal behaviour of conven-

tional PV systems, consisting on module temperature prediction by applying

AI techniques such as Artificial Neural Network (ANN), Back-propagation Neu-

ral Network (BPNN), Support Vector Machines (SVM), Genetic Programming

(GP), and a wide range of variation and combination of them. Table 1 shows the

studies identified in the literature as those proposing a new method to estimate

the module temperature by applying AI techniques. None of them considers

BIPV systems.

The proposed work aims to study the thermal behaviour by obtaining a

model to accurately predict the module temperature (poly-crystalline Silicon

PV) from environmental parameters. In particular, a combination of Grammat-
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Ref Year Input parameters AI technique Accuracy assessement PV Technology

[18] 2013 Ta, G, HR, Ws, P, Voc, Isc, Tc MLP-ANN ME poly = -0.21 ◦C, MAE poly = 0.23 ◦C Mono-Si, Poly-Si

ME mono = -0.06 ◦C, MAE mono = 0.11 ◦C

[19] 2014 Ta, G ANN EREL = 1.16016e-3, R= 9.90215e-1 Mono-Si

[20] 2014 Ta, G ANN MAPE = 2.5659% Poly-Si

[21] 2015 Ta, G, HR, Ws SVM, MLP RMSE SVM = 1.5 ◦C CdS/CdTe

RMSE MLP = 1.4 ◦C

[22] 2015 Ta, G, HR, Ws ANN R = 95.9%, MBE = 0.41 ◦C, RMSE = 0.1 ◦C, MPE = 4.5% Poly-Si

[23] 2015 Ta, G, Ws BP-ANN MAPE = 6.398% - 11.645% –

[24] 2016 V, I, d ANN, ANFIS RMSE ANFIS = 2.5235 ◦C, MAPE ANFIS = 0.6566, R ANFIS = 0.7996 Poly-Si

RMSE ANN = 2.4368 ◦C, MAPE ANN = 0.6413, R ANN = 0.8167

[25] 2016 Ta, G, Ws MLP-ANN RMSE = 2.67 ◦C, MAPE = 8.18%, R = 0.99 CPV-MJ

[26] 2017 Ta, G, Ws, P BP-ANN MaxError = 4.25 ◦C, SD = 1.03 ◦C, RMSE = 2.26 ◦C, MAE = 1.78 ◦C Poly-Si

[27] 2017 Ta, G, Ws, Wd, HR, Pa, P ANFIS MAE=0.06729, RMSE = 3.4553, R = 95.56% Mono-Si

[28] 2018 Ta, G, HR, Ws, P SVM, MLP, RBF, TBM RMSE SVM = 3.2230 ◦C, MAPE SVM = 5.2130%, R SVM = 0.9348 Mono-Si

RMSE MLP = 2.8046 ◦C, MAPE MLP = 5.4955%, R MLP = 0.9510

RMSE RBF = 2.7362 ◦C, MAPE RBF = 5.4056%, R RBF = 0.9534

RMSE TBM = 2.3985 ◦C, MAPE TBM = 5.3241%, R TBM = 0.9552

[29] 2018 Ta, G, Ws, Wd, HR RBF-ANN Cloudy day: EREL min = 7.53%, EREL max = 0.04%, MAPE = 2.16% PV/T

Sunny day: EREL min = 4.47%, EREL max = 0.01%, MAPE = 1.18%

[30] 2019 Ta, G ANN EREL = 4% a-Si

[31] 2020 Ta, G, Ws, HR GP MBE = 3.03% - 3.96% Poly-Si

[32] 2020 Ta, G, Ws, HR, Cloud cover ANN cvRMSE = 19.81% Poly-Si

[33] 2020 Ta, G, Ws,Wd, HR, Pa DFPIO-SVM MAPE = 0.2883% –

Table 1: Literature review of application of Artificial Intelligence to obtain a model to predict

the module PV temperature.

ical Evolution and Differential Evolution, very well-known Artificial Intelligence

techniques, is applied to datasets obtained from historical data. With this aim,

datasets are classified into three day-type groups: datasets belonging to sunny

days, those belonging to cloudy days, and finally datasets belonging to diffuse

light-type days. This approach has produced a new set of models with predic-

tive capacities that have been tested on experimental results and have delivered

errors that are lower than other existing models.

