Preliminary manuscript in PDF

LCoOoO-JNO oS W -

SN UL U UOOGCTOT UL OB DS DD BAEDLNDLNEDLSHWWWWWWWWWWMNODNDNDNDRNONDNODMNNMNODNONMNNREEFERERRPRRRRRRE
coOovoVNohnUudb WNDFOOVWOIOUDBDWNRFEFOOVOJIJOOULBBWNRFOUOVOTNOTDD WNHOOUDODAOIONUDDE WN O

o

o Oy O OO
;D wN

'Noname manuscript No.
(will be inserted by the editor)

A Non-Smooth, Non-Local Variational Approach to Saliency

Detection in Real Time

Eduardo Alcain - Ana I. Munoz -
Montemayor

Received: date / Accepted: date

Abstract In this paper, we propose and solve numeri-
cally a general non-smooth, non-local variational model
to tackle the saliency detection problem in natural im-
ages. In order to overcome the typical drawback of the
non-local methods in image processing, which mainly is
the inherent computational complexity of non-local cal-
culus, as the non-local derivatives are computed w.r.t
every point of the domain, we propose a different sce-
nario. We present a novel convex energy minimization
problem in the feature space, which is efficiently solved
by means of a non-local Primal-Dual method. Several
implementations and discussions are presented taking
care of the computing platforms, CPU and GPU, achiev-
ing up to 33 fps and 62 fps respectively for 300x400
image resolution, making the method eligible for real
time applications.

Keywords Variational Methods, Convex, Primal-
Dual, Non-local Image Processing, Saliency Segmenta-
tion, GPU, Superpixels

1 Introduction

Saliency object segmentation refers to an image pro-
cessing system which aims to emulate the human visual
attention system extracting the most relevant informa-
tion of a scene. Saliency methods are usually applied
as a pre-processing step in different areas in computer
vision: adaptive compression of images [41], image re-
trieval 18] and content-aware resizing [6] and can be
Eduardo Alcain, Ana I. Muiioz, Emanuele Schiavi, Antonio
S. Montemayor

C/Tulipén, S/N, 28933 Mdstoles, Spain
Tel.: +34-914887190

E-mail: e.alcain@alumnos.urjc.es,
emanuele.schiavi, antonio.sanz }@urjc.es

{anaisabel.munoz,

Emanuele Schiavi -

Antonio S.

inger.col

016-4

divided into bottom-up (pre-attentive data driven) and
top-down (task dependent). In this work, we shall fo-
cus on bottom-up, image stimulus-driven models of at-
tention. They are task-free and do no rely on learn-
ing, training or contextual information. They can also
be considered as a fundamental building block for ad-
vanced, robust, hybrid bottom-up and top-down mod-
els.

Several algorithms end methods have emerged in
the classical image processing field for the saliency de-
tectionproblem like [3](13], machine learning approaches
[40}[23], variational methods {29][33] and combined [19][24].

In Ttti et al. [25)], it is determined the saliency map
using center-surround operations on colour, intensity
and orientation features using a Difference of Gaus-
sians (DoG) approach in a multiscale framework. In [3]
the authors use the Lxa*b colour space, subtracting the
image mean colour to each of the components and pro-
ducing the saliency map after a meanshift segmentation
and a dynamic thresholding.

As a segmentation procedure, saliency detection me-
thods can make use of graph-based segmentation tech-
niques [26](10](15]. The starting point is an overseg-
mented image in which regions are progressively merged
using different criteria or features, such as colour or
contrast. The oversegmentation task can rely on fine-
grained morphological operators such as the watershed
segmentation algorithm [26](15] or more recent super-
pixels approach [27]. In [13] authors propose a histogram
based contrast (HC) procedure to measure the saliency
of pixels as well as a region based contrast (RC) met-
ric for regions obtained after a graph partitioning algo-
rithm application.

The application of modern machine learning meth-
ods has achieved very good results making full use of
transfer learning techniques (40| [23]. However, being com-

WO @ -1 Oy N s WA=

ST AT IO U0 U UL D s Dy B DS S D DWW WWWwWwwWwWwWWwRnNRNRONNNNDNONNNDNERE R B P e s
VMBWNMHFOLOOOJAUBLWNFRFODVONOUUBWNRFOWLWRRIONOBWNRFRFOWOE -JAUBWNRDOVUDJOUG WSO

putationally very intensive methods, they perform very
slow even using modern hardware {(about 1 fps) to pro-
duce saliency maps and they sufler from images without
clear objects.

Variational methods have achieved great success when
applied in many low-level image processing problems
[36}{12][17]. They can also accomplish more specific tasks,
such as saliency segmentation, but new dynamics have
to be introduced in order to facilitate the bottom-up
(local analysis structure) variational approach. Some
works have been published making use of the varia-
tional setting for this task. A non-local, pixel-wise con-
vex model is proposed in [29] to segment natural im-
ages, and another one, non-convex, is proposed in [33] to
detect and segment glioblastomas (tumors) in MRI im-
ages. In [37), we can find another non-local non-convex
model, where it is considered the minimization of the Ly
semi-norm using superpixels and solving the minimiza-
tion with the ADMM (Alternative Direction Method of
Multipliers). In this case, the ontput has to be bina-
rized. This model is further discussed and compared in
[5]-

Based on the framework considered in [5], we di-
vide the image into regions {superpizels). This over-
segmentation changes the domain of our problem, from
pixels to superpixels (manifold). In this domain, we con-
struct a variational model to solve the saliency segmen-
tation (see Fig. 1).

In order to induce the binarization in the final out-
put, we include a new saliency term in the model which
pushes superpixels towards a binary classification (salient
or no salient). The consideration of this saliency term
is inspired in a simplified Ginzburg -Landau phase-
transition model [21]. To precise, saliency is modelled
by means of the introduction of a reactive term in the
Euler-Lagrange equation which is solved to minimize a
new energy functional defined in the manifold of char-
acteristics. The numerical resolution is performed by a
non local Primal-Dual algorithm, which proves to be
more efficient than a naive gradient descent algorithm
or the ADMM used in [37] for a non-convex formula-
tion.

It is well known that variational methods are com-
putationally expensive tasks due to the iterative na-
ture of their solvers. Iterative algorithms are not very
parallel-friendly, due to the fact that the result of one
iteration is used in the next one. Since the introduc-
tion of GPUs to the general purpose computation field
{(GPGPU), some works have tried to explore the par-
allelism of modern GPUs using different strategies and
solvers like {35}[32] and more recently, in [22], using a

more general GPU computing framework such as NVIDIA

CUDA. Our final contribution is a fast implementation

Eduarde Alcain et al.

