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Abstract: The growing on-board processing capabilities have led to more complex sensor configura-
tions, enabling autonomous car prototypes to expand their operational scope. Nowadays, the joint
use of LiDAR data and multiple cameras is almost a standard and poses new challenges for exist-
ing multi-modal perception pipelines, such as dealing with contradictory or redundant detections
caused by inference on overlapping images. In this paper, we address this last issue in the context of
sequential schemes like F-PointNets, where object candidates are obtained in the image space, and
the final 3D bounding box is then inferred from point cloud information. To this end, we propose the
inclusion of a re-identification branch into the 2D detector, i.e., Faster R-CNN, so that objects seen
from adjacent cameras can be handled before the 3D box estimation takes place, removing duplicates
and completing the object’s cloud. Extensive experimental evaluations covering both the 2D and
3D domains affirm the effectiveness of the suggested methodology. The findings indicate that our
approach outperforms conventional Non-Maximum Suppression (NMS) methods. Particularly, we
observed a significant gain of over 5% in terms of accuracy for cars in camera overlap regions. These
results highlight the potential of our upgraded detection and re-identification system in practical
scenarios for autonomous driving.

Keywords: 3D object detection; multi-camera setup; Siamese network; non-maxima suppression

1. Introduction

In the previous decade, research on perception systems for autonomous driving
was mainly focused on understanding the traffic situation in front of the vehicle, mainly
powered by popular datasets such as KITTI [1] or Cityscapes [2]. Although this approach
limits the complexity of the problem and the computational requirements, its outcome
restricts the set of use cases to simple scenarios where an automated operation of the car
can be safely performed (e.g., highways).

More recently, the increase in GPU capabilities and the great advances in deep learning
models have led to the emergence of new research platforms and prototypes targeted
to drive in more challenging traffic environments, with a higher degree of interaction
with other road users and involving difficult maneuvers, like in cities [3,4]. In order to
achieve this milestone, the perception pipeline of an autonomous vehicle must be able to
identify the different participants and potential hazards in the whole scene, not only in the
forward direction.

To keep pace with these new needs, more complex sensor configurations aimed at
covering the whole horizontal field of view around the vehicle have become the prevailing
trend. Nowadays, using setups composed of multiple cameras and one or more LiDAR
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devices is a common choice to capture meaningful information in 360° with sensor redun-
dancy, so that safe navigation can be achieved [5].

Apart from redundancy, the popularization of perception systems made of multiple
units of different technologies brings many opportunities to build robust pipelines capable
of providing a precise understanding of the driving environment. For example, combining
the data from cameras and LiDAR devices allows for a better estimation of object posi-
tions, sizes, and velocities. Furthermore, fusing heterogeneous information from different
modalities can help overcome each sensor’s limitations, such as the incapability of cameras
to perceive objects in low light situations or the sensitivity of LiDARs to adverse weather
conditions like rain or fog.

However, all these advances also bring with them new challenges that must be ad-
dressed, such as extrinsic calibrations between sensors of different types [6], the synchro-
nization of all sensors to obtain information at known time instants [7], and the merging of
data and detections between sensors of the same and different types [8,9]. Nevertheless, the
potential benefits of these perception systems for autonomous driving, including increased
safety and efficiency, are promising.

In this paper, we propose a solution to address the last mentioned challenge, which
manages the entire space around the vehicle by merging detections in areas covered by
more than one camera of the same type and would otherwise be detected in duplicate
or with partial information. The work is based on a two-step 3D detection pipeline [10],
which uses a 2D detection model in the camera modality to generate candidates so that
the LiDAR cloud can be filtered into smaller regions of interest to estimate final 3D boxes
efficiently. While the performance of this approach was generally robust in a variety of
traffic situations, the architecture suffered when objects appeared on the overlapping areas
of consecutive cameras due to truncated or duplicate detections.

To tackle this pitfall, the image detection network is modified to include the re-
identification module presented in [8] as a third branch. In the second step, the point
cloud subsets associated with those detections identified as belonging to the same obstacle
are merged. That way, the filtered 3D information for each obstacle does not suffer trunca-
tions due to limits in the horizontal field of view (HFOV) of the cameras. As a result, the
proposed pipeline ensures that the estimation of the parameters of every obstacle is based
on its complete representation in the 3D space, avoiding the inference of a single instance
from multiple partial views.

Therefore, the main contribution of this paper is the addition of a re-identification
branch to the image detector of a sequential multi-modal pipeline which:

• Shares features with the existing branches, allowing for seamless end-to-end training
and improving the overall 2D results.

• Adds no extra computational load due to its parallel multitask design.
• Allows for the early elimination of false positives by detecting duplicate objects.
• Enhances 3D object detection by combining point clouds to reduce truncations.