The rest of the article is organized as follows. Next, the previous experi-

mental methods and thermal models found in the literature, as well as the clas-

sification of days by sky condition, are shown in section 2. Section 3 describes

the algorithm approach, the applied techniques, the design of the experiments

and the obtained results. Finally, section 4 presents the main conclusions of the

study.
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2. Experimental methods and thermal models

In this section the experimental set-up that was used to measure the in-

door and outdoor, ambient and module temperatures included in the database

is described; a summary of the main thermal models for PV modules and the

description of standard thermal parameters used to calculate operational tem-

peratures of the PV modules are also described.

2.1. Simplified building integrated PV systems

A BIPV system has been designed and built using commercial PV panels of

crystalline silicon and a few additional materials. The final “building” is a cube

in which each face is comprised of a photovoltaic panel, an aluminium frame

and a few patches of polycarbonate used to complete the structure. In detail:

the PV modules for the structure are Atersa Mod. SHS 100 (100 Wp, power

conversion efficiency 14%) and occupy 78% of East (E) and West (W) faces,

83% of North (N) and South (S) faces and 86% of the Horizontal (H) face; the

structure includes polycarbonate in a small patch 9% for East and West faces

and the bottom (100%) of the structure. Aluminium profile frames (40 mm x

40 mm, Bosh Rexroth®) which comprises respectively 18%, 17% and 14% for

E/W, N/S and H faces are used to fix the PV modules. Those percentages are

important to describe the thermal conditions of the closed building structure,

since internal temperature is very different compared to ambient temperature.

Usually, thermal models of PV cubes only consider one ambient temperature on

both sides of the module but in this case the experimental system presented in

this article provides thermal conditions in which the PV module is in contact

with an external ambient temperature and an internal ambient temperature

which are different. Several temperatures on each side (inner or outer) of each

face (E, W, N, S, H) of the structure have been measured and monitored every

five minutes during two years. The collected database is used to train the AI

tool and, once the models and parameters are determined, the database is also

used to test them, simulating a predictive behaviour (which is tested using

7



previously measured temperatures). A detailed description of the structures

and the monitoring system is provided in reference [34]. Additionally, an on-

site meteorological station provides ambient data: temperature, humidity, wind

speed and direction; irradiance data are measured with a shadow-band Delta-T

pyranometer (Model Suhshine BF5) which provides global and diffuse irradiance

in the horizontal plane and a Kipp-Zonen pyranometer (Model CMP3) which

provides global irradiance at different orientations and which is used to test

the accuracy of the transposition irradiation models used for some calculations

[35]. For the results presented in this article, focused on the horizontal surface,

direct data from the pyranometers have been used. Data stored in the database

is available on request for collaborations (although this article is focused on

crystalline silicon technology, the database contains data for a-Si:H, CdTe and

organic PV modules).

2.2. PV thermal models and their limitations

As indicated in the introduction, two main approaches are used in the pho-

tovoltaic industry to calculate the temperature of operational PV modules. The

most common and simple is based on the Ross model, which is also known as

the NOCT model [36] because this parameter is included by all manufacturers

in its PV modules technical sheets. The Ross model is a linear model based on

an empirical temperature parameter (NOCT) which is measured in the labora-

tory under controlled illumination at irradiance G = 800 W/m2 and T = 20◦C

ambient temperature; in these ambient conditions the PV module reaches an

operational temperature when kept at maximum power point which is provided

by the manufacturer (the NOCT). With this parameter, the module tempera-

ture at any other ambient conditions of irradiance and temperature is provided

by a simple linear calculation:

