
Chaos, Solitons and Fractals 126 (2019) 283–291 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Non-backtracking PageRank: From the classic model to hashimoto 

matrices 

David Aleja 

a , c , Regino Criado 

a , b , c , Alejandro J. García del Amo 

a , b , c , ∗, Ángel Pérez 

a , 
Miguel Romance 

a , b , c 

a Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología Electrónica, ESCET Universidad Rey Juan Carlos, C/Tulipán s/n, 

Móstoles Madrid 28933, Spain 
b Center for Computational Simulation, Universidad Politécnica de Madrid, Pozuelo de Alarcón Madrid 28223, Spain 
c Data, Complex Networks and Cybersecurity Research Institute, University Rey Juan Carlos, Madrid 28028, Spain 

a r t i c l e i n f o 

Article history: 

Received 10 June 2019 

Accepted 13 June 2019 

Available online 21 June 2019 

Keywords: 

Non-backtracking PageRank 

Non-backtracking centrality 

PageRank centrality 

a b s t r a c t 

Non-backtracking centrality was introduced as a way to correct what may be understood as a deficiency 

in the eigenvector centrality, since the eigenvector centrality in a network can be artificially increased 

in high-degree nodes (hubs) because a hub is central because its neighbors are central, but these, in 

turn, are central just because they are hub neighbors. We define the non-backtracking PageRank as a 

new measure modifying the well-known classic PageRank in order to avoid the possibility of the random 

walker returning to the node immediately visited (non-backtracking walk). But, as we show, this measure 

presents a gap and a remarkable difference between the limit of “no penalty for return trips” and the 

direct calculation of the non-backtracking PageRank. Also, as it is shown in the applications presented, in 

certain cases this new measure produces notable variations with respect to the classifications obtained 

by the classic PageRank. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

A fundamental problem facing the so-called Science of Com-

lexity is to determine which are the most relevant elements of

 complex system [3,5,12,20–22,39,54] . This problem is directly re-

ated to understanding the relevance of each element within the

tructure of a system, which is a first step to understand its be-

avior. Analyzing and determining the relevance of the elements

f a network or system is a problem that arises in multiple so-

ial, technological and biological contexts [2,6,11,20,24,29,54] . A

ay to determine the relevance of the elements of a network or

 system consists in associating a numerical value to each one

f these elements. Centrality measures can be very different in

ature but they allow us to sort the nodes according to a rank-

ng of relevance within the network. Among them, PageRank cen-

rality [41] is a culminating point since it is the basic ingredient
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n web information in general and in Google’s web search en-

ine in particular. Since its appearance in 1998 to classify web

ages to the present day, a large number new applications and re-

nements of PageRank algorithm have emerged in the scientific

iterature [1,8,15,19,20,23,27,43,44,52,53,56,59] . These refinements 

re very varied in nature, and new methodologies and tools are

eing developed in the literature to detect both the most rele-

ant nodes and the competing nodes [15,23,44,52,53,56,59] . The

se of a personalization vector to modify the ranking obtained

personalized PageRank) [15,43,45] and a new vision of this al-

orithm that allows to extend PageRank to multiplex networks

20,27,40,45,48,57] are other advances that have appeared in re- 

ent years. On the other hand, it is known that the centrality of the

igenvector [9] takes into account the importance of the neighbors

f a node, in the sense that a node is more important (or influen-

ial) if the nodes with which it is connected are, in turn, important

r influential nodes. However, although this measure of centrality

as been analyzed in different applications and contexts [5,14,36–

8,42,46,54] and leads to several extensions in different environ-

ents, it is known to be artificially high for high-grade nodes

hubs) as evidenced in [36] . This is because a hub transmits part

f its high centrality to its neighbors, who in turn increase its cen-

rality and artificially inflate the hub’s centrality. Therefore, if we

an avoid these “round-trip centrality assignments”, centrality will
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behave much more realistically. Thus, in [36] an attempt is pro-

posed to correct this weakness by using the so-called non-

backtracking centrality. The idea is to calculate the eigenvector

centrality as usual but with an important change: to calculate

the eigenvector centrality of a particular node, one considers the

centrality of its neighbors but in this case calculated in the ab-

sence of that particular node. But this measure of centrality, non-

backtracking centrality, as shown in [16] , has a built-in problem

because in certain contexts, by eliminating round trips, the adja-

cency matrix on which calculations have to be made may be not

irreducible, so the Perron–Frobenius theorem cannot be used [37] ,

compromising the existence and uniqueness of the centrality vec-

tor that collects the centralities of the network nodes. 

