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Abstract: Land cover is crucial for ecosystems and human activities. Therefore, monitoring land
cover changes has become relevant in recent years. This study proposes an alternative method
based on conventional change detection techniques combined with maximum likelihood (MaxLike)
supervised classification of satellite images to generate consistent Land Use/Land Cover (LULC)
maps. The novelty of this method is that the supervised classification is applied in an earlier stage of
change detection exclusively to identified dynamics zones. The LULC categories of the stable zones
are acquired from an initial date’s previously elaborated base map. The methodology comprised the
use of Landsat images from 2011 and 2016, applying the Sun Canopy Sensor (SCS + C) topographic
correction model enhanced through the classification of slopes, using derived topographic corrected
images with NDVI, and employing Tasseled Cap (TC) Brightness-Greenness-Wetness indices and
Principal Components (PCs). The study incorporated a comparative analysis of the consistency of
the LULC mapping, which is generated based on control areas. The results show that the proposed
method, although slightly laborious, is viable and fully automatable. The generated LULC map is
accurate and robust and achieves a Kappa concordance index of 87.53. Furthermore, the boundary
consistency was visually superior to the conventional classified map.

Keywords: land use/land cover (LULC); LULC mapping; image classification; change detection

1. Introduction

Only a third of the Earth’s surface is covered by land (approximately 140 million km2) [1].
Forest ecosystems help maintain biological diversity, water cycle regulation, carbon storage,
and other ecological functions [2,3]. Some of the main causes of biodiversity loss are land
cover change and anthropogenic disturbances, including the degradation or intensification
of land use [4,5]. The transformation of forests into agricultural or urban areas has become
common in the last 30 years in several regions of Mexico [6–8]. Every year, 0.3% of Mexico’s
vegetation surface is transformed and undergoes a LULC change [9].

Due to population growth, half of the world’s native forest cover has been lost, and
30% of the ecosystems have been destroyed irreversibly [10,11]. These changes degrade the
soils and alter the microclimate at local scales. In the short term, more significant concerns
are modified ecosystem functions and services, and associated disruption of human well-
being (i.e., forest ecosystem services such as water availability, food production, climate
regulation, recreation, and culture) [11–13]. These issues have put the governments of
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various countries on alert. In addition, the United Nations has recognized that nature is
under increasing stress due to deforestation and desertification caused by human activities
and climate change. These pose significant challenges to sustainable development and have
affected millions of lives. Hence, sustainable development goals were set to manage forests,
combat desertification, mitigate land degradation, and prevent biodiversity loss [14].

The need to develop scientific studies on the dynamics of LULC is widely recognized
and aims to assess the magnitude, causes, and consequences within the coupled human
and natural systems (CHANS). These studies are in demand mainly in tropical countries
such as Mexico, which has a high concentration of natural and cultural wealth and has
simultaneously recorded high ecosystem loss and degradation [15].

LULC mapping through Remote Sensing techniques and GIS provides essential sup-
port to monitor and evaluate LULC transitions [16–19]. These land cover maps are helpful
to scientists, land managers, policy decision-makers, and end-users involved with envi-
ronmental problems or sustainable land resources [20,21]. The importance of providing
land cover maps has become more urgent as environmental monitoring programs accel-
erate and concerns about our changing environment increase. Data sources, methods,
and technologies help deduce the consequences of degradation processes, desertification,
decreased biodiversity, and natural and cultural loss. Thus, possible patterns and future
behavior could be explored in applied regions, and the subsequent consequences can be
anticipated. This data can be very useful in designing and planning conservation and
territorial management.

Thematic mapping (e.g., LULC) is an essential input for ecosystem characterization
and the study of evolutionary dynamics through time and space. The study of ecological
processes at the landscape scale is based on the indexes estimated from land cover clas-
sifications [22–24]. Thematic cartography is commonly used but is not free from errors
associated with the limited ability to discern the optical image capture systems themselves
(remote sensors) [25], which causes confusion between specific map categories. These er-
rors and related confusions are more likely to occur in regions of high levels of biodiversity
(such as Mexico) with many LULC thematic classes categorized on maps.

At global and regional scales, several land cover datasets derived from remotely sensed
data are available (for example, the MODIS Land Cover product [26], Global Land Cover
2000 [27], and Glob Cover produced by the European Space Agency (ESA) [28]). However,
some studies showed disagreement between the global land cover datasets [29,30]. Other
works were published about the reliability of regional LULC mapping. Laba et al., 2002 [31]
and Wickham et al., 2004 [32] evaluated maps prepared in the year 1992 in the USA,
analyzing 29 thematic classes of the Gap Analysis Project (GAP) and 21 classes of the
National Land Cover Data (NLCD). Wulder et al., 2007 [33] published the reliability of
the Vancouver Island map in Canada prepared in the year 2000 for 18 thematic classes
considered in the Earth Observation for Sustainable Development (EOSD) program. The
above studies exhibit numerous discrepancies among classes in the analyzed maps in the
order of 38% to 70% global consistency.

The reliability of the thematic map used in the studies concerning changes in LULC
is essential to the quality of findings. Otherwise, these spatial or thematic errors can be
detrimental to the monitoring, characterization, and modeling of LULC changes. Super-
vised classification is commonly used in remote sensing to generate reliable LULC maps.
This requires land cover sample and ground-truth data, which are necessary to assign each
class according to the spectral data of the satellite images or the derived transformation
images. Ground-truth integration is often a complicated and expensive task that involves
exceptional processing, time, and resources. In addition, the ground-truth data must be
accurate enough (in space, but especially in time) to represent the reality of cover cate-
gories. However, in ecosystem monitoring and land cover dynamics studies, the necessary
historical ground-truth data are often unavailable [34].

Furthermore, in spatial and temporal reports, the border consistency of each class is
transcendent to quantify the change. Some possible variations could be due to inconsistent
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interpretation by the classification model of the analyzed data. This inconsistency causes
temporal alterations in factors such as changes in vegetation health, differences in lighting
due to different geometries of the sun and sensor, and the sensor data record [35,36].
Consequently, these would generate errors in the spatial boundaries of categories, and
hence, some of the changes observed by comparing LULC maps of different years may
be due to the mentioned artifacts, which cause errors in defining category boundaries or
identification [37,38] and alter the evaluation results of land cover change.