Tm = Ta +
NOCT − 20

800
G, (1)

where G is given in W/m2, Ta is the ambient temperature and Tm is the PV

module operating temperature in the given conditions. The accuracy of this
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model is good, but any small deviation from the real temperature has strong

implications, since the main loss of power generation in the PV module is due to

an unwanted increment of temperature which reduces power output relative to

its standard test conditions (STC) at which the industry measures and provides

all electrical parameters of the PV modules. Therefore, a small mismatch in

real time of the Ross model will generate extra losses in the electrical power

generation (in addition to the losses already predicted by the Ross model by

using the NOCT parameter). A better model is the so-called Sandia model

(after Sandia National Laboratory, USA), which proposed the model [37]. The

advantage provided when compared to Ross model is the inclusion of wind speed

in order to increase the accuracy of the model. It is less used because it requires

monitorization of wind speed in a given location. The functional dependence of

the temperature of the PV module is exponential, with two parameters included

in the exponent, the first one is equivalent to NOCT and the second one accounts

for the new dependence on wind speed (Ws):

Tm = Ta + e(a+b·Ws)G, (2)

where a and b are empirical parameters that are measured for specific PV mod-

ules, being the main difference between them the materials used for cover (glass

of different kinds) and backsheet (plastics, often EVA) and frames (aluminium).

Although Sandia model outperforms Ross model due to the inclusion of the ef-

fect of wind, the difference of accuracy when a large set of days are monitored

is small, and strongly dependant on atmospheric conditions (variability of ir-

radiance between clear, cloudy or diffuse days, wind speed). Furthermore, an

important ambient parameter is not used in these models: the relative humidity,

which has a strong effect on the thermal behaviour of the modules. Addition-

ally, only one ambient temperature is considered in both models, assuming that

the PV module is mounted on an open rack with both sides in contact with

same ambient. For many PV applications this is no longer the case, since PV

modules are increasingly being used in BIPV systems, where the module is part
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of the building or in “agrivoltaic” systems when modules are incorporated in

greenhouses [38, 39, 40]. In these applications, the module is affected by two

ambient temperatures: one outer temperature and one inner temperature in

both respective PV module sides; also the relative humidity is very different in

both cases and has not been considered in the thermal models so far. The pur-

pose of this study is to improve the prediction of thermal module temperature

in operating conditions by including ambient temperature and humidity in both

sides of the module, wind speed and direction.

Humidity is directly related to the thermal conductivity between the PV

module and the air [41], and given its multi-functional character, it is one of

the main factors which determines the thermal comfort, energy consumption

and human health in buildings [42]. Surprisingly humidity is not included in

the most used models to calculate module temperatures. Given the difficulty to

develop an easy-to-implement, reliably and accurately function to describe the

relationship between both sides taking into account a wide range of technologies,

environment conditions and designs, there is a growing need to use AI tools to

help predict thermal characteristics of the PV module, overcoming key technical

obstacles, and thus accelerating the penetration of BIPV in the market.

2.3. Classification of days by sky condition using clearness index as indicator

One of the key proposals of this work is the classification of days with the

aim of providing different models for each selected type. In order to identify

the day type, the clearness index Kt is used as descriptor. Clearness index is

defined as the ratio of the global horizontal irradiance (GHI) and the horizontal

extraterrestrial irradiance (Ge), as shown in (3).

Kt =
GHI

Ge
(3)

However, this parameter is not independent of solar elevation angle, so the
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clearness index modified by Perez et al. [43] is used:

K ′t =
Kt

1.031 e

(
−1.4

0.9+ 9.4
AM

) (4)

where AM is the air mass that has been calculated from empirical equation

given by Kasten and Young [44].

Based on the modified clearness index and following Ineichens sky condition

classification [45], three categories are defined:

Sky condition =


Clear, : K

′

t > 0.65

Intermediate, : 0.3 < K
′

t ≤ 0.65

Cloudy, : K
′

t < 0.3

(5)

Once the sky condition is defined, days are classified based on the predom-

inant category on the records of each day. Note that Cloudy label defined for

equation (5) for definition of Sky condition differs from ”Cloudy” type, used to

classify the days. The database contained days belonging to the three defined

types: (a) Sunny days denoting clear sky conditions for almost all the records.