However, in [16] a new centrality measure is defined, the

α-non-backtracking centrality, that makes possible to solve the

problems related to the uniqueness of non-backtracking principal

eigenvector and, by the way, directly calculate the centrality of

edges. The idea consists in not eliminating completely the round

trips, but to associate to these round trips a weight α, diminishing

its contribution making tend this parameter to zero. The conver-

gence of the α-non-backtracking centrality is proved in [16] when

α → 0 + and the techniques used makes it possible to demonstrate

the convergence of the α-centrality principal eigenvector when

α → 0 + and also the convergence of PageRank vectors when the

damping factor q → 1 −. As it is pointed out in [16] , to calculate the

α-non-backtracking centrality it is needed to use the Hashimoto or

non-backtracking matrix [28,33] . This matrix is closely related to

the adjacency matrix of the line graph corresponding to the net-

work under consideration which is extremely useful because, in

some cases (v.g., cybersecurity, intentional cyber-risk, urban traf-

fic networks [10,17,18] ) it is much more useful for us to calculate

the centrality of the edges than that of the nodes and, in any case,

to be able to recover the centrality of the edges from the cen-

trality of the nodes and reciprocally [15] . The main goal of this

work is defining and analyzing a new centrality measure, the non-

backtracking PageRank, that incorporates the ideas related to the

non-backtracking centrality introduced in [36] and analyzed and

developed in [16] . 

The structure of the paper is as follows. After this introduction,

Section 2 is devoted to recall some preliminary results and defini-

tions. In Section 3 a non-backtracking version of PageRank for the

nodes of weighted and directed network is introduced and some

interesting results related to this new centrality measure are ob-

tained. Finally, in Section 4 we present some numerical experi-

ments on some real-world problems in order to illustrate the re-

sults of the previous sections. 

2. Notation and related concepts 

In the sequel, for a vector v ∈ R 

n , we will denote by v T its trans-

pose vector and its 1-norm is defined as || v || 1 = 

∑ n 
i =1 | v i | . The vec-

tor v is said to be positive if v i > 0 for every i and this fact is de-

noted with v > 0. Let 1 ∈ R 

n denote the vector (1 , 1 , . . . , 1) T . 

Throughout this paper we consider a weighted directed network

G = (X, E, w ) , where X = { 1 , . . . , n } is the set of vertices or nodes,

E ⊆X × X is the set of edges and w is a function w : E −→ [0 , + ∞ )

such that for each edge ( i, j ) ∈ E , the coefficient w ( i, j ) is called

weight of ( i, j ). We will also use the notation i → j for an edge ( i,

j ) when convenient. If we have a directed network G = (X, E) and

this network does not have an associated weight-function, then we

will say that G is a unweighted network. We will consider networks

without loops, that is, for every i ∈ X we have that ( i, i ) �∈ E , and also

without multiple edges. 

Given a directed and weighted network G = (X, E, w ) , the

(weighted) adjacency matrix of G is the matrix A (G ) = A = (a i j ) ∈
 n ×n given by 

 i j = 

{
w (i, j) , if there exists an edge (i, j) ∈ E, 
0 , otherwise. 

(2.1)

f G = (X, E) is a unweighted directed graph, its adjacency matrix is

he matrix A (G ) = A = (a i j ) ∈ M n ×n given by 

 i j = 

{
1 , if there exists an edge (i, j) ∈ E, 
0 , otherwise, 

(2.2)

.e., we interpret each directed unweighted network as a directed

eighted network, by considering, for each ( i, j ) ∈ E , w (i, j) = 1 . 

Finally, whenever we deal with a non-directed network ( X 

′ , E ′ ),
e will transform it into a directed network in the standard way,

hat is, by constructing a directed network ( X, E ) with the same set

f nodes X = X ′ and two directed edges i → j and j → i in E for each

on-directed edge { i, j } in E ′ . A more detailed explanation about

his notation for directed and non-directed networks (weighted or

ot) may be found in [5] . 

.1. Non-backtracking centrality 

Non-backtracking centrality was introduced in [36] as an at-

empt to correct some deficiencies of eigenvector centrality. The

euristics to remove the feedback produced by back and forth

dges is revealed in the Hashimoto matrix ( [28] ) and goes as fol-

ows: the centrality of edge k → l is proportional to the sum of the

entralities of all edges incident on k → l except edge l → k . Here

 → j is incident on k → l if j = k . Then, if ( X, E ) is a unweighted

irected network, after fixing an order in E (for instance the lexi-

ographic order), the Hashimoto matrix is defined as: 

 (0) i → j,k → l = 

{
1 if j = k and i � = l, 
0 otherwise, 

hat is, 

 (0) i → j,k → l = δ jk (1 − δil ) , 

here δij is the Kronecker’s delta, i.e., 

i j = 

{
1 if i = j, 
0 otherwise. 

Notice that the Hashimoto matrix is closely related to the adja-

ency matrix of L ( G ) (see [16] ), the line graph of G , defined as 

(M L (G ) ) i → j,k → l = δ jk = 

{
1 if j = k, 

0 otherwise, 

here i → j is incident on k → l if j = k ). 

As an illustrative example, if X = { 1 , 2 , 3 } and E =
 (1 , 2) ; (2 , 3) ; (3 , 1) ; (3 , 2) } , we can get the adjacency matrix

f L ( G ) and the Hashimoto matrix B (0) associated to G (note the

elationship between both matrices): 

 (0) = 

⎛ 

⎜ ⎝ 

0 1 0 0 

0 0 1 0 

1 0 0 0 

0 0 0 0 

⎞ 

⎟ ⎠ 

M L (G ) = 

⎛ 

⎜ ⎝ 

0 1 0 0 

0 0 1 1 

1 0 0 0 

0 1 0 0 

⎞ 

⎟ ⎠ 

he relation between B (0), the adjacency matrix of L ( G ) and their

espective associated graphs is illustrated in Fig. 1 . 