The remainder of this paper is organized as follows. In Section 2, a brief review of
related work is provided. Section 3 presents a general overview of the proposed algorithm.
Section 4 provides experimental results that assess the performance of the method. Finally,
conclusions and open issues are discussed in Section 5.

2. Related Work

Several significant advancements have been noted in recent years in the field of 3D
obstacle detection with multi-camera systems. The first topic examines the evolution of
in-vehicle object detection datasets. Compared to older datasets, like KITTI, newer ones
provide detailed annotations under diverse conditions. The next area tackles the challenge
of managing multiple detections of a single object. Several techniques, from improved
non-maximal suppression methods to the innovative deterministic point process, have
been developed to address this. The final section explores Siamese networks’ role in re-
identifying obstacles, a vital task when dealing with views from multiple cameras. These



Sensors 2023, 23, 9395 3 of 16

networks have shown their value by distinguishing small differences among objects in
crowded settings.

2.1. In-Vehicle Object Detection Datasets

The pursuit for greater automation levels in the automotive industry has led to a
demand for richer annotated datasets that allow perception systems to cope with more
complex traffic scenarios.

Compared to the classic KITTI benchmark, with daytime-only frames and focused
on the forward direction, recent datasets have multiple cameras and LiDARs, recorded
in both day and night situations, in rain or fog. Datasets like Waymo [11] consist of data
from five LiDARs and five cameras, annotated both in 2D and 3D. Argoverse [4] features
two LiDARs and seven cameras with 3D box annotations. PandaSet [12] combines data
from six cameras and two LiDARs, providing annotations per LiDAR point and 3D box.
Similarly, the nuScenes dataset [3] integrates one LiDAR, six cameras, and multiple radars,
offering annotated 3D boxes for each object. These datasets reflect a growing trend toward
more complex and information-rich perception systems, leveraging multiple sensors to
capture a more complex, complete, and detailed view of the surrounding environment [13].
However, with the inclusion of multiple cameras comes the inherent challenge of efficiently
handling and processing redundant and sometimes conflicting information between views.
Duplicate detections, occlusions, and truncation of objects at the edges of the field of view
are common problems that arise in multi-camera configurations. In addition, variability in
lighting and environmental conditions, such as night, rain, or fog, adds another layer of
complexity to data processing and analysis.

2.2. Elimination of Multiple Detections for the Same Element

Several papers have explored techniques related to reducing the number of detections
for the same element. The suppression of redundant detections is essential to ensure
accurate and consistent perception. In [14], a variant of the traditional Non-Maximal Sup-
pression (NMS) method, called Soft-NMS, is proposed. Unlike traditional NMS, which
discards detections based on a predefined threshold, Soft-NMS modifies detection scores
continuously, resulting in improved detection accuracy. In crowded environments, pedes-
trian detection can be challenging due to multiple overlapping detections. In [15], this
problem is addressed by dynamically adapting the NMS threshold according to the density
of detections in the local region, enabling better discrimination between nearby pedestrians.
The method presented in [16] focuses on learning pairwise relationships between detec-
tions to improve accuracy in crowded scenes. It can reduce false detections and improve
discrimination between nearby objects by explicitly modeling these relationships. In [17],
the use of a Deterministic Point Process (DPP) is introduced as an alternative to traditional
NMS. DPP selects a subset of detections that are representative and diverse, which can
be beneficial in crowded scenarios where detections overlap. In [18], they propose an
alternative to NMS and IoU-based methods called “Confluence”. It aims at resolving the
challenges associated with redundant detections in object detection tasks, by selecting the
box that is closest to every other box within a given cluster and removing highly confluent
neighboring boxes.

2.3. Siamese Networks for Obstacle Re-Identification

On multi-camera systems, the management of multiple detections of a single object
needs to be handled in a different fashion, as NMS techniques cannot be applied to bound-
ing boxes belonging to images captured from different perspectives (e.g., distributed along
the roof of the car). Even so, there are usually parts of the environment that are seen
from two cameras, due to an overlap between their horizontal fields of view. For specific
situations where the cameras are in close proximity to each other, methods such as image-
stitching can be used to form a large panoramic image composed of images from several
cameras [9,19,20]. Also, new architectures that take as input a number of images and fuse



Sensors 2023, 23, 9395 4 of 16

their information internally have been introduced [21,22]. In a more general approach, this
problem is often solved through the use of agent re-identification networks, which get rid
of redundant detections based on feature similarities [8,23].