To overcome this fact, we proposed an alternative method to generate spatial and
thematics consistent LULC mapping at a local or regional scale through combined remote
sensing techniques. First, a LULC base map of an initial date was built by supervised
classification. Second, change detection is applied between the initial and final dates, and
another supervised classification is applied exclusively to the identified changed zones.
Finally, the LULC map of the final date is constructed by acquiring the covers of the initial
base map of the non-changed zones and integrating it with the classified zones of detected
changed areas.

This study proposes additional specialized work, such as data collection, processing,
and analysis. However, satellite imagery offers advantages such as free remotely sensed
data (Landsat, Sentinel, ASTER, among others.). Some of the other advantages are that
satellite imagery represents the temporal data in different electromagnetic spectral bands
(multispectral data), the temporal resolution of freely available sensors (16 days, average),
and the spatial resolution of images in the visible and infrared bands (Landsat 30 m, Aster
15–30 m, Sentinel 10–20 m) is suitable for local or regional scale studies.

2. Materials and Methods

In this section, we explain the proposed methodology step by step. To facilitate an
understanding of the approach and the assessment of the results, it is applied here in the
central zone of Guerrero State in Mexico as a study case.

2.1. Study Area

The study area is in the central zone of Guerrero State in Mexico. It covers 4800 km2,
located in a mountainous region with elevations ranging from 480 m to 2960 m above the
mean sea level (Figure 1).

Land 2021, 10, x FOR PEER REVIEW 4 of 25 
 

 

Figure 1. Study area: The central zone of Guerrero State in Mexico. 

The study area identified diverse triggering and conditioning factors, such as pres-

sure on the forest or agricultural areas, risk areas due to natural phenomena such as flood-

ing and landslides, and anthropic actions. Another identified factor was clandestine log-

ging and increasing deforestation due to industrial mining activity. The Filos-Bermejal 

mining corridor, located in the area, is the largest gold deposit in Latin America and is 

projected to extract more than 60 million tons of gold over 20 years [41]. This activity has 

impacted the local ecosystems, intensified the LULC change dynamics, and impacted 

landscape transformation (Figure 2). 

 

Figure 2. Mining in the study area. (a,b) Exploitation front at the El Tajo, Filos-Bermejal mine. (c) 

Waste reservoir, Jales dam. 

The study attempted to represent the pressure exerted by social and natural agents 

on local ecosystems, which prevail in many world regions. The method proposed here 

could be applied to similarly affected regions. Therefore, the study is globally relevant in 

its approach and use and is initially applied locally. 

  

Figure 1. Study area: The central zone of Guerrero State in Mexico.

The temperature ranges were between 19.7 ◦C and 24.2 ◦C, recorded in December
and May, respectively. The area is covered by 43.8% of forest (coniferous, mesophilic, and
mixed), 39.3% of deciduous forest, 8.2% of agricultural and livestock use, 6.7% of induced
vegetation, 1.7% of human settlements and urban areas, 0.2% of water bodies, and 0.1%
of bare ground [39]. According to the 2010 Census, there are 308 towns in the study area,
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which comprise 296 rural (less than 2500 inhabitants) and 12 urban towns. There were
84,835 inhabited homes and 363,938 inhabitants (≈75.7 inhabitants per km2) with 48.2%
men and 51.8% women [40].

The study area identified diverse triggering and conditioning factors, such as pres-sure
on the forest or agricultural areas, risk areas due to natural phenomena such as flooding
and landslides, and anthropic actions. Another identified factor was clandestine logging
and increasing deforestation due to industrial mining activity. The Filos-Bermejal mining
corridor, located in the area, is the largest gold deposit in Latin America and is projected
to extract more than 60 million tons of gold over 20 years [41]. This activity has impacted
the local ecosystems, intensified the LULC change dynamics, and impacted landscape
transformation (Figure 2).
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Figure 2. Mining in the study area. (a,b) Exploitation front at the El Tajo, Filos-Bermejal mine.
(c) Waste reservoir, Jales dam.

The study attempted to represent the pressure exerted by social and natural agents
on local ecosystems, which prevail in many world regions. The method proposed here
could be applied to similarly affected regions. Therefore, the study is globally relevant in
its approach and use and is initially applied locally.

2.2. Methods

The methodological design (Figure 3) for elaborating a consistent LULC mapping
proposal is based on five steps.

Vector mapping of land use and vegetation, series II (1993) to V (2011) was used in this
study, and along with the official cartographic maps, was provided by the National Institute
of Statistics and Geography (INEGI). Local experts on the integration and development
of local and regional ecosystems (academy and government agencies) were consulted to
define the vegetation and land covers under the temporal and spatial scale relevant to the
study area. The defined LULC values are shown in Table 1.
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Figure 3. General flowchart of the proposed methodology.

Table 1. Definition of the legend’s categories of LULC for the performance of the classification stage.

Id Description

1-1 Encino forest
1-2 Pine forest
1-3 Mixed forest
2-1 Deciduous forest
3-1 Agricultural area
4-1 Bare soil
5-1 Water bodies
6-1 Urban/Industrial Areas

2.2.1. Pre-Processing

A 30-m grid digital elevation model (DEM) was used, based on topographic maps of
scale 1:50,000, courtesy of INEGI. From the DEM, maps of the angular slopes and terrain
orientation (Aspect) were generated.

Two Landsat surface reflectance (SR) images were used (Path 26, Row 48, WRS-2),
acquired from the U.S. Geological Survey Earth Resources Observation and Science Center
(USGS-EROS), which were offered as Climate Data Records (CDR) [42,43] with a spatial
resolution of 30 m. One image was of the Landsat 5 Thematic Mapper (L5-TM) sensor
from 24 February 2011, and another image was of the Landsat 8 Operational Land Imager
(L8-OLI) sensor from 21 January 2016. Both dates correspond to the winter season in the
northern hemisphere, a time of year, when the presence of clouds is significantly reduced in
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the study area. In addition, the dates are close enough (in months) to be homogenized and
avoid the detection of phenological changes derived from seasonal changes from winter to
spring or summer, when there is an increase in rainfall and the quantity and vigor of the
vegetation in the study area, mainly covered by Forest and Deciduous Forest. All bands
were used, and cloud-shadow masks were generated for the images with clouds present.