At this point it is important to highlight the existence of strong

elationships between the eigenvector centrality of a given graph

 , the eigenvector centrality of its line graph L ( G ) and the eigen-

ector centrality of the bipartite graph B ( G ) associated to G , both

n the case of G being an undirected network [12] and in the case

f G being a directed network [13] . 

So, in this context, the non-backtracking centrality for edges

s defined [36] , when possible, as a function η: E → [0, 1] that

atisfies: 
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Fig. 1. An example of a directed graph G with 3 nodes to obtain L ( G ) and the graph 

associated to the Hashimoto matrix B (0). 
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•
∑ 

k → l∈ E 
η(k → l) = 1 (normalization). 

• η( i → j ) is proportional to the sum of η( k → i ) where k = j is

disregarded. 

In terms of B (0), 

(i → j) ≡ ηi → j = 

1 

λ

∑ 

k → l∈ E 
B (0) k → l,i → j ηk → l . 

hus, if η = (ηi → j ) i → j∈ E , then ληT = ηT B (0) . 

We remark that the non-backtracking centrality of each edge in

 is ranked by means of the normalized non-negative eigenvector

f B (0). 

So, at this point it is possible to define [36] the non-

acktracking centrality of nodes as the sum of non-bactracking

entralities of all edges incident on i , in other words, the sum of

entralities of all edges i → k . But, in order to avoid the irreducibil-

ty problem that results in lack of unicity for the non-backtracking

igenvector as it is shown in [16] , it is possible to consider a

arametrized centrality measure introduced in that work. This

easure is called α-non-backtracking centrality in [16] . In the se-

uel, we choose to parametrize it by μ∈ [0, 1] instead of α to

void confusions with the damping factor of PageRank, which is

lso usually denoted by α. The measure is associated with a matrix

hich satisfies that, for μ = 0 we get the Hashimoto matrix B (0),

hile for μ = 1 the matrix of L ( G ) is recovered. In other words, the

dge μ-non-backtracking centrality ημ: E → [0, 1] is defined from

he following edge adjacency matrix: 

 (μ) i → j,k → l = 

{ 

1 if j = k and i � = l, 
μ if j = k and i = l, 
0 if otherwise, 

hat is, 

 (μ) i → j,k → l = δ jk (1 + (μ − 1) δil ) , 

nd satisfies (see [16] ): 

•
∑ 

k → l∈ E 
(ημ) k → l = 1 (normalization), 

• ( ημ) k → l is proportional to the sum of ( ημ) j → k , where j → k

is incident on k → l and the case j = l is admissible although

dampened by μ. 

.2. PageRank 

Now, it is important to recall how PageRank works. One sug-

estive way to describe the idea behind PageRank is the follow-

ng [8] (random walker hypothesis): If we move on the network

n a random way, we will pass more often through the more acces-

ible nodes. In order to mathematically model this idea, we must

onsider a specific type of Markov chains: the random paths in a
etwork . Thus, PageRank may be defined formally as the station-

ry distribution of a stochastic process whose states are the nodes

f the network. The associated matrix to PageRank is a stochastic

atrix, bearing in mind that we can solve the problem of nodes

ith no outlinks (dangling nodes) by substituting every null row

ith a positive vector y > 0 such that || y || 1 = 1 . Thus, in contrast to

hat happens with non-backtracking centrality, we will not have

he problem of existence and uniqueness of the eigenvector that

ill allow us to obtain the centrality of each edge and each node.

o, if G = (X, E) is a directed network with n nodes and adjacency

atrix A, q ∈ (0, 1) and v = (v 1 , . . . , v n ) ∈ R 

n is such that v > 0 and

 v ‖ 1 = 1 , then the PageRank vector of G with damping factor q and

ersonalization vector v is the unique vector P R (G, q, v ) = P R ∈ R 

n 

uch that 

1. PR ≥ 0 and ‖ P R ‖ 1 = 1 . 

2. PR is an eigenvector corresponding to the eigenvalue 1 of the

matrix � = (ψ i j ) given by 

ψ i j = q θi j + (1 − q ) v j , θi j = a i j / 
∑ 

k 

a ik , (2.3)

i.e., P R · � = P R . 

Because of this, for each node i ∈ X = { 1 , . . . n } the PageRank of

he node i is the value P R (G, q, v , i ) = P R (i ) , the i th coordinate of

he vector PR . 

In the above definition, note that each coordinate PR ( i ) of the

ageRank vector is interpreted as the frequency with which a ran-

om walker passes through the i node as he moves randomly

hrough the network, taking q (at each step) as the probability of

ollowing the network structure through the edges connected to

he current node, and taking the distribution given by the v vector

f he jumps unexpectedly to another node in the network. 

.3. Weighted line graph and edges’ PageRank 

In [15] the weighted line graph associated to a weighted net-

ork is defined in the following way: if G = (X, E, w ) is a directed

nd weighted network with adjacency matrix A , then the weighted

ine graph associated to G is defined as another weighted network

 (G ) = (E, ̃  E , ˜ w ) , where 

˜ 
 = { ( i → j, j → k ) ; i → j, j → k ∈ E } (2.4) 

nd ˜ w : ˜ E −→ [0 , + ∞ ) whose expression is ˜ w ( i → j, j → k ) =
 i j a jk . 