Solar irradiance profile for sunny days has shown as example in figure 1. (b)

Diffuse days that are associated to constant cloudy periods along the day, so

diffuse irradiance are the major contributor to the global component of the sun-

light. Figure 2 shows the irradiance profile for days classified under this category

showing that the diffuse horizontal irradiance (DHI) is the main component of

the total irradiance. Finally, (c) Cloudy days which indicates variability of sky

conditions over short time intervals. Figure 3 shows typical irradiance profiles

for this category.

Figure 4 shows the frequency of the records normalized for each day which

allows to classify the day according to each category.
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Figure 1: Profile of solar irradiance for Sunny days. GHI Global horizontal irradiance and

DHI diffuse horizontal irradiance.
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Figure 2: Profile of solar irradiance for Diffuse days. GHI Global horizontal irradiance and

DHI diffuse horizontal irradiance.
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Figure 3: Profile of solar irradiance for Cloudy days. GHI Global horizontal irradiance and

DHI diffuse horizontal irradiance.
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(a) Sunny

(b) Diffuse

(c) Cloudy

Figure 4: Frequency of records classified by sky conditions.

15



3. Algorithmic approach and results

This section is devoted to show how AI is applied to the collected database

to get a highly accurate model to predict the module temperature.

3.1. Optimization algorithm

In order to obtain a customized model for the temperature, we have ad-

dressed the question as an optimization problem. To this aim, we have used a

combination of two different algorithms: Grammatical Evolution (GE) [46] and

Differential Evolution (DE) [47]. GE and DE are AI methods which belong to

the family of the metaheuristic algorithms. Their combined performance has

been successfully applied before on other target problems [48] [49].

The optimization process is described in Figure 5. As it can be seen, GE

generates a set of parameterized models which are produced after the rules

stated in a grammar. The parameter values are set after the DE process, which

uses the training data to find the best parameter values for each model. Then,

the optimized models are returned to GE with an associated error value. After

that, GE ranks the optimized models considering their quality and, using this

information, generates a new set of models repeating the process. The number

of iterations of this loop is stated in the configuration of the algorithms. Finally,

the best model obtained is returned.

One of the main advantages of this approach is the ability to include par-

ticular features of the problem in the optimization process by means of the

grammar. More precisely, stating an initial structure for the prediction models

in the grammar allows the algorithm to reduce the search space and, therefore,

obtain better solutions.

In this case, an initial structure of the Sandia model is included in the

grammar, taking into account the following parameters:

• Tm: Module temperature (◦C)

• Ta: Ambient temperature (◦C)
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Figure 5: GE + DE optimization process.

• Ws: Wind speed (m/s)

• G: Irradiance (W/m2)

• Ti: Interior temperature (◦C)

• Wd: Wind direction (◦)

• HRout: Relative humidity outside (%)

• HRin Relative humidity inside (%)

Notice that both humidity parameters (HRout and HRin) were included in

the grammar despite they are not considered in the Sandia model. Finally, the

target variable for the obtained models is the module temperature (Tm).

Figure S1 in the Supplementary Material represents an extract of the gram-

mar in Backus-Naur Form (BNF) format designed for finding a predictive model

for temperature including the previously described information.
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Figure 6: Design of the experiments for GE + DE applied to photovoltaic module datasets.

3.2. Design of experiments

The collected dataset was divided into three parts classified per type of day,

i.e. Sunny, Cloudy or Diffuse, as defined in Section 2.3.

GE+DE algorithm requires two types of dataset groups: training and test.

The two groups are built following a 10-fold process. Figure 6 shows how the

dataset is divided in this process producing a set of models. As seen in the

figure, a set of records from the same day-type is randomly shuffled as the first

step (left-hand side of the figure, in red). Secondly, the data is cut into ten

same-size groups named folds. Nine of them are used as training group, using

for the testing the outcast one. This process is repeated 10 times, selecting

a different test fold for each iteration, therefore obtaining 10 models from the

execution of the algorithm. These models are assessed obtaining different error

metrics (see column “Assessment” in the figure) corresponding to the end of the

training phase.