2.2.2. Correction and Transformation

Topographic correction using the Sun Canopy Sensor + Correction (SCS + C) method
was performed on each band and date to reduce the effect of slope changes on the re-
flectance values and the effect of terrain orientation and solar geometry at the time of image
acquisition. The SCS + C method [44] is recommended for forested mountain areas over
other land-based methods because it preserves the geotropic nature of the trees (typical
to geoid growth) [45]. The C parameter used in topographic correction to moderate over-
correction of dimly illuminated pixels [46] was determined by linear regressions between
the illumination and reflectance values and is based on the classification of topographic
slopes of the studied area [47]. This improvement facilitates the detection of changes in the
images and identifies the LULC classes in the classification stages.

With the topographically corrected bands, additional images were generated for each
date through transformation processes, which employ normalized difference vegetation
index (NDVI) [48], Tasseled Cap (TC) Brightness-Greenness-Wetness indices [49–51], and
principal components (PCs) [22,49].

Furthermore, from the topographically corrected SR reflectance images, one more
layer was generated by performing a segmentation process. The segmentation of satellite
images is used to recognize spatial patterns and define their limits, aiming to simplify
the image’s representation in another image more meaningful and easier to analyze in
subsequent processes. Segmentation divides the image into regions by identifying the
contours using deterministic or stochastic intensity, color, or texture. Segmentation assigns
a label to each pixel so that equal labels mean similar characteristics [52].

For this study, the watershed transformation method was applied to group pixels
into image segments according to their spectral similarity. This method employs a similar
approach to delineating a watershed to partition the input images based on their variance.
Thus, a derived variance image is treated as a surface image that assigns pixels to particular
segments based on their similarity [53].

The segmented image and the transformed images were used in the classification
process to generate the LULC cartography.

2.3. LULC Map Generation
2.3.1. LULC Map Generation for the Base Date

One of the study dates was designated as the base (21 January 2016), and the con-
ventional supervised maximum likelihood (MaxLike) classification process [22,54–56] was
applied to generate a base LULC map. This process includes a sample of ground-truth
information from the selected date. The layers used as input in the classification process
were the first three PCs, the NDVI, and the DEM.

This process results in a classified image that must be debugged as it exhibits a
speckled effect, also known as the salt-and-pepper effect, and is caused by high local spatial
heterogeneity between neighboring pixels. As each pixel is dealt with in isolation from
its neighbors in the pixel-based paradigm, close neighbors often have different classes
despite being similar [57]. Thus, to overcome the speckle effect, a process of reducing
this ”salt-and-pepper noise” is conducted, which comprises reallocating isolated pixels
in a category other than the one surrounding it [58]. This allows it to be included in the
enveloping categories to improve the final LULC map.

To further reduce salt-and-pepper noise, the experts were consulted for their opinions
to establish the recommended Minimum Mapping Unit (MMU) of the pixels that are
grouped into different categories based on their integration into local ecosystems. The
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MMU is considered to be adequately represented at a regional scale. We can conserve land
cover classes that are sparse and fragmented, and they could be considerably misrepre-
sented in the final land cover map [59]. The essential goal in selecting an appropriate MMU
is to use as small a value as possible for the intended application of the classification while
maintaining an acceptable level of accuracy [60]. The expert knowledge is very relevant to
decide this relevant minimum area of each land cover class. Therefore, for the categories
with large areas (forest and deciduous forest), it was proposed that the groups of pixels that
were reassigned to enveloping classes were those groups with a size smaller than 18,000 m2

(20 pixels). Alternately, for the rest of the classified image categories (agricultural areas,
bare soil, water bodies, and urban/industrial areas), the idea was to debug groups of pixels
smaller than 9000 m2 (10 pixels). Figure 4 shows the process of LULC mapping generation
of the base date.

Land 2021, 10, x FOR PEER REVIEW 7 of 25 
 

information from the selected date. The layers used as input in the classification process 

were the first three PCs, the NDVI, and the DEM. 

This process results in a classified image that must be debugged as it exhibits a speck-

led effect, also known as the salt-and-pepper effect, and is caused by high local spatial 

heterogeneity between neighboring pixels. As each pixel is dealt with in isolation from its 

neighbors in the pixel-based paradigm, close neighbors often have different classes de-

spite being similar [57]. Thus, to overcome the speckle effect, a process of reducing this 

”salt-and-pepper noise” is conducted, which comprises reallocating isolated pixels in a 

category other than the one surrounding it [58]. This allows it to be included in the envel-

oping categories to improve the final LULC map. 

To further reduce salt-and-pepper noise, the experts were consulted for their opin-

ions to establish the recommended Minimum Mapping Unit (MMU) of the pixels that are 

grouped into different categories based on their integration into local ecosystems. The 

MMU is considered to be adequately represented at a regional scale. We can conserve land 

cover classes that are sparse and fragmented, and they could be considerably misrepre-

sented in the final land cover map [59]. The essential goal in selecting an appropriate 

MMU is to use as small a value as possible for the intended application of the classification 

while maintaining an acceptable level of accuracy [60]. The expert knowledge is very rel-

evant to decide this relevant minimum area of each land cover class. Therefore, for the 

categories with large areas (forest and deciduous forest), it was proposed that the groups 

of pixels that were reassigned to enveloping classes were those groups with a size smaller 

than 18,000 m2 (20 pixels). Alternately, for the rest of the classified image categories (agri-

cultural areas, bare soil, water bodies, and urban/industrial areas), the idea was to debug 

groups of pixels smaller than 9000 m2 (10 pixels). Figure 4 shows the process of LULC 

mapping generation of the base date. 

 

Figure 4. Overview process of supervised MaxLike classification and the LULC map for the base 

date. Classified layers: (a) Segmented image, (b–d) First three PCs, (e) NDVI, (f) DEM, (g) resulting 

image from classification, and (h) Final image. 

Figure 4. Overview process of supervised MaxLike classification and the LULC map for the base
date. Classified layers: (a) Segmented image, (b–d) First three PCs, (e) NDVI, (f) DEM, (g) resulting
image from classification, and (h) Final image.

2.3.2. LULC Map Generation for the Test Date

To generate the LULC map corresponding to the test date (24 February 2011), a
supervised MaxLike classification process was applied exclusively to the change zones
identified in the previous detection stage. Ground-truth data of the stable pixels (no-
change) corresponding to the base date were used as training data for classification. This
was done in accordance with the change detection results, which revealed that these areas
temporally maintained the same LULC.

The unclassified areas, which correspond to the no-change pixels that resulted from
the earlier detection process, complemented the LULC data from the base date map. It was
assumed that these areas were unchanged during the analysis period so that the LULC
would remain the same on both dates.