The authors of [15] provide two different definitions for the

ageRank of an edge of G . In the first definition, the PageRank of

odes of G is computed and then it is “propagated” to the edges,

amely the PageRank PR ( i → j ) of edge i → j is defined as an ap-

ropriate fraction of PR ( i ), where PR ( i ) is the PageRank of node

 . On the other hand, for the second definition, the PageRank of

dge i → j is computed directly in the line graph L ( G ) and denoted

ith LPR ( i → j ). Subsequently it is shown that, if PR ( i → j ) is com-

uted by using a personalization vector v and LPR ( i → j ) is com-

uted with respect to a personalization vector w chosen as an ap-

ropriate function of v , then both centrality measures for edges co-

ncide (see [15] for details). 

. Non-backtracking PageRank 

The aim of this section is to define a non-backtracking ver-

ion of PageRank for the nodes of weighted and directed network

 = (X, E, w ) . In the spirit of [16] , and in order to get a richer

pectrum of centrality measures, we consider a family of PageRank

ectors parametrized by μ∈ [0, 1]. The parameter μ can be inter-

reted as how much the importance of back and forth edges is
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mitigated when computing PageRank. For μ = 1 the usual PageR-

ank is recovered while the influence of these edges decreases as

μ tends to zero. In addition we define another PageRank vector

based on a Hashimoto like matrix. As an interesting fact, the latter

does not always equal the one obtained when μ → 0 + . Therefore,

we also study under which conditions both measures coincide. 

Let G = (X, E, w ) be a weighted directed network with adja-

cency matrix A and L (G ) = (E, ̃  E , ˜ w ) its associated weighted line

graph, both as defined in Section 2 . Let B ≡ B (1) be the adjacency

matrix of L ( G ) and recall that b i → j,k → l = a i j a kl if j = k and equals

0 otherwise. In the sequel, we will always assume that G has no

dangling nodes, which are defined as nodes with no outlinks (this

corresponds to A having no null rows). It immediately follows that

L ( G ) neither has dangling nodes. Note that this is always the case

when G is constructed from a non-directed network as explained

in Section 2 . 
Now, we define a family of row stochastic matrices { C μ}

parametrized by μ∈ (0, 1]. The idea is taking as a starting point
the adjacency matrix B of the line graph and, whenever both
i → j, j → i ∈ E , multiply both corresponding coefficients b i → j,j → i 

and b j → i,i → j by μ. Subsequently, the resulting matrix is normal-

ized by rows (this can be done as there are no null rows). More
precisely, each coefficient of C μ is defined as: 

(c μ) i → j,k → l = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if j � = k, 

b i → j,k → l ∑ 

β→ γ

b i → j,β→ γ

if j = k and j → i / ∈ E, 

b i → j,k → l ∑ 

(β→ γ ) � =( j→ i ) 

b i → j,β→ γ + μb i → j, j→ i 

if j = k, j → i ∈ E and l � = i, 

μb i → j, j→ i ∑ 

(β→ γ ) � =( j→ i ) 

b i → j,β→ γ + μb i → j, j→ i 

if j = k, j → i ∈ E and l = i

For μ = 0 we define the matrix C 0 as the limit, coefficient-wise,

of C μ when μ → 0 + , that is, (c 0 ) i → j,k → l = lim μ→ 0 + (c μ) i → j,k → l . 

Finally we define from B a matrix C in the spirit of the

Hashimoto matrix (taking into account that B is a weighted ma-

trix). Essentially we repeat previous construction taking μ = 0 and

then normalize by rows, obtaining: 

c i → j,k → l = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

0 if j � = k, 

b i → j,k → l ∑ 

β→ γ

b i → j,β→ γ

if j = k and j → i / ∈ E, 

b i → j,k → l ∑ 

(β→ γ ) � =( j→ i ) 

b i → j,β→ γ

if j = k, j → i ∈ E and l � = i, 

0 if j = k, j → i ∈ E and l = i. 

Note that the coefficients of C 0 and C are usually equal, but may

differ in the forth line of the respective definitions. In order to de-

termine when this happens, we introduce the following definition:

Definition 3.1. Let G = (X, E, w ) a weighted directed network and

j ∈ X . We say that j is an almost terminal node if there exists another

node i ∈ X with i � = j such that i → j, j → i ∈ E and every other node

k ∈ X with k � = i satisfies that j → k �∈ E . 

Intuitively, an almost terminal node is a node j with indegree

and outdegree one such that both the outlink and the inlink are

connected to the same node i . 