N

c {d) (e)

Fig. 1: The workflow of our proposal consists of: (a) in-
put image, (b) oversegmentation by superpixels (SLIC),
(c) weights to connect each supperpixel among them.
A superpixel (vellow) is shown and its k-neighbours in
cyan, (d) control map created from the superpixels by
means of colour contrast and location priors, (d) varia-
tional method and saliency map.

in CPU and GPU, demonstrating the computing power
of those platforms for achieving real time performance.

Overall, the contributions in this paper are summa-
rized as follows:

— We propose a novel, general, total variation (TV)

based variational model in graphs is proposed. It
improves the visual quality of the segmentation and
includes a new energy saliency term H(u) which
drives the dynamics in the manifold.
We consider a non-local Primal-Dual algorithm for
the resolution of the resulting saliency model in a
convex scenario which assures well-posedness of the
model.

— We present & performance study for achieving a
fast solution for the variational problem using CPU
optimizations and GPU computing using NVIDIA
CUDA.

The paper is organized as follows: we introduce our
proposal for the saliency segmentation in a non-local
variational framework in section 2. Section 3 gives a
brief introduction to CPU and GPU parallel comput-
ing. The description of owr implementation and opti-
mizations are discussed in the section 4. Experimental
results are presented in section 5 and finally, some con-
clusions are drawn in section G.

2 Varijational approach for saliency detection

The pipeline of our method is summarized in Fig. 1
and presents two conceptual stages: 1) initialization
stage with the superpixels extraction {sec Fig. 11}, cal-
culation of the weights (see Fig. 1¢) and generation of a
control map which models the a priori likelihood of be-
ing salient (see Fig. Id), and 2) iterative stage, with
the variational solver for the saliency segmentation (see
Fig. 1c). First we shall present the model to better un-
derstand the preliminary calculations.

W~ N WK

A Non-Smooth, Non-Local Variational Approach to Saliency Detection in Real Time 3

2.1 A general variational model for saliency

A general variational model for saliency segmentation
can be formulated as the following energy minimization
problem: Given a function f (the data), compute a so-
lution w in the image domain such that it minimizes the
energy

B{u) = J(u) + AF(u) - H(u) (1)

where J(u) is the non-local Total Variation operator,
[20], F(u) is the likelihood or fidelity term and H (u)
is & saliency term which promotes the binarization of
the solution into salient (foreground) and not salient
(background) regions.

This model can be formulated pixel-wise, in the im-
age domain or in a manifold of featured superpixels,
the region domain. The second option provides a di-
mensional reduction of the problem. We follow this ap-
proach with the alm to reduce the computational time
of the whole process yet preserving the fundamental
informatior of the image, i.e edges, through the super-
pixel partition.

2.2 Over-segmentation: superpixels

We briefly describe our setting. The input colour image
f is first transformed from RGB into CIELAB colour
space, which is perceptually more interesiing for the
independence of colour and intensity [13]. Then the im-
age is partitioned into regions (superpizels). A super-
pixel is a cluster of pixels connected by some metric.
Each pixel is assigned only to one superpixel so they
do not overlap one each other. The finite union of all
these regions allows to recover the image domain in a
sort of over-segmented image provided by the partition.
In our approach the initial partition is created by using
the SLIC method (Simple Linear Iterative Clustering)
[1] (see Fig. 1h) which has been proven to he accurate,
computationally efficient and robust.

2.3 Weights: adjacency matrix W

Once the image has been partitioned, the spatial struc-
ture in the pixel domain is lost. A finite dimensional
manifold can be constructed using the initial data f in
the image domain. Let f, = f(p) be the vector value in
the features space at a superpixel p which we identify
with a vertex of a graph (un-directed, symmetric and
weighted) G = (V, E) where V is the set of vertexes and

E the set of edges. The connections pg € E between su-
perpixels are defined in the feature space by the weight
function

(2)

202

_pr;fqllz)

Wpg = €Xp (

where f;, is a feature vector at superpixel p defined by
fp = (acy, 1), being ¢, € IR? the mean of the super-
pixels for each component in the CIELAB colour space
and L, € JR? is the centroid position of the superpixel in
the original spatial space. The parameter o controls the
balance between the two features (a = 0.9). Superpix-
els p and g are connected, say p ~ ¢ iff Wy, > 0. All the
superpixels are initially connected. The graph @ is rep-
resented by its adjacency matrix WP = (wp)peck,
where sp is the number of superpixels. In order to re-
duce computational cost and to exploit local relation-
ships in the feature space, the number of total con-
nections (edges of the graph) of each superpixel is de-
creased from sp to k-pearest neighbours (see Fig. 1c).
The rest of the weights for a superpixel are set to zero.
As a result of this process, we end up with a sparse
weight matrix WP*¥ which is no longer symmetric.

2.4 Regularizer, Fidelity and Saliency terms

We fix the notation which is slightly adapted from |1 6].
Let u be a function on the set of vertices V in G repre-
senting the solution in the features domain and let 8,u,
be the weighted partial difference at a vertex p in the

direction of vertex ¢:

Oqup = /Wpg(up — ug)
where u, is the value at superpixel p and u = {u,),ev.

The weighied gradient operator as the vector of all par-
tial differences at superpixel p:

Vuwtp = (Bqtp)gev (3)

Collecting all the contributions we have that V,u =
(Vuwip)pev is a matrix. In order to compute the Euler-
Lagrange equation of 1 the non-local divergence div,,
of a vector d is introduced:

divyd(p) =) (d(p,q) -~ d(g,p))y/Tiy (4)

v, qPEE

We can now describe the nonlocal operators and en-
ergy terms in the features domain corresponding to 1.
Our regularizer .J(u) is a semi-norm on graphs defined

Woo-Joy U d Wk

(2) (b) (c)
Fig. 2: Our saliency algorithm with 300 superpixels and
convergence criteria ¢ = 107" between the energy of
two consecutive iterations has been applied to the Fig.
1 where (a) colour histogram of the input image, (b)
represents the histogram of the saliency map and {c)
profile of the energy of NLTV SalTerm.

by the non-local total variation operator, which pre-
serves edges and induces the sparsity of the gradients
of saliency maps.

Following [16], the NLTV norm in its discrete ver-
sion can be defined as the isotropic L; norm of the
weighted graph gradient

172

Z Whglug — upl® (3)

9, pREE

InLTvaw(u) =

peG

so we choose JyLrv. (1) as a regularizer. The fidelity
term is defined as in [37]. Using the data f, we compute
a control map v° where v = (v7),ev (see Fig. 1d).
Each component is composed of a contrast prior

_i“: '—11-”2
B =Yl el W= 2@
a#p
and an object prior
) ,”!u;}”z
v;l'J =e 200 (7

where 1 are the coordinates of the center of the im-
age. The parameter o? is empirically set to 0.05. We
can encade these priors in the saliency control map at
superpixel p as v = v;‘mvg"j with v¢ = (v5)pey and
define the fidelity term as

A cl|2 _ A €2
Flu)==llu-v IIz—£§lup vy (8)
where the positive parameters A, & model the trade off
between regularization and likelihood.