Figure 5 shows the proposed methodology for the test date LULC map generation.
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The process is initiated with two images: the base date (Figure 5b) and the test date
(Figure 5a). The images are used for change detection with linear regression (LR) [35,61,62]
using the first PCs images as input and obtaining continuous change detection through
images (residual) for the analysis period. According to a threshold value, a final thematic
map was generated that isolated the pixels in change/no-change categories created by
segmenting the residual image. Thus, the changed areas can be distinguished from those
that remained unchanged, as shown in Figure 5c. Following Hervás and Rosin [63], the
threshold was automatically defined by selecting the value that corresponds to the point
in the histogram distribution where the maximum perpendicular line intersects with the
secant line between the highest and lowest points of the residual image histogram [64].

Following the proposed method, the pixels matching the map of changes were ex-
tracted from the test date data (the first three PCs, the NDVI, and the DEM) and used as
input in the classification process to generate a LULC map of the changed zones (Figure 5d).
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As mentioned earlier, the ground-truth information from the base date of non-changed
areas was used in the classification to train the model under the following conditions: first,
it corresponds to the unchanged pixels in the analysis period. Second, the LULC remains
unchanged in theory, and third, image dates correspond to the same seasonal period. Thus,
the base date ground-truth data could theoretically be used to train a classification to the
same base date or any unchanged test date area for the change detection task.

To complement the areas that were not classified (no-change), the LULC data were
acquired from the base date (Figure 5e). The image resulting from the classification and
complementation tasks was debugged to eliminate the salt-and-pepper effect, to finally
obtain the test date LULC map (Figure 5f).

2.4. Accuracy Assessment

Any cartographic producer will ensure that they generate a product of the highest
quality. Nevertheless, unfortunately, any cartographic product is not error-free. For
example, in Europe, CORINE Land cover has a geometric accuracy better than 100 m and
Thematic accuracy better than 85% (https://land.copernicus.eu/pan-european/corine-
land-cover, accessed on 2 June 2021). In other words, thematic accuracy has a 15% error.
For this reason, it is essential to assess the quality of produced maps.

To assess the accuracy of the classification process, 262 polygons were digitized and
identified as ground-truth data. By interpreting a color aerial photo slide close to the
base date and aided by the LULC official maps, 434,339 pixels were identified in their
corresponding LULC category (Table 1). For classification and subsequent validation, these
pixels were randomly separated into two groups. The first consisted of 289,559 pixels
(2/3 of the ground-truth), which were reserved for use in the classification model. The
second consisted of 144,780 pixels (1/3 of the ground-truth) and were reserved for assessing
the classification accuracy of the process. The last subgroup of ground-truth samples
was compared with the final classification map through confusion matrices to obtain the
omission and commission errors.

The Kappa concordance coefficient of agreement [65] was obtained to quantify the
difference between the observed map-reality agreement and the randomly expected agree-
ment. The Kappa index attempts to define the degree of adjustment due to the categoriza-
tion accuracy without considering the causes of random factors [66]. The Kappa coefficient
was calculated as follows:

k = (n ∑i=1,n Xii − ∑i=1,n Xi+X+i)/(n2 − ∑i=1,n Xi+X+i) (1)

where k is the Kappa coefficient of agreement, n is the sample size, Xii is the observed
agreement, and Xi+ X+i is the expected agreement in each category i.

The Kappa coefficient allows us to determine whether the marked degree of agree-
ment draws away or is not significantly different from the expected random agreement.
The agreement is highlighted in the diagonal of the confusion matrix, and the expected
agreement is used to calculate the fit between the map and reality due to randomness [22].

To assess the accuracy of the change detection process, events that have caused
changes in the LULC were explicitly identified in the study area, such as deforestation,
increasing bare soil areas by mining, landslides, flooding, and fires, among others. Areas
were also identified wherein the LULC remains unchanged with similar characteristics,
such as forests, bare soils, and urban areas. Thus, a sampling of 90 polygons was identified
as ground-truth data, and their pixels were categorized as change and unchanged. By
interpreting colored, aerial photo slides close to the study dates, aided and with the help
of official LULC maps, and considering the reclassification of the categories of interest,
samples of covers representative of the polygons were identified, selected, and digitized
that in the photographs coincide with the characteristics defined for the classes sought
to be incorporated into the ground-truth data; 7523 pixels were defined as changed and
7612 pixels as unchanged (Figure 6). These ground-truth data were compared with the

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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final thematic maps obtained from the detection process and applying the thresholding
technique through confusion matrices to obtain the omission and commission errors.
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As seen in Figure 5, it was possible to generate the LULC map of the test date from
the proposed method by using ground-truth data from another base date to train the
classification model without any specific ground-truth information for the test date. How-
ever, samples of ground-truth polygons were integrated for the test date with the help of
LULC official maps exclusively for validating the proposed methodology. Thus, 232 poly-
gons were sampled as ground-truth, 429,529 pixels were identified in their corresponding
LULC category (Table 1), and randomly separated into two groups. The first comprised
284,030 pixels (2/3 of the ground-truth), and the second comprised 142,055 pixels (1/3 of
the ground-truth). As per the resulting map of the change detection task, the last group
was simultaneously divided into two subgroups. One corresponds to the ground-truth for
the change zones and the other for the unchanged zones. The first subgroup was used to
assess the classification accuracy applied to the changed areas (Figure 5d). To validate the
final LULC map (Figure 5f), the sampled group of 142,055 pixels was compared with the
final LULC map through confusion matrices to obtain the omission and commission errors,
and the Kappa concordance coefficient.

Ground-truth information available for the test date is used to validate the proposed
methodology. A conventional MaxLike classification was performed on the test date, using
the group of 284,030 pixels in the training stage. This resulting conventional LULC map was
compared with the LULC map generated by the proposed method using change detection.

Earlier studies have reported the minimum representativeness of the interest cate-
gories required for classification processes, which range from n + 1 [67], 10n [68] to 100n [69],
where n is the number of bands that integrate the classification analysis [22]. While inte-
grating the ground-truth data used in classification training and stages of date validation,
the representativeness remains intact and exceeds the minimum number of pixels used in
the sample criteria mentioned.
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3. Results and Discussion
3.1. Base Date LULC Map

Figure 7 shows the true-color composition of the base date image, the supervised
classification results, and classification with the reduced salt-and-pepper noise processes.
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(c) Classified image with the reduced salt-and-pepper noise.