Lemma 3.2. Let G = (X, E, w ) a weighted directed network and C

and C 0 the matrices previously defined. Then c i → j,k → l � = ( c 0 ) i → j,k → l if
nd only if (k → l) = ( j → i ) and j is an almost terminal node. More-

ver, if this is the case, c i → j, j→ i = 0 and (c 0 ) i → j, j→ i = 1 . 

roof. First note that the first and second lines in the definition of

 c μ) i → j,j → i do not depend on μ and coincide with those in the

efinition of c i → j,j → i , therefore equality holds between c i → j,k → l 

nd ( c 0 ) i → j,k → l . With respect to the third line, it is straight-

orward that (c 0 ) i → j,k → l = lim μ→ 0 + (c μ) i → j, j→ i = c i → j, j→ i . The same

appens with the forth line if j is not an almost terminal node, be-

ause, if this is the case, the summation has at least one term. On

he other hand, if j is an almost terminal node, then 

(c μ) i → j, j→ i = 

μb i → j, j→ i 

μb i → j, j→ i 

= 1 

or every μ> 0, which imply that (c 0 ) i → j, j→ i = 1 . �

Note that, because B has no dangling nodes, the matrices C μ
or μ> 0 have no null rows. As a consequence of previous theo-

em, the same is true for C 0 . But nevertheless the matrix C may

ave null rows: this happens if it corresponds to an almost termi-

al node. More precisely: 

emark 3.3. The row of C labeled with i → j is a null row if and

nly if j is an almost terminal node. 

Now, since matrices C μ are row stochastic, we are ready to de-

ne corresponding PageRank vectors for edges, but first we need

o choose a personalization vector. As pointed out in Section 2 , it

as shown in [15] that if A is the adjacency matrix of G and v ∈ R 

n

s a personalization vector for the computation of the PageRank of

 , then choosing u such that 

 i → j = 

a i j ∑ 

k a ik 
v i (3.4)

uarantees that the two PageRank measures defined for edges in

15] coincide. Motivated by this fact we choose u in this way in

ur following definition: 

efinition 3.5. Let A and { C μ} μ∈ [0,1] be matrices defined before,

 ∈ (0, 1), v ∈ R 

n such that v > 0 and || v || 1 = 1 , and u defined as in

3.4) . Let H μ be the following matrix: 

 μ = qC μ + (1 − q ) 1 u 

T . 

hen the μ-non-backtracking PageRank vector of L ( G ) with damping

actor q and personalization vector v is the unique postive vector

NBLP R (G, q, v ) = πμ such that || πμ|| 1 = 1 and π T 
μH μ = π T 

μ. 

Note that the existence and uniqueness of πμ is guaranteed, in

he same way as usual PageRank, by PerronFrobenius theory (see,

or instance, [37] ). 

When we want to define an analogous PageRank vector for the

atrix C , we need to take into account that there may be null rows

n this matrix. In this case we choose the usual approach (see, for

xample Section 4 of [34] ) and substitute these null rows with the

ersonalization vector u . In order to construct the matrix H asso-

iated to C in this way, we first define a vector ξ indexed by the

dge set E such that ξi → j = 1 if j is an almost terminal node and

i → j = 0 otherwise. As we have previously stated, ξi → j = 1 if and

nly if the row of C indexed with i → j is a null row. 

efinition 3.6. Let A and C be matrices defined before, q ∈ (0, 1)

nd v ∈ R 

n such that v > 0 and || v || 1 = 1 and u defined as in (3.4) .

et H be the following matrix: 

 = q (C + ξu 

T ) + (1 − q ) 1 u 

T . 

hen the non-backtracking PageRank vector of L ( G ) with damping

actor q and personalization vector v is the unique positive vector

BLP R (G, q, v ) = π such that || π || = 1 and π T H = π T . 
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Again the existence and uniqueness of π is guaranteed by Per-

on Theorem, since H is a positive matrix. 

Finally we are able to provide non-backtracking PageRank def-

nitions for nodes induced by the measures we have defined for

dges: 

efinition 3.7. Let G = (X, E, w ) be a weighted directed network

ith adjacency matrix A, q ∈ (0, 1) and v ∈ R 

n such that v > 0 and

| v || 1 = 1 . Let { πμ} μ∈ [0,1] and π the non-backtracking PageRanks

rom Definitions 3.5 and 3.6 . For every node j ∈ E and every μ∈ [0,

] define: 

• the μ-non-bactraking PageRank of node j as 

NBP R μ( j) = 

∑ 

j→ k 

(πμ) j→ k , 

• the non-bactraking PageRank of node j as 

NBP R ( j) = 

∑ 

j→ k 

(π ) j→ k , 

oth with respect to damping factor q and personalization vector

 . 

Once the measures are defined, it is a natural question to

sk if the limit when μ → 0 + of the μ-non-backtraking PageRank

quals the 0-non-backtraking PageRank. The answer is positive and

roven below. As a tool to show this result we will use the follow-

ng result from [60] : 

heorem 3.8 (page 514 in [60] ) . Let M be a Google matrix and ˆ x be

he PageRank vector. Suppose that ˜ M = M + F is the perturbed Google

atrix and ˜ x is the associated PageRank vector, then 

| ̃  x − ˆ x || 1 ≤ 1 

1 − q 
|| F || ∞ 

, 

here || · || 1 and || · || ∞ 

denote the 1-norm and ∞ -norm of a vector or

 matrix, respectively. 