‘We model the saliency term with a concave quadratic
energy function —H (), where:

H(w) = 55 > o= 6w)
»E

Eduardo Alcafn et al.

with ¢ > 0 acting as a threshold. Without no mecha-
nism to keep the solution in the (saliency) range [0, 1],
the reaction and forcing terms in the Euler-Lagrange
equation can produce {depending on the parametric
values) changing sign solutions with very high absolute
value. We then perform an hard truncation to fulfill the
constraint. It models the probability of each superpixel
to be salient.

2.5 Numerical resolution: Primal-Dual algorithm

Replacing the terms in the Eq. 1 by their analogous
Eq. 5, 8 and 9 owr proposal is the minimization of the
following energy:

muin JNLTV,w(u) =+ F(u) —_ H(u) (10)
The solution u is calculated on the superpixel domain
and must be projected back onto the pixel domain in
order to create the final output in the image domain
(see Fig. 1c).

The resolution of the minimization problem (Eq.10)
is achieved by a Primal-Dual algorithm. This algorithm
encompasses an alternate mazimization (update dual
variable d} and minimization (update primal variable
u) steps [11] [28]. Both steps are repeated until the
energy convergence is reached. As a stopping criteria,
we compute the difference between consecutive values
of the energy functional (Eq. 30) during iterations until
this is less than a fixed tolerance e (see Fig. 2¢).

In summary, given the k—step solution in terms of
the primal and dual components {u*,d*), the update
is

Maximizalion step: Fixed an ascent dual discretiza-

tion time 7, we compute for every superpixel q

kbl _ dit nVeug
9 mazx(l, |d’; + 7V uk o)

(11)

and set d*+! = (dF+1) ey
Minimization step: Fixed an descent primal discretiza-
tion time 7, and given the matrix d**', we compute

u’;“‘l =1+ m-p)u: + 7 (di'”w(d{qﬂ—l) ~by) (12)
and set uF*! = (ufj“)qev where
62 A é A e
"2 T "

W~ LD M=

OO A N UTOU GO U DD DD DS WWWWWWWWWWNNRRRNRRNNORNNRNE R e e s e g
U1Ahwl\Jl—‘OkOm\JO’\U‘lnbwl\)l—'OLDG)\10‘\U’1~hL:dNHD\DCDQ@M-SUJ[\)HDLQ(D\IO\U'IID(A)N}—'OLDW\JO'\LHbwl\)b—‘OLD

A Non-Smooth, Non-Local Variational Approach to Saliency Detection in Real Time 5

The parametric values of A, @ and é modify the general
behaviour of the model and generate different scenarios
to be explored. In this work, we focus on the case a < 0
where the energy functional is strictly convex and the
minimization problem is well-posed. The forcing term
b = (by)pev is a changing sign function driven by the
control map which favours saliency detection.

Notice that the iterative splitting between the pri-
mal and dual variable generate a strong data depen-
dency that penalizes the full potential of a parallel com-
putation.

strategies need from much data and quite independent
computation to be beneficial. This js not the case of our
saliency problem, where there is not so much data and
exhibits data dependencies.

In the second case, using vector instructions pro-
vided by the CPU manufacturer can be a very low level
task and difficult, but some efforts can be made in order
to ease some transparent autovectorization. Although
compilers identify and optimize part of the code auto-
matically [2], the human help organizing the code could
produce important speedups as well as test different

A pseudocode of our Primal-Dual algorithm for saliency compilers. In our problem, we make use of this loop

is shown in Algorithm 1 where we experimentally fixed
7p = 0.3 and 74 = 0.33.

Algorithm 1 Saliency estimation on non-local TV
with Saliency Term

1: procedure NLTVSaLTERM(inputlmage,sp,k,A,4,c,¢)
2: Calculate Superpixels over inputImage

3: Extract superpixe] features f

4 WePXsP « Create adjacency matrix by Eq. 2

5: Connections in W*PX ¥ to k-nearest neighbours
6: v¢ + Calculate controlMap by Eq. 6, Eq. 7
7: Calculate o and b by Eq. 13
8 Initialization: u = v, d =0
9

9: repeat
10: Compute d by Eq. 11
i1: Compute u by Eq. 12
12: Compute E{u) by Eq. 10
13: until |E(u*) - B{ubt1)| <e
14: return u

15: end procedure

3 CPU and GPU computing

In this paper, we propose effective implementations us-
ing CPU and GPU. However, some forms of optimiza-
tion are needed to exploit them appropriately.

3.1 CPU performance considerations

Performance improvements on a single CPU are usu-
ally achieved by using parallel computing techniques
with threading or vector instructions. In the first case,
there are many concurrent primitives such as mutex,
locks, monitors, etc. which are used in order to syn-
chronize threads while computing and avoid race con-
ditions in shared memory problems. However, the use
of these mechanisms when scaling from two processes
to more computing threads is not trivial and some in-
terfaces like OpenMP [14] or Intel TBB try to alleviate
the effort of programming with them. Typically, these

organization with Intel compilers to achieve important
improvement in the performance.

3.2 GPU Computing

From desktop compulers to supercomputers, the GPU
is one the most computationally effective resource, es-
pecially since the introduction of proper GPU program-
ming interfaces such as NVIDIA CUDA [31] in 2007 or
OpenCL [30] in 2008. With these kind of interfaces, the
GPGPU (general purpose computation using GPUs)
style of using the GPU with a graphics context such as
3D primitives and transformations, textures, shaders,
and so on, derived to a broader GPU computing area,
in which a general programmer could launch a massive
number of computing threads in a data parallel prob-
lem. These interfaces are extensions of the C/c++ lan-
guages with specific functions for: device memory allo-
cation/deallocation, data transfers between main mem-
ory and video memory, synchronization barriers, etc.
In this hybrid CPU-GP1) computing ecosystem, there

exist two parts: host and device. The host is the CPU
that controls the device computation whereas the de-
vice is the graphics hardware that moves and processes
the data through a number of multiprocessors {stream-
ing mulliprocessors or SMs). The instructions to ac-
complish a specific procedure executed by these SMs
are encoded in kernels. The GPU makes the full use
of thousands of lightweight threads that execute the
kernels code in parallel over the data that resides on
the device memory (globel memory). This is usually a
very large memory and can be accessed and modified
from both, the CPU or the GPU sides. Due to the fact
that it can be read at any time by any thread is con-
sidered a slow memory in comparison to other types
of GPU memories. Threads have the ability to cooper-
ate with each other in small neighbourhoods (blocks),
through a fast chip memory (shared memory) about 10
times faster than the global memory [38]. The thread
possesses a private local memory (registers} which offer
the fastest access to the memory. Their use is limited

O~ O W R

to auxiliary calculations within a kernel because their
lifetime is equal to the thread lifetime. There is a max-
imum number of registers available in a block and the
number of registers that a thread can use depends on
the number of threads in the block. So this is not a
trivial resource but usually a scarce one.