The general LULC of the study area can be observed in the true-color composition
(Figure 7a). Some pixels are categorized in isolation from the training data used (salt-
and-pepper noise) in the classified image. These are bare soil pixels (in gray) classified in
isolation as an urban area (in red) due to their similarity (Figure 7b). The presence of many
salt-and-pepper noise occurrence of isolated pixels with high local spatial heterogeneity
between neighboring pixels demonstrated why it was necessary to correct it in the land
cover classification [58]. The improvement through the reduced salt-and-pepper noise
process can be observed in Figure 7c. The image resulting from the supervised classification
with the reduced salt-and-pepper noise (Figure 7c) represents the LULC map used as a
base for the test date map generation.

The layers used as input in the classification process were the first three PCs of
remote sensing bands, the NDVI, and the DEM. Principal Component Analysis (PCA)
and Independent Component Analysis (ICA) are different methods. Principal Component
Analysis (PCA) is very frequently used in remote sensing. PCA is a statistical technique
used to feature extraction and data reduction. In our study, we wished to obtain fewer
bands that integrate the information of the other bands.

However, Independent Component Analysis (ICA) is not yet often used in land
cover change or remote sensing in general. ICA is a different technique use to recovering
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unobserved data on multispectral bands, exploiting only the assumption of mutual inde-
pendence. ICA could improve the quality of the classification [70–72]. For this reason, in
the future, we will develop and evaluate new methodologies incorporating IC bands.

Accuracy Assessment of the Base Date LULC Map

The correspondence between land covers shown in the true-color composition (Figure 7a),
and the final LULC map can be appreciated. However, a quantitative evaluation was devel-
oped by comparing the categories of LULC obtained by the classification with the reduce
salt-and-pepper noise process with the ground-truth reserved for validating of the base date
through a confusion matrix (Table 2).

Table 2. Confusion matrix of the final base date LULC map compared with the ground-truth reserved for the validation stage.

LULC Encino
Forest

Pine
Forest

Mixed
Forest

Decid.
Forest Agric. Bare Soil Water

Bodies Urban/Indust. Total User
Match

Comm
Error

Encino
forest 22,082 426 2333 881 87 0 4 0 25,813 85.5 14.5

Pine
forest 1277 17,001 187 1222 95 0 0 0 19,782 85.9 14.1

Mixed
forest 480 14 31,045 0 0 0 0 0 31,539 98.4 1.6

Decid.
forest 442 243 0 34,477 3102 1 0 12 38,277 90.1 9.9

Agric. 197 154 13 2090 12,203 6 8 580 15,251 80.0 20.0
Bare soil 17 8 0 18 181 1689 24 105 2042 82.7 17.3

Water
bodies 0 0 0 0 0 0 3450 0 3450 100.0 0.0

Urban/
Indust. 0 0 0 4 312 73 5 8232 8626 95.4 4.6

Total 24,495 17,846 33,578 38,692 15,980 1769 3491 8929 144,780
Produc.
Match 90.1 95.3 92.5 89.1 76.4 95.5 98.8 92.2

Omission
errors 9.9 4.7 7.5 10.9 23.6 4.5 1.2 7.8 Kappa 87.64

Most of the pixels reserved for the validation stage are concentrated in the main
diagonal of the confusion matrix, which ensures good results in allocating the classification
categories. However, some discrepancies are observed, which need to be analyzed outside
the diagonal.

It is observed that some pixels identified in the ground-truth data as Encino forest
are designated as pine forest (5.2%) in the classification model. Opposite instances are
also observed, i.e., 2.4% of the pixels identified as “pine forest” are classified as “encino
forest,” and 6.9% of the pixels identified as “mixed forest” are classified as “encino forest”.
Deciduous forest cover occupies an extensive and dispersed area in the study area, and
discrepancies are also observed here. We observed that of the total pixels identified in the
ground-truth data as deciduous forest, 2.3% are classified as Encino, 3.2% as pine, and 5.4%
as agricultural areas. Similarly, opposite discrepancies are observed, wherein 19.4% of the
pixels identified as agricultural areas are classified as deciduous forests. According to the
global values of the confusion matrix, bare soils, and water bodies are correctly assigned
by the classification model, while of the total pixels identified in the ground-truth data as
urban/industrial areas, 6.5% are wrongly classified as agricultural areas.

The discrepancies observed in the LULC base map are relatively normal because
forests and deciduous forest classes cover large areas and are surrounded by other forest
cover types that make class delineation difficult while processing.

Certain types of land cover have similar structures and properties, and hence, they
react in similar ways to energy [44,73], i.e., some crops in agricultural areas can easily be
confused with low vegetation, which is characteristic of deciduous forests. Hence, they
are wrongly assigned to that category. Another case is that some areas were identified
as agricultural areas in the ground-truth data, although they were uncultivated (fallow)
at the image acquisition time. Similarly, soils in the classification process are categorized
as urban/industrial areas because both categories have a similar spectral response (high
reflectance values).
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These discrepancies lead to additional efforts in integrating ground-truth data, in-
creasing the resources, and preparation time needed to attain the required quality for this
kind of study. These efforts are justified for obtaining the desired definition for LULC
base maps.

The confusion matrix analysis indicates that the omission errors are low, registering
8.8% on average for the analyzed LULC. The highest value is 23.6% due to the discrepancies
between the agricultural and deciduous forests (Table 2). Commission errors are also low,
registering 10.2% for the analyzed LULC, with the highest records (20.0%) corresponding
to agricultural areas. These values are consistent with the earlier works in similar LULC
conditions, which report ≈22% [74]. These low values of omission and commission errors
indicate that the producer and user match success records are high (average of ≈90%),
except for agricultural land cover that records ≈78% of success in matching pixels due to
the discussed discrepancies (Table 2).

According to the confusion matrix, the accuracy of the LULC map date test was
considered satisfactory and reached a Kappa concordance index of 87.64%. It was also
concluded that the designation of the final map is appropriate and validates the perfor-
mance of the proposed method for LULC map generation for the test date image without
its ground-truth data.

3.2. Test Date LULC Map
3.2.1. Change Detection Map

As mentioned earlier, the LULC map generation proposal for the test date starts with
an LR change detection performance using the first PCs from the test and base dates as
input images and thresholding technique, which results in a continuous image by the
automatic secant method [75].

Figure 8 shows the result of the process of detecting changes between the test and
base dates.