Next we use previous result to prove the convergence of the

-non-bactraking PageRank: 

heorem 3.9. Let G = (X, E, w ) be a weighted directed network with

djacency matrix A, q ∈ (0, 1) and v ∈ R 

n such that v > 0 and || v || 1 =
 . For every j ∈ E and μ∈ [0, 1] let NBPR μ( j ) be the μ-non-bactraking

ageRank of j as defined in Definition 3.7 . Then 

lim 

→ 0 + 
NBP R μ( j) = NBP R 0 ( j) . 

roof. Consider μ> 0. Using the notation of Theorem 3.8 , take

 = H 0 and 

˜ M = H μ. Then ˆ x = π0 and ˜ x = πμ are PageRank vec-

ors of H 0 and H μ, respectively, and we can apply Theorem 3.8 to

btain 

| πμ − π0 || 1 ≤ 1 

1 − q 
|| H μ − H 0 || ∞ 

. 

et us analyze the difference 

 μ − H 0 = qC μ + (1 − q ) 1 u 

T − qC 0 − (1 − q ) 1 u 

T = q (C μ − C 0 ) 

rom which we conclude that 

| πμ − π0 || 1 ≤ q 

1 − q 
|| C μ − C 0 || ∞ 

. 

aking into consideration that C 0 is the coefficient-wise limit of C μ
hen μ → 0 + and that ∞ -norm is a continuous function of the co-

fficients of a matrix, it follows that lim μ→ 0 + || C μ − C 0 || ∞ 

= 0 and

herefore the same holds for || πμ − π0 || 1 , which in turn implies

hat lim μ→ 0 + πμ = π0 . 

The result follows easily from the definitions of NBPR μ( j ) and

BPR ( j ). �
0 
At this point it is worth analyzing the relationship between π0 

nd π . As our experiments will show in Section 4 , there are net-

orks where these two vectors are different, therefore leading to

ifferent non-backtracking PageRank rankings for the nodes. How-

ver, in the next result, we provide an analytical sufficient condi-

ion for these two vectors to coincide: 

roposition 3.10. Let G = (X, E, w ) be a weighted directed network

nd π0 , π be the vectors from Definitions 3.5 and 3.6 respectively.

hen, if G has no almost terminal nodes, then π0 = π . 

roof. This result follows directly from Lemma 3.2 . �

orollary 3.11. Let G = (X, E, w ) be a weighted directed network

ith no almost terminal nodes. For every j ∈ X and μ∈ [0, 1], let

BPR μ( j ) and NBPR ( j ) be the PageRank measures defined in Definition

.7 . Then 

lim 

→ 0 + 
NBP R μ( j) = NBP R ( j) . 

roof. This follows from Theorem 3.9 and Proposition 3.10 . �

It is worth pointing out that we can formulate an almost recip-

ocal statement for Proposition 3.10 as follows: 

roposition 3.12. Let G = (X, E, w ) be a weighted directed network

nd π0 , π be the vectors from Definitions 3.5 and 3.6 respectively.

hen, if π0 = π, it follows that either G has no almost terminal nodes

r every node in G is almost terminal. 

roof. Assume that π0 = π and let us reasoning by Reductio ad ab-

urdum . Let us suppose that there are two nodes such that one of

hem is almost terminal while the other is not. 

Since π0 = π, we have that π T H = π T H 0 . It follows that 

T q (C + ξu 

T ) = π T qC 0 , 

hich implies that 

T (C 0 − C) = π T ξu 

T . (3.13)

ecall that, from Lemma 3.2 , most coefficients in the matrix C 0 − C

qual 0 except for those which equal 1. And there are precisely

s many coefficients equal to 1 as almost terminal nodes. As not

very node is almost terminal, by Lemma 3.2 the matrix C 0 − C

ust have at least one null column, namely any column indexed

y k → l where k is not almost terminal. Then it follows that

(π T (C 0 − C)) k → l = 0 . 

On the other hand, the vector ξ has at least one coordinate

qual to 1, as there is at least one almost terminal node. Let i → j

e an edge such that j is almost terminal. Then we have that

 π T ξu T ) k → l ≥π i → j u k → l > 0, where the last inequality is a conse-

uence of both π and u being positive vectors. 

By combining these two facts with Eq. (3.13) we obtain an ab-

urd, which proves the stated result. �

Finally, it is interesting to point out that the directed networks

uch that every node is an almost terminal node are easy to char-

cterize: they are disjoint unions of directed complete networks

ith 2 nodes. 

. Some experimental results 

In this section, we report some numerical experiments, in

hich μ-non-bactracking PageRank of L ( G ) for different real-world

etworks are calculated. Note that, by using [34] , this computation

s equivalent to finding the solution of the linear system 

 

T (I − qC μ) = u 

T , (4.1)

nd obtaining 

μ = (1 − q ) x. 
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Indeed, by using [4] , we deduce that (I − qC μ) −1 exists and has all

nonnegative entries because 

(I − qC μ) 1 = (1 − q ) 1 > 0 

and I − qC μ has nonpositive off-diagonal entries. Then, it follows

from (4.1) that 

x > 0 and ‖ x ‖ 1 = x T 1 = u 

T (I − qC μ) −1 1 = 1 / (1 − q ) . (4.2)

Therefore, ‖ πμ‖ 1 = 1 . Moreover, according to Definition 3.5 , we

deduce that 

π T 
μH μ = qπ T 

μC μ + (1 − q ) u 

T = π T 
μ. 