In order to get a prediction for a new dataset, the test phase is applied.

Figure 6 shows the steps of this phase in blue colors in the right-hand side of

the figure. In this case, the 10 models are evaluated for a new dataset from the
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same day-type producing 10 different predictions whose average is obtained.

Finally, the error of the ensemble of models is obtained averaging the individual

errors.

3.3. Verification of the obtained models

To verify the prediction ability of the models, which are obtained by the

GE+DE algorithm, the relative error is calculated as follows:

EREL =
1

n

n∑
i=1

(v[i] − p[i]) · 100

v[i]
(6)

where v[i] represents the measured module temperature (◦C), p[i] the pre-

dicted module temperature (◦C) and n corresponds to the total number of

values, i.e. number of records in the test dataset.

3.4. Analysis of the results

Once the general process has been described, the results of calculations car-

ried out with the experimental datasets are presented and discussed in this

section.

A number of 2000 rows of day-type data were randomly chosen as training

input, and 220 rows fit the test. Ten experiments were executed per day-type,

combining training and test datasets, from which 10 models were obtained per

day-type. Since there are three types of day, a total of 30 models were produced,

which are shown in tables S1, S3 and S2 in the Supplementary Material.

All obtained models predict the same parameter, i.e. the module temper-

ature (Tm) and, although their shape was guided by the same grammar, their

final layout varies from one experiment to another, which is a typical result

when applying AI techniques.

The relative error of the obtained models is in the intervals [2.46 - 2.97],

[3.33 - 4.19] and [1.55 - 2.25] for Sunny, Cloudy and Diffuse days respectively.

Since the grammar directs the exploration of the algorithm, the 30 obtained

models begin with exactly the same expression (see tables S1, S3) and S2,
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inspired the in Sandia model: Tm = w1·Ta+w2·Ti+G·e(w3+w4·Ws). Nevertheless,

the shape of the last part of each expression changes in each one of the models,

as well as the values of the parameters.

Table 2 shows the best models obtained in the training phase for Sunny,

Cloudy and Diffuse types of day. Notice that the first part of the models,

corresponding to the fixed Sandia structure is removed for the sake of space.

The table also shows the relative error as well as the values of the parameters

obtained by GE+DE.

Day-type

Sunny Cloudy Diffuse

GE+DE −w7 ·HR
w8
out · log | w5 −HRin | ·w8 ·HR

w6
in

− log | w7 −HRout | ·w5 ·HRin

EREL 2.07 3.34 1.55

w1 0.378 0.033 -0.151

w2 0.508 0.917 1.133

w3 -3.605 -3.26 -4.694

w4 -0.057 -0.091 -0.025

w5 18.248 0 -0.002

w6 0 -0.319 0

w7 3.522 0 74.289

w8 -0.529 0.726 0

Table 2: Best obtained models, and their parameter values, for sunny, cloudy and diffuse

day-type datasets. Note that all models start with the expression Tm = w1 · Ta + w2 · Ti +

G · e(w3+w4·Ws) which is removed from the table.

Table 3 shows a comparison between the Sandia model and the GE+DE

models prediction for both training and test datasets. In particular, the table

shows the average relative error obtained by the Sandia model and the ensemble

of models generated by GE+DE. Notice that the improvement in the training

phase is noticeable (reaching up to 15.35% in the Cloudy day-type). Besides

and, more importantly, the improvement over a new dataset (test phase) reaches

a 10.74% in the Cloudy days).

Figure 7 shows the average GE+DE prediction in comparison with the actual

temperature and the Sandia model. As seen, the inclusion of relative humidity

by the GE+DE algorithm produces a higher accuracy of the prediction of the

module temperature, specially for the cloudy days, since they present less stable

conditions.
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Test Training

Day-type GE+DE Sandia Impr. GE+DE Sandia Impr.