The host program transfers the data to and from
the device for computation, and also sets the launch
configuration (the global number of computing threads
organized in regular blocks of up to 1024 threads). One
of the basic strategies to improve performance either
in CPU or in GPU environments is a good aligned
memory access pattern. Bad patterns can cause perfor-
mance penalties when using memory (specially global
memory). Write and read operations are executed by
memory block transactions. A transaction fetches or in-
serts & continuous block from/into the memory. A good
strategy to optimize the code is to reduce the num-
ber of transactions. Furthermore, each SM executes a
block of threads and the execution inside a block in
CUDA is achieved by groups of 32 threads (warps).
The performance is optimal if all the threads in a warp
fetch aligned memory (coalesced memory occess) and
all threads follow the same execution path. The thread
block size should be multiple of 32 threads as a direct
consequence of executing instructions in warps but also
small enough to allocate most local variables in fast
registers.

4 Accelerated non-local TV saliency

The complete saliency algorithm {Algorithm 1) can be
divided into two stages: initialization stage (lines 2-8)
and the iterative stage (lines 9-13).

4.1 Initialization stage

As explained in section 2.3, the weight matrix is very
sparse and guides the complete calculations in the it-
erative stage of the algorithm: non-local gradient and
non-local divergence. Usually, instead of performing the
operations in the whole matrix W*P*s? the matrix is
transformed into a more compact one, W*P*¥ following
the CSR. (Compressed Sparse Row) representation.

50102 512\
35001 351
02801 | =281
10013 113
40902/ -4123]
‘Weights CSR i/a]ues

Eduardo Alcain et al.

This CSR format can represent any arbitrary sparse
patlern like our case where the non-zero entries (NNZ)
vary in each different input image. It has three vectors:
Rows and Cols to store the row/column indices of the
non-zero entries in the original matrix and Values to
store the values of the matrix.

Rows = [0,3,6,9,12, 15]
Cols =[0,2,4,0,1,4,1, 2,4,0,3,4,0, 2,4]
Values = [5,1,2,3,5,1,2,8,1,1,1,3,4,9, 2]

The size of vectors Cols ¢ NVVZ 314 Values ¢ RNNZ
are always proportional to the number of NON-Zeros,
whereas Rows € N™°%**1 {5 the number of rows. Row
indices introduce a fast way to access values in the ma-
trix and easy calculation of the number of non-zeros in
a specific row (rows[i + 1] — rows]i}). For these reasons,
the compressed row format is commonly used for sparse
matrix-vector multiplication [g].

The representation explained above reduces drasti-
cally the memory needs for storing the matrix as well
as reducing the number of operations performed in the
non-local gradient and non-local divergence. In addi-
tion, the optimization in CPU makes use of the vector-
ization guidelines for the Intel compiler [2] to improve
the performance. The GPU implementation starts by
migrating this optimized CPU approach into CUDA.
Now we describe the GPU implementation in detail.

The first part of the pipeline shown in Figure 1h,
superpixels extraction, uses the SLIC implementation
found in [34], which reports GPU speedups of 10z ~
20z compared to a CPU sequential implementation. Af-
ter the region partition, we need to extract the features
for each superpixel {(colour and location). This opera-
tion involves selecting the pixels from each L *2*b chan-
nel that belong 1o a specific superpixel and apply the
mean. This procedure is trivial in CPU but not for GPU
because some coordination is needed to collect the data
and sum them up. The coordinalion is achieved by re-
duction techniques. A reduction is a class of parallel
algorithms that produces a scalar result from a collec-
tion [38]. Using a NVIDIA Kepler GPU, we employ the
atomicAdd operation, as according to [1] it is an op-
timized implementation since CUDA 7.5. In any case,
there are several reduction implementations and tech-
nologies with different performances depending on the
GPU family.

In order to perform a norm between two different su-
perpixels we need normalized feature vectors (I,a,b,z,3):

v = Yo min(v)

-~ maz(v) ~ min(v) W& (Lab,xy)

W oo ~Joy Ul s N

mmmmmmmmmmwmwwmcﬂba‘h.h.nub.ha;».bwuwwwwwwuwmwmwmmwmmwl—-ku—‘»-an--n—u—nl—w—-
U"vb(.u[\)l‘-‘OkDm\IO'\U'lubL&JY\JI—‘OKQGJ\!G\U'IJ&UJM-}—‘O\Dw\lc\U'\»L\UJI\)HO&O&)\]O’\U\AWMP'O\DCOQG\M»&(A)NI—‘O

A Non-Smeoth, Non-Local Variational Approach to Saliency Detection in Real Time

this normalization requires the computation of min and
mazx of each feature and, again, we accomplish this at
the same time with a reduction kernel.

Algorithm 2 Weights & Control Map

1: procedure CONTROLMAPANDWEIGHTS(L,a,b,x,y)
2: Calculate wy, by Eq. 2

3: shared memory +vg5™ by Eq. 6
4 sync

5 reduce v;°™ in shared memory
6: sync .

7. Caleulate v2* by Eq. 7

8: Calculate v5 by Eq. G, Eq. 7

g relurn WoPXsp ¢

0:

10: end procedure

Before implementing the numerical solution of our
model, we compute the weights (Eq. 2) and the control
map through (Eq. 6, Eq. 7), which are very suitable and
efficient {or the CUDA environment (elementwise oper-
ations). For optimization purposes, both operations are
unified into a single CUDA kernel with grid configura-
tion of sp threads and the process is shown in Algo-
rithm 2. Note that the syne instructions in lines 4 and
9 are synchronization barriers to enswre all the threads
reach that instructions in their independent evolution
ihrough the kernel execution. The contrcl map proce-
dure requires a redunction operation inside the kernel
(line 5) because the contrast prior (Eq. 6) must be re-
peated from one superpixel to all superpixels. Again,
the control map must also be normalized in the range
[0,1] for the Primal-Dual algorithm.