Now, the numerical approximation of x is given by the Jacobi

method (see, for example [47] ). The iterations are defined by {
x T 0 = (0 , 0 , . . . , 0) , 

x T 
k 

= qx T 
k −1 

C μ + u 

T , k ∈ N . 
(4.3)

Note that [26] shows that these iterations may converge faster that

the power method and are less sensitive to changes in the person-

alization vector. Also, due to C μ is a row stochastic matrix and by

(4.2) , we can consider the following bound between the μ-non-

bactracking PageRank of L ( G ) and its approximation, 

‖ (1 − q ) x k − πμ‖ 1 ≤ q k ‖ x T C k μ‖ 1 ≤ q k . (4.4)

Similarly, we obtain the non-bactracking PageRank of L ( G ). Due

to C can have some null rows, i.e., in the case that the line graph

has dangling nodes, we proceed as in [34] and we take 

˜ 
 = Q CQ 

T = 

(
˜ C 1 ˜ C 2 
0 0 

)
and 

˜ u = Q u = 

(
˜ u N 

˜ u D 

)
, (4.5)

where Q is a permutation matrix such that all null rows are at the

bottom of the matrix ˜ C . Then, the solution of 

˜ x T N (I − q ̃  C 1 ) = 

˜ u 

T 
N and 

˜ x T D = q ̃  x T N ̃  C 2 + 

˜ u 

T 
D (4.6)

determines that 

π = 

Q 

T ˜ x 

‖ ̃

 x ‖ 1 

, with 

˜ x T = 

(
˜ x T N , ̃  x T D 

)
. 

Indeed, by (4.5) and (4.6) , we have that 

˜ x T (I − q ̃  C ) = 

˜ u 

T . (4.7)

Moreover, (I − q ̃  C ) −1 exists and has all nonnegative entries be-

cause 

(I − q ̃  C ) 1 = 1 

∗
> 0 with 1 

∗ = 

(
(1 − q ) 1 N 

1 D 

)
. 

Then, since 

˜ x T Q(qξ + (1 − q ) 1 ) = 

˜ x T 1 

∗ = 

˜ u 

T (I − q ̃  C ) −1 1 

∗ = 1 , 

it follows of (4.5) and (4.7) that 

π T (I − qC) = π T (qξ + (1 − q ) 1 ) u 

T , 

and, consequently, π satisfies Definition 3.6 . Therefore, the approx-

imation of ˜ x , 

˜ x T k = ( ̃  x T N,k , ̃  x T D,k ) , 

is calculated as follows {
˜ x T N, 0 = (0 , 0 , . . . , 0) , 

˜ x T 
N,k 

= q ̃  x T 
N,k −1 

˜ C 1 + 

˜ u 

T 
N , 

and 

˜ x T D,k = q ̃  x T N,k 
˜ C 2 + 

˜ u 

T 
D . (4.8)

Since ˜ x N is approximated by Jacobi method and the sum of the

elements of each row of ˜ C is less or equal than 1, we deduce that 

‖ ̃

 x − ˜ x k ‖ 1 = ‖ ̃

 x N − ˜ x N,k ‖ 1 + ‖ ̃

 x D − ˜ x D,k ‖ 1 ≤ (1 + q ) q k ‖ ̃

 x ‖ 1 , 
t  
nd the bound of error is given by 

π − Q 

T ˜ x k 
‖ ̃

 x k ‖ 1 

∥∥∥∥
1 

≤ 2 

‖ ̃

 x k − ˜ x ‖ 1 

‖ ̃

 x ‖ 1 

≤ 2(1 + q ) q k . (4.9)

lso, it is possible to apply the method of Jacobi directly to (4.7) as

n Gleich [25] , but we have chosen the below algorithm because

he dimension of ˜ C 1 is less than 

˜ C . 

Finally, we compute the standard PageRank in a similar way as

n (4.3) , but by using θ ij and v (see (2.3) ), with an error bound

s in (4.4) , and compare it with the ranking provides by μ-non-

actracking PageRank. For this purpose, we use the Kendall’s Tau

oefficient [30] , which is denoted by 

1 (μ) = Kendall’s Tau coefficient P R vs NBP R μ. (4.10)

owever, in the case that G has some almost terminal nodes, it is

ossible that NBPR 0 � = NBPR and thus, the rankings can be different.

herefore, we introduce also 

(μ) = Kendall’s Tau coefficient 

{
N BP R vs N BP R μ if μ � = 1 , 

NBP R vs P R if μ = 1 . 

(4.11)

The numerical experiments were run on a iMac18,3 with

,2 GHz Intel Core i7 and RAM 16 GB, under the macOS High Sierra

perating system. All the experimental results were obtained by

sing a Python 3.7 implementation with machine precision ε ≈
 . 22 × 10 −16 . 

.1. Madrid underground system 

In this subsection, we study the Madrid Underground System

61] . Following a similar interpretation as in [15] , we choose a

amping factor q = 0 . 91 . Therefore, we stop in k = 405 to get an

rror less that 10 −16 in (4.4) and (4.9) . Also, note that this network

ossesses exactly eleven almost terminal nodes which produce big

ifferences between the rankings provided by NBPR 0 and NBPR as

e will see next. 