Sunny 2.07 13.10 11.03 3.75 11.62 7.87

Cloudy 3.34 18.69 15.35 3.99 14.73 10.74

Diffuse 1.55 15.01 13.46 3.42 12.73 9.31

Table 3: Comparison between the GE+DE models and the Sandia one for each day-type. All

values are in %.

Figure 7: Measured module temperature during three type-days, compared to Sandia’s pre-

diction and obtained day-type models’ predictions.

Figure 8: Solar irradiance profile in a cloudy day (G). The yellow dots indicate the measure-

ments where the Sandia model shows differences greater than 10◦C in the estimation of the

module temperature.
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Figure 8 provides a clear picture of the current limitations of using tradi-

tional approaches in which the model can reach errors of more than 10◦C in sky

conditions with high variability of solar irradiation in short time intervals, since

they do not account for the module’s thermal inertia.

Despite the fact that studies in the literature show that differences in pre-

dicted and calculated temperatures around 10◦C cause percentage variations

on the annual energy predicted that are generally less than 5% [13, 10, 50, 9],

which is acceptable for most applications, uncertainties in module temperature

calculation would have a significant impact on its passive function. Although

the most important parameter to calculate electricity production by a PV mod-

ule is the irradiance, the module temperature is the second most important,

with an high impact on output losses (with respect standard conditions), and

on the other hand, it affects the comfort conditions inside the building where

the modules are attached and indirectly affects the energy consumption required

for cooling (or heating) by air condictioning systems.

Thus, from a multifunctional perspective that includes both energy genera-

tion and energy demand requirements for buildings, the proposed methodology

aids in obtaining a more precise estimation of the thermal behavior of a module

integrated in the building envelope, covering different climatic and mounting

conditions as well as the variation of the environmental parameters during the

night. As seen in Figure 7, there is a strong influence of irradiance in con-

ventional models such as the Sandia one, which leads to significant errors in

temperature estimation during the nighttime.

4. Conclusions

The photovoltaic module temperature varies during the day, influenced by

the PV technology, the mounting configuration and climatic conditions. BIPV

systems temperature behaves differently from ground-mounted PV, since there

is no air circulation at the rear side of the first configuration and so the ther-

mal transmission behaves differently from the not integrated approach. The
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prediction models for PV module temperature in the literature are focused on

ground-mounted PV. So, when applying those models to BIPV configuration,

even though some adaptations were proposed, i.e., Sandia and Ross models,

the prediction errors are quite significant. In this study, Sandia-based BIPV-

adapted models are obtained by the application of AI algorithms on the collected

data.

An available database from a monitored BIPV device, where inside and

outside ambient conditions were recorder each 5 minutes during 2 years, was

used to produce models with a combination of Grammatical Evolution (GE)

and Differential Evolution (DE) algorithms. A grammar inspired on the San-

dia equation shape was designed for the application of GE, adding the relative

humidity and inside temperature as input parameters. Three day-types were

identified from the dataset, i.e. Sunny, Cloudy and Diffuse, and 10 accurate

models were obtained per each day-type. The average relative errors of the

obtained models were 2.07%, 3.34% and 1.55% for Sunny, Cloudy and Diffuse

day-types, respectively. The Sandia model was applied to the same dataset,

obtaining relative errors of 13.01%, 18.69% and 15.01% for the three day-types

respectively. Thereby, the application of GE+DE is underlined here as a reliable

method to obtain novel models to accurately predict the BIPV module temper-

ature. The historic record and monitorization of indoor and outdoor ambient

conditions of BIPV systems is key in order to apply AI methods. The obtained

models are specific for BIPV configurations and are easily applicable to simi-

lar PV generators, since the above mentioned parameters could be obtained by

measuring the indoor building conditions (or the target temperature of an air

conditioning system) and by loading public open-source datasets dealing with

the outside climatic conditions, such as those provided by NASA, PVGIS and

State Meteorological Agencies.
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Nomenclature