The next operation in the initialization stage is the
selection of the k-largest values for each superpixel in
the WeP**P matrix (Algorithm 3). As the matrix is not
very large, in CPU is more efficient to sort the values
in rows (O(NlogzN)) and extract the k-largest values
in each row than finding directly the k-largest values
in each unsorted row. However, due to the insufficient
data and few number of rows (number of sorts), this ap-
proach is unfortunately not very efficient for the GPU.
Our strategy is based on a loop of reductions to find
the k-largest values in each row until all the rows are
completed.

4.2 Iterative part: First GPU implementation

The iterative part {Algorithm 1 lines 9-13) has data de-
pendencies among its operations. In the maximization
step (Eq. 11 for the d* calculation), the denominator
is based on the max(] - |oc) of the numerator, which
needs from the u* information. The first approach is

Algorithm 3 Select k-largest values in Wspxs»
1: procedure CALCULATEK-NnIKERNEL(weights,spk)

2 h = 0, th = actual thread index

3 repeat

4 sdata = row-weights, maxs = row-indices
5: syne, j =0

6: repeat

7 sdate[mexsFinallf]] =0, =5+ 1

8 until 3 < h

9: syne

10: Find max in sdata store index in maxsFinal
11: Sync
12: h=h+1

13: until h < &

14; if th # maxsFinal then

15: Write zero in actual position in weights
16: end if

17: end procedure

to split the maximization step into three sub opera-
tions/kernels: 1) numerator calculation with the non-
local gradient of u* (nlvGradient) (Eq. 3). The CSR
representation makes this operation achieve full coa-
lesced memory access. 2) max caleulation, which re-
quires a reduction (Thrust::Max) achieved by Thrust

library [9]. 3) Divide the numerator by the max (DivByMax).

In the minimization step (Eq.12), the non-local di-
vergence (div,(d*+1}) must be calculated before up-
dating the primal variable. We can again split the pro-
cedure into two kernels: 1) the calculation of the non-
local divergence (nltvDivergence). Although the CSR
format also improves this procedure by reducing the
number of operations, the access to transpose elements
{needed in Eq. 4) is not direct and requires an itera-
tive procedure inside the kernel to find the transpose
{see Fig. 3a), and 2) Update the solution, which is an
elementwise GPU efficient operation (UpdateUk).

The energy calculation (Eq. 10) for the stop criteria
exhibits similar GPU data reduction inefficiencies as
the extraction of superpixel features.

4.3 Tterative part: Optimized GPU version

The first GPU approach solves the data dependencies
with the introduction of different kernels. However, as
our formulation in superpixels decreases the amount of
dala to analyze compared to a pure pixel approach, the
time of launching kernels becomes very important and
therefore this direction has not produced good results
(see Table 2). This data dependency could be solved
by using thread synchronization barriers inside kernels.
In order to improve the timing, we merge the maxi-
mization and minimization kernels shown in green and
purple boxes, respectively, in Fig. 4. Accommodating
the kernel launch configuration (CUDA thread grid),

W~ U WK

8
Naluer s e Values e)
U Rt 7! A N
] ?
28) S @H7 (2413 (472)?
()
o Rows
i oy Iectthe4row§ o
L ENEEE R 5 cols .
Lols g TR 0) AJ8Tal) e
RaER R - o |
. g Trans :
Iterative until match | - = p"n ; ™
Or No more elementsi _ #,.. R M
4x3+1e13
Values Match Found . Values ~—
ETR PRy ETTRIGE RIS 1 BSa T fe v e
(a) (b)

Fig. 3: Given an initial position (2,4), the selection of
its transpose element (4,2} in the CSR format: (a) First
GPU implementation. After selecting the row, we iter-
ate through the col vector to match the specific col. (b)
Optimized GPU proposal. A lookup table (Trans) is
used to find directly whether an index in the compact
matrix W***¥ has transpose or not.

_________________)
(@ ®

Fig. 4: These diagrams show the kernels used to cal-
culate the iterative part (Eq. 10). (a) First GPU im-
plementation, where each operation in CPU has been
implemented as a CUDA kernel and (b) optimized pro-
posal grouping GPU kernels. FinalUk transfers the §-
nal u*, normalizes data [0,1] and projects the final re-

sult onto pixel domain.

the energy {Eqg. 10) can be included in the minimiza-
tion step with reductions.

Apart from the data dependencies, the non-local
divergence (Eq. 1) implies finding transpose elements
in its calculation for the dual variable d**? (accessing
d(p,q) and d(q.p)). In the first GPU implementation, a
procedure inside the kernel to find the transpose value
has been implemented. This is inefficient becauise most
of the values are zero and the loop for finding the match
in the column vector is inside the kernel (in the worst
case it iterates k times). However, as d has only values

Eduardo Alcafn et al.

ELIC * Saﬂmsy Algorithm

> -~ o
A
|

w
a

Time in milliseconds
-y
(=3

3]
;
1

20

10 b
300 350 400 450 500 550 600 £50

Number of superpixels
Fig. 5: Computation times (SLIC + Saliency Algo-
rithm) for CPU-mvee configuration (red), CPU-icc
(cyan), GPU Tesla K40C (blue) and GPU Tesla K40C
with no energy calculation (green), varying the number
of superpixels [300,650].

in the indices where the weights are not zero, and the
weights matrix is constant during the algorithm, we can
create an offline lookup table (LUT) with the trans-
pose information (Trans € N¥VZ in Fig. 3b). This
LUT vector stores the transpose result for each index
in the compact matrix W*P** where ”-* entry means
the transpose value is zero and a value € [0, k] indicates
the index of the column where the value in the compact
matrix is located.

5 Experimental results

This section provides visual and performance results
comparing our non-local total-variation including saliency
term (NLTVSalTerm) against different approaches.

5.1 Timing results

Experimentation was performed or an Intel Xeon E5-
1650v3, 3.5GHz hexa-core processor, from the 2014 In-
tel Haswell architecturc (Haswell-EP), 1.5MB L2 cache
and 15MB L3 cache with 64GB DDR3 RAM as a CPU
platform using Microsoft Windows Server 2012R2 as
operating system. The algorithms have been implemented
in C++ using Microsoft Visual C++ compiler (mvce)
as well as Intel C4-+ compiler (icc).

The GPU platform is a NVIDIA Tesla K40C from
the Kepler family (2014) with 12GB onboard memory
and 2880 CUDA cores organized in 15 streaming mul-
tiprocessors (SM). In both platforms we average timing
results running the method 100 times.