Firstly, we choose a uniform personalization vector, v = 1 /n,

nd calculate the PageRank and the μ-non-bactracking PageRank

or 

i = 1 − i 

10 

, i = 1 , 2 , . . . 10 . 

ig. 2 shows the changes introduced by the parameter μ, reflect-

ng some variations in the ranking of the first fifteen stations. For

xample, it can be observed that the μ-non-backtracking does not

ffect to the first, second and fifteenth positions, which occupy the

tations Avenida de América, Vodafone Sol and Sainz de Baranda , re-

pectively, but, however, the rest of stations exchange their places,

eing significant the decrease of Oporto or the increase of Diego de

eón when μ goes to 0. Also, Fig. 3 provides Kendall’s Tau coeffi-

ients, defined in (4.10) and (4.11) , when the first fifteen stations

re considered. It shows that the rankings are not the same and

eflects the result proved in Proposition 3.12 , because τ (0) ≈ 0.71.

ow, we are going to consider two personalization vectors chosen

n [15] . They take into account two situations: the morning traffic

nd the after-work traffic. For them, the 80% of passengers is as-

umed to enter the system in stations located in urban areas with

any residents, surrounding suburbs, dormitory districts or nearby

eripheral cities to define the personalization vector of the morn-

ng traffic, while the 80% is given to stations located in the vicinity

f the main work centers in the case of after-work traffic. 

The differences between the rankings are bigger with morning

raffic than with after-work traffic. It can be seen in Fig. 4 . 

Moreover, some of the first fifteen stations, according with

he PageRank, change their positions drastically. In the Table 1 ,
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Fig. 2. Ranking of Madrid Underground with v = 1 /n . 

Fig. 3. Kendall’s Tau coefficients of the 15-top stations with v = 1 /n . 

Table 1 

Ranking of Madrid Underground with morning traffic. 

Station PR NBPR 0.5 NBPR 0 NBPR 

Puerta del Sur 1st 1st 1st 1st 

Las Suertes 2nd 22nd 57th 94th 

La Poveda 3rd 23rd 64th 99th 

Reyes Católicos 4th 30th 56th 95th 

La Peseta 5th 36th 59th 97th 

Las Musas 6th 35th 52nd 108th 

Arroyo Culebro 7th 3rd 4th 2nd 

Parque de los Estados 8th 5th 5th 4nd 

Conservatorio 9th 4th 6th 3rd 

Fuenlabrada Central 10th 6th 8th 5th 

Alonso de Mendoza 11th 7th 7th 6th 

Parque Europa 12th 9th 9th 7th 

Getafe Central 13th 8th 10th 8th 

Juan de la Cierva 14th 10th 11th 10th 

Hospital de Fuenlabrada 15th 11th 12th 9th 

i  
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t  

a  

P
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l  
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a  
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5

t can be observe that Las Suertes, La Poveda, Reyes Católicos, La

eseta and Las Musas , which are in the 6-top, are located above

he fifty position if the 0-non-bactracking PageRank is considered,

nd higher of the ninety position in the case of non-backtracking

ageRank. 

.2. Other real networks 

Finally, Kendall’s Tau coefficients, (4.10) and (4.11) , are calcu-

ated for a variety of real networks. The first four networks of

able 2 can be found in [32] and the remainder in [49] . Also, they

re studied in: Pretty Good Privacy [7] , Contiguous USA [31] , Eu-

oroad [55] , US power grid [58] , rt-retweet [50,51] and rec-amazon

35] . 

For these simulations, we choose a uniform personalization vec-

or and damping factor, q = 0 . 85 . Then, we stop in k = 235 to ob-

ain a error less that 10 −16 in (4.4) and (4.9) . Finally, for the results

f Table 2 , the 15-top positions, according to PageRank, are consid-

red when is a small network as Contiguous USA and rt-retweet ,

nd the 30-top positions for a medium network as Pretty Good Pri-

acy, Euroroad, US power grid and road-minnesota . The Kendall’s tau

oefficients for the network, rec-amazon , are calculated with the

0-top positions. 
Table 2 

Kendall’s Tau coefficients for different networks. 

Network τ 1 (0.5) τ 1 (0) τ (0) τ (1) 

Pretty good privacy 0.96 0.91 0.54 0.47 

Contiguous USA 0.94 0.92 0.69 0.65 

Euroroad 0.90 0.77 0.43 0.34 

US power grid 0.94 0.88 0.30 0.23 

road-minnesota 0.72 0.45 −0.14 −0.33 

rt-retweet 1 0.98 0.69 0.71 

rec-amazon 0.80 0.57 −0.21 −0.27 
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Fig. 4. Kendall’s Tau coefficients of the 15-top stations with morning traffic (left) and after-work traffic (right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions 

We introduced and studied Non-backtracking PageRank (NBPR)

as a new measure of centrality modifying the classic PageRank in

order to avoid the possibility of the random walker returning to

the node immediately visited by using the line graph associated

to a directed network and the Hashimoto matrix. Indeed, we stud-

ied the convergence when μ → 0 + of the tuned version of Non-

backtracking PageRank and some analytical relationships are es-

tablished between the μ-Non-backtracking PageRank and its non-

tuned version. Furthermore, our numerical experiments showed

that the differences between the rankings provided for the classi-

cal PageRank and the different NBPR approaches may differ widely

under certain circumstances. 
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