Artificial Intelligence

ANFIS Adaptive Neuro Fuzzy Inference Systems

ANN Artificial neural network

BP-ANN Back Propagation Neural Network

DE Differential Evolution

DFPIO Pigeon-inspired Optimization Improvement

GE Grammatical Evolution

GP Genetic Programming

MLP Multilayer perceptron

RBF Radial Basis Function neural network

SVM Support Vector Machine

TBM Tree Boost Method

Photovoltaics

a-Si Amorphous Silicon

BIPV Building Integrated Photovoltaics

CdS/CdTe Capped Cadmium Culphide/Cadmium Telluride solar cells

CPV Concentrator Photovoltaic module

MJ Multi-junction solar cells

Mono-Si Mono-crystalline silicon

NOCT Nominal Operating Cell Temperature

Poly-Si Poly-crystalline silicon
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PV Photovoltaic

PV/T Photovoltaic-thermal system

Statistical Indicators

cvRMSE Coefficient of variation of the RMSE

EREL Relative error

MAE Mean absolute error

MAPE Mean absolute percentage error

MaxError Maximum error

MBE Mean bias error

ME Mean error

MPE Mean percentage error

R Correlation coefficient

RMSE Root mean square error

SD Standard deviation

Variables

d Duty cycle

G Solar irradiation

HR Relative humidity

I Current

Isc Short circuit current

P Power output

Pa Atmospheric pressure
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Ta Ambient temperature

Tc Cell temperature

Tm Module temperature

V Voltage

Voc Open circuit voltage

Wd Wind direction

Ws Wind speed
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Supplementary Material

Table S1: Models obtained for Sunny-type days.

Parameters

Fold Model w1 w2 w3 w4 w5 w6 w7 w8 Error

1
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

+w6 ·HRw5
out

0.546 0.514 -3.600 -0.094 -0.469 -25.884 0.000 0.000 2.33

2
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−HRw8
in + HRw6

in + log | w5 −HRin | −w5 + HRw8
out

0.394 0.634 -3.709 -0.091 5.455 -0.551 0.000 -1.042 2.25

3
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w7 ·HRw8
out · log | w5 −HRin |

0.377 0.508 -3.605 -0.057 18.248 0.000 3.522 -0.529 2.07

4
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w7 ·HRw6
out · log | w7 −HRin |

0.393 0.499 -3.568 -0.066 0.000 -0.984 17.215 0.000 2.13

5
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w5 + HRw8
in + log | w7 −HRout |

0.561 0.452 -3.589 -0.063 6.812 0.000 17.004 -2.106 2.32

6
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

− log | w6 + W | + log | w8 ·HRout |
0.416 0.479 -3.604 -0.068 0.000 304.172 0.000 5.057 2.46

7
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w6 ·HRw8
out · log | w5 −HRin |

0.390 0.498 -3.613 -0.066 17.800 9.560 0.000 -0.982 2.20

8
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w8 −W · w8 + W + log | w6 + W |
0.253 0.494 -3.615 -0.061 0.000 73.047 0.000 1.008 2.42

9
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w6 ·HRw8
out · log | w7 −HRin |

0.428 0.462 -3.534 -0.061 0.000 8.432 17.352 -0.719 2.31

10
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

− log | w8 −HRout | ·w6 ·HRw7
out

0.429 0.484 -3.603 -0.071 0.000 6.050 -0.739 50.344 2.19
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# Model structure: fixed initial part plus additional recursive expression.

<func > ::= w1*Ta+w2*Ti+(exp(w3+w4*Ws))*G <op> <recExpr >

# Expressions

<recExpr > ::= <expr > | <expr > <op> <recExpr >

<expr > ::= <param > <op> <var > | <param > <op> (<var >)^(<param >) |

exp(abs(<param > <op > <var >)) | log(abs(<param > <op> <var >))

# Parameters for DE

<param > ::= w5|w6|w7|w8https ://www.overleaf.com/project /6017340

b0d36a098212fd46f

# Additional input variables

<var > ::= Wd|HRout|HRin

# Operands

<op> ::= +|-|*

Figure S1: Grammar for temperature modeling.