W JdowUn W=

A Non-Smooth, Non-Local Variational Approach to Saliency Detection in Real Time [+]
Table 1: Computational results in milliseconds of the saliency method NLTV SalTerm in CPU for an image
[400 x 334] from the MSRA10K dataset and 100 iterations. CPU-mvce stands for Microsoft Visual C++ compiler,
CPU-icc for Intel C/C++ 19.0 compiler and Tesla K40C for Kepler. SP is the number of superpixels used in
the algorithm.

| CPU-mvee CPU-icc
SP | SLIC Sal Total | SLIC Speedup Sal Speedup | Total Specdup
300 | 49.33 650 5583 21.33 231X 425 153X | 2558 2.18X
350 | 49.62 809 5771 2141 232X 536 151X | 2677 2.16X
400 | 49.87 1156 6143 | 21.69 2.30X 778 149X | 2047 2.08X
450 | 49.83 1407 63.90 | 2241 222X 957 147X 3198 2.00X
500 | 50.18 17.42 67.60 | 22.30 2.35X 1190 146X 3420 1.08X
550 | 50.00 18.09 68.09 | 21.87 2.39X 1240 146X | 3427 199X
600 | 50.32 2290 7322 2250 224X 1578 145X 3828 1.91X
650 50.16 28.55 78.71 | 22.35 2.24X 19.92 1.43X 42.27 1.86X

Table 2: Computational results in milliseconds of the optimized saliency method NLTV SalTerm for an image
[400 x 334] from the MSRA1OK dataset and 100 iterations in CPU and GPU. CPU-icc stands for the GPU
implementation using Intel C/C++ 19.0 compiler and GPU Tesla K40C is the GPU platform. SP is the number
of superpixels used in the algorithm. Note that Sal column represents the saliency in the first GPU implementation,
Sal+ the optimized GPU version, the Sal* column represents the saliency results without calculating the cnergy
of the functional and that the speedups (Speedup+ and Speedup*) shown are compared to the CPU-ice timing

results and Speedup is the comparison against the first GPU implementa.t“ion.

CPU-icc GPU Tesla K40C
SP SLIC Sal Total | SLIC Sal Sal+ Speedup+ Speedup Total | Sal* Speedup* Speedup Total*
300 21.33 4.25 2558 | 895 22.44 841 0.51X 2.67X 17.36 | 6.08 0.70X 3.69X 14.93
350 | 2141 536 2677 | 857 22.87 840 0.64X 2.72X 16.97 | 6.02 G.89X 3.80X 14.51
400 | 21.69 7.78 2947 @ 8.66 23.39 9.02 0.86X 2.59X 17.68 @ 6.17 1.26X 3.79X 14.72
450 | 2241 9.57 31.98 852 23.63 9.23 1.04X 2.56X 17.75 | 6.34 1.51X 3.73X 14.85
500 | 22.30 11.90 34.20 861 24.61 9.51 1.25X 2.59X 18.12 643 1.85% 3.83X 14.90
550 21.87 1240 34.27 8,16 25.31 957 1.30X 2.64X 17.73 | 6.52 1.9X 3.88X 14.70
600 22,50 15.78 38.28 | 8.21 2543 973 1.62X 2.61X 17.94 | 6.66 2.37X 3.82X 14.84
650 22.35 19.92 4227 | 823 2518 9.79 2.03X 2.57X 18.02 6.60 3.02X 3.81X 14.78

Figure 5 shows the total time in milliseconds of dif-
ferent configurations, in CPU and GPU varying the
number of superpixels in the range [300, 650]. The first
thing to note is the great difference between timing re-
sults using different compilers in CPU. The Intel C++
compiler (CPU-ice) creates more efficient autovector-
ized code for the CPU using the same -O2 compiler
directive than the Visual C++ compiler (CPU-mvec)
when organizing loops for improving memory aligned
accesses.

Tables 1 and 2 show the breakdown of the total
computational time between the two mosi independent
methods: superpixel method (SLIC) and the variational
saliency algorithm (Primal-Dual). Again, the tests have
been carried out varying the number of superpixels in
the range [300, 650] and forcing 100 ilerations in order
to avoid different results depending on the type of image
and the convergence of the algorithm. Note again in

Table 1 the great difference in CPU timing results when
using different compilers.

In Table 2 we report timing results of 100 iterations
comparing the best CPU solution (CPU-icc) against
three different GPU implementations. First, note that
we use a GPU version of SLIC from [34] to keep a com-
plete GPU solution but we only report GPU speedups
of our contribution (the saliency method), not the SLIC
method.

The first implementation is the straightforward GPU
implementation described in section 4.2. This imple-
mentation performs slightly better than the CPU-mvee
version but up to 4 times worse than the CPU-icc ver-
sion. The second GPU implementation (Sal+) is the
optimized version described in section 4.3 and is about
2.6x (column Speedup) faster than the first GPU im-
plementation. However, in this implementation the re-
sulting energy is transferred back to main memory for

00 ~I WL R

10

evaluating the stopping criterion in CPU, although the
number of iterations is fixed to 100. This transfer in
each iteration is one of the historical bottlenecks of

GPU implementations and many strategies can be adopted

to reduce this penalty, such as processing batches and
comparing the resulting energy after a number of iter-
ations or directly use a fixed number of iterations. As
we keep a fixed number of iterations of the algorithm
for comparison purposes, we report a third GPU ap-
proach (Salx) avoiding the energy calculation and data
transfer from GPU memory to host memory in each
iteration. This strategy is reasonable as the implemen-
tation is focused on the hardware limitations, reduc-
ing the bottleneck, but ensures convergence when com-
pared to an implementation that uses the stopping cri-
terion with fewer iterations {as shows Fig. 2¢ reaching
an acceptable convergence after about 50-60 iterations).
It is important to note that, as expected, the speedup of
the optimized GPU version is below 1 when compared
to the CPU-icc results for low number of superpixels
{(column Speedup+). It needs more than 400-450 su-
perpixels to compensate the performance overheads of
data transfers and bad GPU suitability in iterative al-
gorithms with parallel computation. Removing the en-
ergy calculation {Salx) we achieve a benefit of up to
3.02x when compared to the CPU-icc results for con-
figurations of 650 superpixel and 3.8x compared to the
first, GPU version.

The results show that the method reachs real time
frame rate capability either in CPU (~ 25 FPS for 650
superpixels) or in GPU (~ 60 FPS for 650 superpixels).

5.2 Visual results

The visual results have been carried out on different
benchmarks: MSRA10K benchmark [13] which has
10000 images and each image has a unique salient ob-
ject, ECSSD benchmark [39] with 1000 images seman-
tically meaningful but structurally complex and iCoseg
benchmark [7] with 643 images from Flickr Website in
different situations. Following [13] typical metrics such
as Precision-Recall (PR), F-measure and Mean Abso-
lute Error (MAE) are used to evaluate the results of
the saliency methods.