Land 2021, 10, x FOR PEER REVIEW 14 of 25 
 

 

Figure 8. Change detection process by LR of the first PCs. (a) Image of continuous change (residual), 

(b) Thematic map of change obtained by thresholding the residuals by the secant method. 

The image of continuous change (residuals) is obtained by applying the LR change 

detection method to the first PCs images (Figure 8a) between the base and test dates, and 

the ranges of the residual values are represented in the histogram. The frequency distri-

butions are typical, with average values close to zero (−8.25 × 10–14), close to the residual 

values representing stable zones. 

Chen et al. 2012 [55] developed a similar method to update the classification map of 

five land cover classes only for changed areas. Their results and accuracy are analogous 

to our outcome. Xian et al. 2009 [76] proposed a similar technique using a change vector 

analysis (CVA) to detect changed areas. The detected changed areas were reclassified in 

the end using decision tree classification (DTC). Their technique is similar in accuracy to 

the proposed method and is cost-effective. According to Chen et al. 2003 [77], the input 

images used in the change detection technique acquired in different years must corre-

spond to the same phenological period to avoid commission errors when applying the 

CVA change detection method. 

The threshold values were −0.1078 and +0.0869, determined by the secant method, 

and the thematic change map recorded a 2.86% change ratio (Figure 8b). Thus, our pro-

posed method establishes suitable thresholds automatically. This is an advantage con-

cerning the CVA applied by Xian et al. 2009 [76], in which a single CVA threshold seems 

to be inappropriate for identifying the area of different change types. 

The resulting change thematic map (Figure 8b) was subjected to an evaluation based 

on the confusion matrix, as shown in Table 3. 

Table 3. Confusion matrix of the change thematic map compared with the Change/No-change 

ground-truth. 

Condition No-Change Change Total User Match Commission Error 

No-change 74,192 1216 8708 85.6 14.0 

Change 120 6307 6424 98.1 1.9 

Total 7612 7523 15,135   

Productor Match 98.4 83.8    

Omission errors 1.6 16.2  Kappa 82.33 

Figure 8. Change detection process by LR of the first PCs. (a) Image of continuous change (residual),
(b) Thematic map of change obtained by thresholding the residuals by the secant method.

The image of continuous change (residuals) is obtained by applying the LR change
detection method to the first PCs images (Figure 8a) between the base and test dates,
and the ranges of the residual values are represented in the histogram. The frequency
distributions are typical, with average values close to zero (−8.25 × 10–14), close to the
residual values representing stable zones.
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Chen et al. 2012 [55] developed a similar method to update the classification map of
five land cover classes only for changed areas. Their results and accuracy are analogous
to our outcome. Xian et al. 2009 [76] proposed a similar technique using a change vector
analysis (CVA) to detect changed areas. The detected changed areas were reclassified in the
end using decision tree classification (DTC). Their technique is similar in accuracy to the
proposed method and is cost-effective. According to Chen et al. 2003 [77], the input images
used in the change detection technique acquired in different years must correspond to the
same phenological period to avoid commission errors when applying the CVA change
detection method.

The threshold values were −0.1078 and +0.0869, determined by the secant method, and
the thematic change map recorded a 2.86% change ratio (Figure 8b). Thus, our proposed
method establishes suitable thresholds automatically. This is an advantage concerning
the CVA applied by Xian et al. 2009 [76], in which a single CVA threshold seems to be
inappropriate for identifying the area of different change types.

The resulting change thematic map (Figure 8b) was subjected to an evaluation based
on the confusion matrix, as shown in Table 3.

Table 3. Confusion matrix of the change thematic map compared with the Change/No-change
ground-truth.

Condition No-Change Change Total User Match Commission
Error

No-change 74,192 1216 8708 85.6 14.0
Change 120 6307 6424 98.1 1.9

Total 7612 7523 15,135
Productor Match 98.4 83.8
Omission errors 1.6 16.2 Kappa 82.33

According to the confusion matrix, the average omission error is 8.87%, while the
commission error is 7.92%. Thus, a Kappa concordance index of 82.33% is reached.

The change detection method applied in this stage was LR using the first PCs (Figure 8b).
It is known that LULC classes react differently to energy [78,79]. Hence, the images used in
processing also react differently for the type of data contained. Therefore, modifying either the
change detection method or the input data would mean relatively different results of change
pixel ratios, commission and omission errors, and a different Kappa concordance index.
However, we assumed that the results from the method and applied input are sufficiently
robust. Although, this could be the context for future study that explores the improvement of
the applied change detection method.

3.2.2. Classification of Change Zones

Figure 9 shows the classification result, using the layers of extracted data correspond-
ing to those pixels detected as change.

The resulting image from the classification was submitted to an evaluation that em-
ployed a confusion matrix between the resulting LULC categories and the test date ground-
truth pixels, which match the pixels in the thematic change map. Table 4 shows the
confusion matrix.
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Table 4. Confusion matrix of the LULC change-classified map compared with the ground-truth of the test date.

LULC Encino
Forest

Pine
Forest

Mixed
Forest

Decid.
Forest Agric. Bare Soil Water

Bodies Urban/Indust. Total User
Match

Comm.
Error

Encino
forest 60 10 9 0 8 0 0 0 87 69.0 31.0

Pine
forest 1 316 13 0 88 0 0 0 418 75.6 24.4

Mixed
forest 2 15 372 0 0 0 0 0 389 95.6 4.4

Decid.
forest 3 10 15 108 22 0 0 2 160 67.5 32.5

Agric. 8 29 11 28 1669 18 3 6 1772 94.2 5.8
Bare soil 1 0 2 10 116 758 17 125 1029 73.7 26.3

Water
bodies 0 0 0 0 0 0 90 0 90 100.0 0.0

Urban/
Indust. 3 0 0 2 121 15 11 482 634 76.0 24.0

Total 78 380 422 148 2024 791 121 615 4579
Produc.
Match 76.9 83.2 88.2 73.0 82.5 95.8 74.4 78.4

Omission
errors 23.1 16.8 11.8 27.0 17.5 4.2 25.6 21.6 Kappa 79.03

Most of the pixels reserved for assessing the classification of change zones are con-
centrated in the main diagonal matrix. However, it is observed that the deciduous forest
had an omission error of 27% because of the pixel discrepancies between the agricultural,
soil, and urban covers. A similar issue is observed with water bodies, where 25.6% of the
pixels are confused between agricultural, bare soil, and urban areas. However, globally,
there is a balance between commission and omission errors, with 18.6% and 18.5% values,
respectively, and an average success of ≈82% for both producer and user matches.