Table S2: Models obtained for Diffuse-type days.

Parameters

Fold Model w1 w2 w3 w4 w5 w6 w7 w8 Error

1
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

+ log | w5 −HRout | ·w6 ·HRin

-0.157 1.137 -4.547 -0.079 0.000 -0.002 74.225 0.000 1.811

2
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

− log | w7 −HRout | ·w6 ·HRin

-0.157 1.137 -4.547 -0.079 0.000 -0.002 74.225 0.000 2.248

3
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w8 −HRw8
in · log | w6 + HRout | +e|w8·HRout| − w7 −HRw7

out

-0.083 1.075 -4.212 -0.157 0.000 -11.383 -1.417 -0.011 1.987 3

4
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

+w6 ·HRw5
in · w5 ·HRw8

out

-0.098 1.104 -4.303 -0.113 -2.510 14.483 0.000 0.774 2.223

5
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

− log | w6 −HRout | ·w5 ·HRin

-0.178 1.159 -4.539 -0.141 -0.003 73.409 0.000 0.000 2.110

6
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w6 ·HRw8
in − w6 ·HRw6

out · log | w5 + HRin |
-0.110 1.089 -4.355 -0.126 -22.598 -0.206 0.000 -2.360 1.895

7
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

+w5 ·HRw6
in + log | w8 −HRin | ·w5 ·HRin

-0.130 1.114 -4.555 -0.085 0.001 -0.938 0.000 22.425 2.014

8
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

+w7 ·HRw7
out · w7 ·HRin · log | w8 −HRin |

-0.100 1.076 -4.371 -0.108 0.000 0.000 -1.692 22.846 1.855

9
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w5 + log | w8 −HRin | ·w7

-0.037 1.052 -4.344 -0.063 0.550 0.000 0.092 22.234 1.877

10
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

− log | w7 −HRout | ·w5 ·HRin

-0.151 1.133 -4.694 -0.025 -0.002 0.000 74.289 0.000 1.550
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Table S3: Models obtained for Cloudy-type days.

Parameters

Fold Model w1 w2 w3 w4 w5 w6 w7 w8 Error

1
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w8 ·HRw7
in · w6 −HRw5

in

0.02 0.931 -5.834 -0.071 -2.041 4.976 -0.318 1.724 3.495

2
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w6 ·HRw5
in · log | w6 + HRin |

0.008 0.946 -2.674 -0.080 -0.890 -0.551 0.000 0.000 3.525

3
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w7 ·HRw5
in

0.036 0.913 -3.229 -0.091 -0.320 0.000 0.708 0.000 4.193

4
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

−w5 ·HRw7
in · w7 + HRw5

in

0.019 0.917 -1.519 -0.092 -0.388 0.000 -0.322 0.000 3.378

5
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

· log | w7 + HRin | ·w8 ·HRw6
in

0.021 0.930 -3.207 -0.091 0.000 -0.901 -0.522 1.022 4.039

6
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w7 ·HRw8
in + e|w5+HRout|

-0.083 0.993 -5.261 -0.077 0.000 0.000 4.615 -0.334 4.106

7
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w8 ·HRw7
in

0.034 0.915 -3.375 -0.093 0.000 0.000 -0.316 0.816 3.993

8
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w8 ·HRw6
in

0.033 0.917 -3.260 -0.091 0.000 -0.319 0.000 0.726 3.33

9
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w8 ·HRw7
in · log | w8 −HRin | + log | w7 −HRout | − log | w8 ·HRout |

-0.062 0.968 -2.073 -0.081 0.000 0.000 -0.986 0.361 3.739

10
Tm = w1 · Ta + w2 · Ti + G · e(w3+w4·Ws)

·w8 ·HRw7
in · log | w7 −HRin |

0.026 0.925 -2.076 -0.085 0.000 0.000 -0.825 0.273 3.799
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