For fair comparision among methods Non-local Ly
(NLg) [37], non-local TV (NLTV) [%] and the new

model non-local convex TV with saliency term (N LTV SalTedr#}. Achanta,

in the datasets, we binarize the saliency maps using a
threshold starting by 0 up to 255. In each threshold, we
measure the four metrics above reporting the mean for
the whole range [0,255]. We use for N Ly our own im-
plementation and the parameters setting according to
[37], NLTV has the same parameters as in [5] and for

Eduardo Alcain et al.
the new model NLTV SalTerm, weset A=1a =15
and § = 0.2. For all methods, we use a fixed number
of iterations (100). The quantitative comparison shows
that the NLTV SalTerm provides the best results for
almost all configurations (see Table. 3). A visual com-
parison among different methods is shown in Fig. 6. We
can observe that our results, shown in Fig.Ge, can re-
move much better the background in the input images
than the rest of methads.

6 Conclusions

In this paper, a novel non-smooth and non-local vari-
ational method on manifold for saliency segmentation
has been proposed. We solve the minimization problem
with a Primal-Dual algorithm which proves to converge
quick to the solution in few iterations. Although the
method is based on simple priors, experimental results
in the well known datasets indicate that the method
produces very high quality results removing the back-
ground and highlighting the salient part of the image.
Furthermore, we drive an exhaustive performance com-
parison between CPU and GPU using different configu-
ratjons, programming tools, technologies and platforms
demonstrating real-time performance either in CPU or
GPU, even with computationally intensive configura-
tions.

Acknowledgements

This work was supported in part by the Spanish gov-

-ernment, Ministerio de Ciencia, Innovacién y Universi-

dades, RT12018-098743-B-100 (MICINN/FEDER) and
Comunidad de Madrid, Y2018/EMT-5062.

References

1. Nvidia developer blog: Optimized filtering with
warp-aggregated atomics. https://devblog.
nvidia.com/. Accessed: 2019-08-20.

2. Programming guidelines for vectoriza-
tion. https://software.intel.com/
sites/default/files/m/4/8/8/2/a/
31848-CompilerAutovectorizationGuide. pdf.

S. Hemami, F. Estrada, and
S. Susstrunk. Frequency-tuned salient region de-
tection. In 2009 JEEE Conference on Computer
Vision and Pattern Recognition, pages 1597-1604,
June 2009.

4. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
and S. Ssstrunk. Slic superpixels compared to

Tl W N

11

22

A Non-Smooth, Non-Local Variational Approach to Saliency Detection in Real Time

(a) {b)
Fig. 6: Examples of saliency detection in datasets: iCoseg [7], ECSSD [39] and MSRALOK [13]. (a) original image,
(b) ground truth, (c) saliency map using NLqg [37], (d) saliency map using NLTV [5], (e) saliency map using
NLTV SalTerm (our proposal).

(d) (e)

Table 3: Quantitative results for the three datasets for the NLy, NLTV and NTV SalTerm methods using Precison

(PR), Recall (RC), F-Measure (Fjs) and Mean Absolute Error (MAE).

. Shai Avidan and Ariel Shamir.

iCogSeg)

NLg[37])

‘Superpixels PR RC Fs MAE PR
300 0,678 0.524 0.589 0220 0653
450 0713 0526 0603 0210 0.662
600 0.722 0.529 0.606 0207 0.683

ECSSD -

- NILo[37]

Superpixels PR RC Fs; MAE PR
300 0.644 0.517 0.544 0265 0.534
450 0.683 0.522 0561 0248 0.596
600 0.700 0.521 0568 0238 0635

 MSRA10K

NLo[37] -

Superpixels PR RC Fg MAE PR
300 0.748 0544 0630 0.209 0.664
450 0.773 0.557 0.643 0197 0.714
600 0.787 0.559 0.646 0.191

state-of-the-art superpixel methods. IEEE Trans-
actions on Pattern Analysis and Machine Intells-
gence, 34(11):2274-2282, Nov 2012.

. B. Alcain, A. Muifioz, 1. Ramirez, and E. Schiavi,

Modelling Sparse Saliency Maps on Manifolds: Nu-
merical Results and Applications, pages 157-175.
Springer International Publishing, Cham, 2019.

Seam carving
for content-aware image resizing. In ACM Trans.

0.742

NLTV[s] NLTVSalTerm

RC Fs MAE PR RC Fy; MAE
0.518 0580 0236 0.802 0.563 0.708 0.150
0.506 0.577 0.229 0.818 0.534 0.Y01 0.155
0.509 0.587 0225 0.819 0.530 0.705 0.158
NLTV/[5] NLTVSalTerm

RC Fs MAE PR RC F; MAE
0.505 0479 0329 0.680 0.471 0586 0.186
0510 0516 0294 0.738 0.467 0.609 0.175
0515 0.538 0277 0.763 0450 0.607 0.177

NLTV[5) NLTVSalTerm
RC F; MAE PR RC F; MAE
0523 0582 0.248 0.831 0.583 0.730 0.125
0538 0.615 0227 0.861 0.559 0.729 0.126
0542 0.630 0215 0.873 0532 0.716 0.131

Graph, page 10. SIGGRAPH, 2007.

Dhruv Batra, Adarsh Kowdle, Devi Parikh, Jiebo
Luo, and Tsuhan Chen. icoseg: Interactive co-
segmentation with intelligenl scribble guidance. In
CVPR, pages 3169-3176, 2010.

- Nathan Bell and Michael Garland. Efficient sparse

matrix-vector multiplication on CUDA. NVIDIA
Technical Report NVR-2008-004, NVIDIA Corpo-
ration, December 2008,

QO ~F Sy U B N

mmmmmmmmmmm(ﬂwmwmb»::..m.b.m.b;ba.\.ba:wwwmwwwwwmmmmmmmmmmwn—sn—-»—w—w—w—w—-p—-l—-v—-\
U‘l‘bLA)MD—‘O\D(I)\IChU'th(A)NI—'O\D(XJ\lmU‘lvbwNI—'O\D(D\JC\U\sL\wNHOKO(D\!O\Lﬂ-waﬁ—‘O\D(D\lm(nbLMI\)I—'O\D

12

10.

11.

12.

13.

14.

15.

16.

117.

18.

19.

20.

21.

. Nathan Bell and Jared Hoberock.

Thrust:
Productivity-oriented library for cuda. Astro-
physics Source Code Library, 7:12014-, 12 2012.
Theofilos Chamalis and Aristidis Likas. Region
merging for image segmentation based on uni-
modality tests. In 3rd International Conference on
Control, Automation and Robotics (ICCAR), April
2017.