The resulting classification of the image (Figure 9) constitutes an essential part of the
proposed methodology. The supervised classification is carried out on pixels identified
as changes by a previous detection task, wherein the data layers from the test date were
trained with ground-truth data corresponding to the base date. This methodology would
mainly allow supervised classification to be applied to one date using training data of
another date as long as the data is common and homogeneous temporally and is based on
change detection exercise.

3.2.3. Complementation of the Test Date LULC Map

Figure 10 shows the result of the complementation task on the classification of change
detection (Figure 9) with data from the LULC base map (Figure 7c).
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3.2.4. Accuracy Assessment of the LULC Test Date Map

Similar to earlier cases, the accuracy assessment of the test date LULC map integrated
by the proposed methodology was carried out using the confusion matrix as shown in
Table 5.

Table 5. Confusion matrix of the test date LULC through change-detection map compared with the ground-truth data.

LULC Encino
Forest

Pine
Forest

Mixed
Forest

Decid.
Forest Agric. Bare Soil Water

Bodies Urban/Indust. Total User
Match

Comm
Error

Encino
forest 20,110 638 2229 853 75 0 5 0 23,910 84.1 15.9

Pine
forest 1057 21,403 182 1225 97 0 0 0 23,964 89.3 10.7

Mixed
forest 516 14 27,297 0 0 0 0 0 27,827 98.1 1.9

Decid.
forest 536 211 0 32,636 3120 20 1 2 36,526 89.4 10.6

Agric. 141 187 27 2160 14,963 44 9 388 17,919 83.5 16.5
Bare soil 6 11 0 7 230 1670 30 86 2040 81.9 18.1

Water
bodies 0 0 0 0 0 0 3594 0 3594 100.0 0.0

Urban/
Indust. 7 0 0 5 270 109 15 5869 6275 93.5 6.5

Total 22,373 22,464 29,735 36,886 18,755 1843 3654 6345 142,055
Produc.
Match 89.9 95.3 91.8 88.5 79.8 90.6 98.4 92.5

Omission
errors 10.1 4.7 8.2 11.5 20.2 9.4 1.6 7.5 Kappa 87.53

The confusion matrix is similar to those presented earlier. The omission error average
was 9.2%, while the average of the commission errors was 10.0%. The matrix reports ≈91%
for producer and ≈90% for user match. Thus, the LULC map generated by classification
by detecting changes for the test date is considered satisfactory and reaches a Kappa
concordance index of 87.53%.

3.3. Consistency Assessment
3.3.1. Conventional LULC Map vs. LULC Map through Change Detection

An official map for the test date was available to integrate ground-truth information,
which allowed a conventional MaxLike supervised classification.
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Figure 11 shows the test date LULC map using conventional classification. The official
LULC map corresponds to the same reference year for the 2011 test date, including the
LULC map generated through change detection.
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Figure 11. Classifications applied to the test date (2011). (a) RGB True-color composition, (b) LULC
Official cartography of the test date study area (INEGI, 2015), (c) Conventional classification image
applying own training polygons (2011), and (d) Classification image through change detection for
2011, applying training polygons of the base date (2016).

Correspondence between the true-color image (Figure 11a), the official LULC mapping
(Figure 11b), and the LULC maps generated by the conventional classifications (Figure 11c)
and through change-detection is observed (Figure 11d). Some differences were noted
in detail in the official LULC mapping generated by the classifications. For instance,
the lack of continuity in the river area, the absence of the exploitation area of the mine,
and the discrepancies in the classes of characterized forests (as indicated by the arrow in
Figure 11b).

For the LULC maps obtained by conventional classification (Figure 11c) and by classifi-
cation through change detection (Figure 11d), it is observed that the configuration presents
similar results. However, some differences were also identified (those indicated with a
black dotted line), such as the discrepancies between bare soil and urban areas (in red in
the center of the images) and the wrong classification of Encino forest as mixed forest (in
the lower right part of the images).

The test date LULC map generated by a conventional classification was subjected to
an accuracy evaluation through a confusion matrix. This resulted in average omission
and commission errors of 6.6% and 8.2%, respectively, and these values generated high
successes of both producer (≈93%) and user match (≈92%). Therefore, according to
the confusion matrix values, the evaluation of the accuracy of LULC categories by the
conventional classification of the test date (2011) is considered satisfactory and reaches a
Kappa concordance index of 91.18%.

Table 6 shows the key indicators resulting from the classifications applied to the
test date.
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Table 6. Summary of the leading indicators of the confusion matrices applied for assessing the LULC
maps generated by conventional classification and through change detection, applied to the test
dates (2011), and evaluated with same-date ground-truth data.

Indicator Change
Classification

Conventional
Classification

Classification Via
Change Detection

(Partial Evaluation) (Global Evaluation)

Omission error 18.5 6.6 9.2
Commission error 18.6 9.2 10.0

Kappa index 79.03 91.18 87.53

In the accuracy assessment applied to the different LULC maps generated for the test
date (Table 6), the partial evaluation indexes improve when the images are complemented
and submitted to the global evaluation. This is because the base date data used to comple-
ment the unclassified areas have undergone prior treatment and evaluation, improving
the quality. Hence, all data and corresponding quality are acquired from the global images
integrated to generate the final LULC map.

Earlier, the results of the LULC maps generated by conventional classification and
through change detection for the test date were visually explored, and similar results were
indicated. However, some apparent differences observed, as shown in Figure 12, which
shows the surfaces by category of the maps generated for the test date.
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Figure 12. LULC surfaces of the generated maps by conventional methods and through change
detection for the test date and the cartography LULC surfaces of 2011. Total surface: 474.904 hectares.
Values in thousands of hectares.

The general trend is similar between the surface values of the compared maps. From
Figure 12, most of the surface is identified as deciduous forest, surface minorities are
identified as bare soil, and water bodies as urban areas since maps generally coincide.

Figure 13 showcases the LULC maps generated for the test date. Differences in the
definition of the limits of the LULC categories are evident in results as those shown enclosed
in dotted lines marked in Figure 12. This variation of boundaries generated simultaneously
is observed in the cross-tabulation matrix of the LULC maps performed for the test date, as
shown in Table 7.
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Table 7. Cross tabulation matrix of the LULC maps generated for the test date comparing the applied methods. Values in %
about the total area of the LULC categories of the conventional map.