Antonin Chambolle and Thomas Pock. A first-
order primal-dual algorithm for convex problems
withapplications to imaging. Journal of Mathemat-
ical I'maging and Vision, 40(1):120~145, May 2011,
Tony F. Chan and Jianhong (Jackie) Shen. Varia-
tional image inpainting. Communications on Pure
and Applied Mathematics, 58(5):579-619, 2005.

M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and
S. Hu. Global contrast based salient region detec-
tion. IEEE Trensaciions on Pattern Analysis and
Mauchine Intelligence, 37(3):569-582, March 2015.
L. Dagum and R. Menon. Openmp: an in-
dustry standard api for shared-memory program-
ming. IEEE Compulational Science and Engineer-
ing, 5(1):46-55, Jan 1998.

Abraham Duarte, Angel Sénchez, Felipe
Ferndndez, and Antonic S. Montemayor. Im-

proving image scgmentation quality through
effective region merging using a hierarchical so-
cial metaheuristic. Pattern Recognition Letiers,
27(11):1239-1251, 2006.

Abderrahim. Elmoataz, Matthieu. Toutain, and
Danie]. Tenbrinck. On the p-laplacian and oo-
laplacian on graphs with applications in image and
data processing. S7TAM Journal on Imaging Sci-
ences, 8(4):2412-2451, 2015,

P. Favaro and S. Soatto. A geometric approach to
shape from defocus. IEEE Transactions on Paltern
Analysis and Machine Intelligence, 27(3):406-417,
March 2005.

Hong Fu, Zheru Chi, and Dagan Feng. Attention-
driven image interpretation with application to im-
age retrieval. Pattern Recognition, 39(9):1604 —
1621, 2006.

Lee Gayoung, Tai Yu-Wing, and Kim Junmo. Deep
saliency with encoded low level distance map and
high level features. In IEEE Conference on Com-
puter Vision end Patiern Recognition (CVPR),
2016.

Guy. Gilboa and Stanley. Osher. Nonlocal opera-
tors with applications to image processing. Multi-
scale Modeling & Simulation, 7(3):1005-1028, 2009.
V. L. Ginzburg. On the theory of superconductiv-
ity. 1l Nuovo Cimento (1955-1965), 2(6):1234-1250,
Dec 1955.

Eduardo Alcain et al.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Carlos A. S. J. Gulo, Henrique F. de Arruds,
Alex F. de Araujo, Antonio C. Sementille, and Jodo
Manuel R. S. Tavares. Efficient parallelization on
gpu of an image smoothing method based on a vari-
ational model. Journal of Real-Time Image Pro-
cessing, 16(4):1249-1261, Aug 2019.

Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and
P. Torr. Deeply supervised salient object detec-
tion with short connections. In 2017 IEEE Confer-
ence on. Compuler Vision and Pattern Recognition
{CVPR), pages 5300-5309, July 2017,

F. Huang, J. Qi, H. Lu, L. Zhang, and X. Ruan.
Salient object detection via multiple instance learn-
ing. IEEE Transactions on Image Processing,
26(4):1911-1922, April 2017. '

L. Itti, C. Koch, and E. Niebur. A model of
saliency-based visual attention for rapid scene anal-
ysis. IEEE Transactions on Patlern Analysis and
Machine Intelligence, 20(11):1254-1259, Nov 1998,
Jianbo Shi and J. Malik. Normalized cuts and im-
age segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888-905,
Aug 2000. .

Z.Li, X. Wu, and S. Chang. Segmentation using su-
perpixels: A bipartite graph partitioning approach.
In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 789-796, June 2012.

A. Martin, J. Garamendi, and E. Schiavi. Two ef-
ficient primal-dual algorithms for MRI Rician de-
noising, pages 281-296. 01 2013.

Yi Zhan Meng i and Lidan Zhang. Nonlocal vari-
ational model for saliency detection. Mathemati-
cal Problems in Engineering, vol. 2013, Article ID
518747, 7 pages, 2013.

Aaftab Munshi, Benedict Gaster, Timothy G.
Mattson, James Fung, and Dan Ginsburg, OpenCL
Programming Guide. Addison-Wesley Professional,
1st edition, 2011.

NVIDIA Corporation. NVIDIA CUDA C program-
ming guide, 2017. Version 9.0.

Thomas Pock, Markus Grabner, and Horst Bischof,
Real-time computation of variational methods on
graphics hardware. In Proceedings 12th Computer
Vision Winter Workshop, pages 67-74, 2007.

I. Ramfrez, G. Galiano, and E. Schiavi. Non-convex
non-local flows for saliency detection. CoRR,
abs/1805.09408, 2018,

C. Y Ren, V. A. Prisacariu, and I. D Reid. gSLICr:
SLIC superpixels at over 250Hz. ArXiv e-prints,
September 2015.

35. M. Rumpf and R. Strzodka. Nonlinear diffusion

in graphics hardware. In David S. Ebert, Jean M.
Favre, and Ronald Peikert, editors, Data Visual-

WO oy U s W N

I\)I\)Nl\)l\)l\)r\)l—l‘——ll—ll—ll—l}—lp—:p—lp—vl—l
mmbmwwommummbwr\)r—'o

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

A Non-Smooth, Non-Local Variational Approach to Saliency Detection in Real Time

36.

37.

38.

39.

40.

41.

ization 2001, pages 75-84, Vienna, 2001, Springer
Vienna.

E. Strekalovskiy and D. Cremers. Realtime min-
imization of the piecewise smooth mumford-shah
functional. In Buropean Conference on Computer
Vision (ECCV), pages 127-141, 2014,

Yiyang Wang, Risheng Liu, Xisoliang Song, and
Zhixun Su. Saliency detection via nonlocal
$81_{0}$$minimization. In Daniel Cremers, lan
Reid, Hideo Saito, and Ming-Hsuan Yang, editors,
Computer Vision - ACCV 2014, pages 521-535,
Cham, 2015. Springer International Publishing.

N. Wilt. Cuda Handbook: A Comprehensive Cuide
to Gpu Programming. CreateSpace Independent
Publishing Platform, 2017.

Q. Yan, L. Xu, J. Shi, and J. Jia. Hierarchical
saliency detection. In 2013 IEEE Conference on
Computer Vision and Pattern Recognition, pages
1155-1162, June 2013.

Ting Zheo and Xianggian Wu. Pyramid fea-
ture attention network for saliency detection. In
{EEE Conference on Computer Vision and Paotiern
Recognition (CVPR), 2019.

F. Znd, Y. Pritch, A. Sorkine-Hormung, 8. Man-
gold, and T. Gross. Content-aware compression
using saliency-driven image retargeting. In 2018
IEEE International Conference on Image Process-
ing, pages 1845-1849, Sep. 2013.