2011 Via
Change

Detection

2011 Conventional Classification 2011 Via
Change

Detection
Difference

(+)Encino
Forest Pine Forest Mixed

Forest
Decid.
Forest Agric. Bare Soil Water

Bodies
Urban/
Indust.

Encino
forest 89.7 12.0 10.1 2.9 9.7 1.2 0.2 3.5 110,607.2 13.7

Pine forest 2.4 80.6 0.1 1.9 1.9 0.0 0.2 0.1 34,562.3 3.8
Mixed
forest 3.9 0.2 89.9 0.0 0.1 0.1 0.0 0.1 46,344.6 1.8

Decid.
forest 2.2 6.0 0.0 88.2 20.2 5.5 10.2 10.6 189,233.8 1.0

Agric. 1.6 1.0 0.0 6.4 64.2 22.9 1.0 15.4 74,669.0 17.3
Bare soil 0.0 0.1 0.0 0.4 2.0 61.3 3.2 9.2 8006.6 9.3

Water
bodies 0.0 0.0 0.0 0.0 0.0 0.5 85.2 0.0 3895.2 13.4

Urban/
Indust. 0.1 0.1 0.0 0.2 1.9 8.4 0.1 61.0 7585.3 1.5

2011 Con-
ventional 97,289.4 33,298.4 47,180.4 187,286.6 90,327.1 7325.3 4497.2 7699.7 474,904.0

Difference 10.3 19.4 10.1 11.88 35.8 38.7 14.8 39.0

In the main diagonal of the matrix, the surface percentage for each category of LULC
matches in both maps, indicating the degree of similarity in the maps. However, three
categories were observed (agricultural, bare land, and urban/industrial areas) that recorded
more significant surface variations (marked in red) (Table 7).

From the main diagonal of the matrix, each category of LULC surface percentage is
shown through change detection, and the LULC map represents an approximate surface
for different categories. Most correspond to moderate changes (less than ≈10%), although
significant gains or losses are observed for the previously indicated categories (marked in
green) (Table 7).

The proposed alternative method, termed change detection, is considered appropriate
for spatial and temporal studies to generate LULC mapping. The method’s main advantage
is that it allows dispensing ground-truth data for a test date, which in theory provides
greater availability of information (base date data). Each stage of the method has a coherent
and robust approach and is wholly based on the consolidated theoretical frameworks of
remote sensing.

3.3.2. LULC Dynamics Based on Conventional Classification Methods

An analysis of the dynamics of LULC was performed between the test date and the
base date and was based exclusively on the LULC maps generated from conventional
classification. The analysis reveals that supervised classifications performed using the
conventional method resulted in satisfactory evaluations through the Kappa concordance
index that is oriented to evaluate successes and commission and omission errors only for
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areas that were covered with ground-truth samples reserved for the accuracy assessment
stage. Thus, following the conventional method, the Kappa index is extrapolated to the
entire resulting image. The conventional process is repeated for another analysis date in a
multi-temporal analysis and yields similar results, as shown in Figure 14.
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Figure 14. LULC maps generated by the conventional supervised classification method applied to
(a) the test (2011) and (b) base (2016) dates. Ground-truth polygons are included.

For these classifications, Kappa indices were obtained of 91.18% for 2011 and 87.64%
for 2016, which are acceptable. The results were similar or better than those of other
similar studies [30]. However, from the changes observed in the maps resulting in the
definition of boundaries (surrounded by black dotted line) and consequent analyses and
discussions, a reasonable doubt arose, if the changes and boundaries definition observed
in the LULC map obtained with the conventional classification, could correspond to real
gradual changes (such as the landslide indicated by arrow), or may be attributed to a
different spectral interpretation by the classifying algorithm from one date to another,
which could be derived from any of the other factors, and hence, not be a real change
of LULC.

Strictly based on the Kappa concordance index obtained from conventional classifica-
tions performed under similar conditions, it would be pertinent to take both conventional
classifications as valid. However, a different way of assigning a thematic category was
applied by the classification algorithm. Hence, an erroneous assessment of the changes
could be obtained since thematic errors on any of the dates would generate changes that
are not real and would be reflected in the quantification of the surfaces, which could lead
to overestimation of land cover loss in one direction, and simultaneously produce a false
increase in another sense [15].

For the benefit of the proposed method, we affirm that the generation of LULC
mapping through change detection initially determined the areas on which the supervised
classification should be applied, which corresponded to zones detected as change, and
retained the rest of the zones as stable and therefore unchanged in the LULC. Naturally,
this method affects the maps created and the analysis of the dynamics of LULC changes
due to the uniformity introduced in the defining limits of LULC.

4. Conclusions

Land cover cartography is essential to scientists and land managers to monitor biodi-
versity, natural resources, and understand the dynamic environment [15,20,21]. Therefore,
it is necessary to have a homogeneous, reliable, and comparable mapping for LULC dy-
namics studies. In land cover change studies, comparing LULC maps of different years
may produce spatial or thematic artifacts and land cover boundaries errors [37,38].

Our methods produce temporal and thematic consistent Land Cover maps that re-
duce errors in the spatial boundaries of land cover classes, coherent thematic category
boundaries, or identification and alter the evaluation results of land cover change.

The use of confirmed zones of change may provide uniformity and certainty of the
spatial limits and thematic land cover class for the LULC maps. Finally, our methodology
allows us to focus on change areas, optimizing time and resources because those areas are
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really small. A smaller surface can optimize the workload and time of production: we
need fewer control points, we can choose better control points, we reduce the workload,
we have greater control in verification, among other benefits.

The applied change detection method has a particular application in the automatic
definition of the threshold value by limiting human participation and adding objectivity
and speed. Furthermore, the threshold is a critical stage that defines the global capacity
of the model. Thus, an appropriate threshold maximizes the ability of the method to
differentiate the dynamic (changes) from the stable areas (no-changes).

The proposed change detection as an alternative method is appropriate for spatial
and temporal studies to generate LULC mapping. The dispensing of ground-truth data
for any date is beneficial for optimum utilization of resources and time. Furthermore, it
would be impossible to apply any conventional supervised method without having the
corresponding ground-truth data due to a lack of historical data with sufficient quantity or
quality. This further highlights the benefits of this method.

The findings suggest and open a new line to improve change detection techniques,
strengthen and optimize the applied methods, and give new methods to detect much
broader ranges of change found in the present study.
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