Siamese networks are a powerful tool in object re-identification, especially in scenarios
with multiple obstacles and crowded environments. In [24], Siamese networks are used
to learn to recognize objects from a single example by leveraging the network structure to
compare images. This capability is essential in scenarios where data collection is costly or
impractical. Another example is [25], where this type of network is applied to differentiate
between similar vehicles. By learning relative distances, the network is able to identify
subtle differences between vehicles that, at first glance, appear identical. This technique
is especially useful in applications, such as urban surveillance, where accurate vehicle
re-identification is essential. Examples of the use of Siamese networks can be seen in [26,27]
or [28], where re-identification is approached from a “parts” perspective. Instead of
treating the person as a whole, the network is trained to recognize and compare individual
parts (such as head, torso, legs), allowing for greater robustness against varied occlusions
and postures.

3. Proposed Approach

In this paper, we attempt to address the issues identified in the two-step multicamera–
lidar detection system presented in [10] by endowing the image detector with a new
re-identification branch to better handle duplicate or truncated detections by the HFOV of
the cameras.

In the selected pipeline a 3D obstacle detection is performed in two steps; the first one
consists of a generation of image proposals, obtained with the faster R-CNN network [29,30]
in each of the vehicle’s cameras.

Subsequently, by means of the extrinsic calibration parameters, a set of frustums
will be obtained by filtering the LiDAR point cloud with each of the detected bounding
boxes, which will be used as input to the second step, the Frustum PointNets network [31],
obtaining a 3D box for each of the proposed obstacles. A complete outlook of the whole
pipeline can be seen in Figure 1.

Figure 1. Complete detection pipeline. Each of the n images coming from the n cameras is introduced
into an image detection network (Faster R-CNN) modified to include the proposed branch. The
classes, bbox, and embeddings are obtained from the images and introduced to the re-identification
module, where the embeddings are compared and a set of unique proposals is obtained. In the
region2frustum module, the proposals are used to filter the Light Detection and Ranging (LiDAR)
point cloud, taking into account the detections that are shared between cameras. Finally, the filtered
point clouds obtained for each detection are passed through the Frustum PointNets network to obtain
the parameters of the 3D box.

Ideally, all proposals would be unique for each obstacle and would cover it completely,
surrounding the whole area of the object visible from the ego-car. Unfortunately, this is
not feasible, partly because of the possible failures of the detector in the image, but also
due to the limited horizontal field of view (HFOV) of the cameras, which will generate
truncations in the detections and possible duplicates in obstacle detections that appear in
several contiguous cameras at the same time.
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To tackle this, this work integrates the siaNMS module presented in [8], allowing the
end-to-end training of the model. In addition, incorporating the module as a branch of the
original network ensures that the learned feature map encodes meaningful characteristics
for the three tasks: class prediction, bounding box regression, and re-identification. Further-
more, utilizing this information when filtering the point cloud facilitates obtaining a single
frustum per obstacle by combining the matched regions of interest from both images.

3.1. Re-Identification Branch Description

The objective of the re-identification branch introduced in the detection network is
to obtain an embedding that encodes the information obtained from each obstacle. The
network is trained in such a way that the embeddings generated for the different detections
of the same object are very similar while maximizing the differences between the detections
of distinct objects.

For this purpose, we start from a faster R-CNN detection network structure, composed
of a convolutional backbone, from which regions of interest are obtained by means of a
Region Proposal Network (RPN) stage. The encoded tensor is cut using these candidates
and an ROI align layer is used to obtain a feature map of constant size for each proposal.
These maps are fed to the Fully Connected (FC) layers stage, from which we obtain the
outputs of the network: in the case of the original network, that was the class of the object
and its bounding box.

In this paper, a third output branch is added and tailored for re-identification. This
branch is also fed with the fixed-size feature maps obtained for each network proposal and
consists of a series of convolutional and FC layers that compress the information of each
obstacle into an embedding, with fixed output dimensions, d. A schematic of the modified
network structure can be seen in Figure 2.

Figure 2. Image detection network.

3.2. Training Data Organization

In the original 2D stage, a set of annotated images is passed as input in a random-
ized order through the network (grouped in batches) until the entire data set (epoch) is
completed. This is repeated as many times as necessary until the network is sufficiently
trained. Although this is the standard procedure for conventional image detectors, this
way of ordering the data is unsuitable for the purpose of this paper since we need the
same object to appear several times in the same forward pass of the network so that the
re-identification branch can be trained.

Intuitively, in order to train the class and bounding box branches, we need the an-
notations of the obstacles present in each image. However, to train the re-identification
branch, the type of annotation needed is different, namely which pairs of annotations
correspond to the same obstacle and which do not. Therefore, in each batch of images, we
need examples of both negative pairs of detections, which do not correspond to the same
object, and positive ones, which are detections of the same object.

In this study, we have used the nuScenes dataset, composed of six cameras distributed
in such a way that they cover 360º around the car. Taking advantage of this, we have trained
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the network using batches of six images, one corresponding to each of the surrounding
cameras. This way, the input of the model during the training process matches the one
that will be used in the inference, while objects appearing in regions shared by contiguous
cameras can serve as positive pairs for the training. That said, the order of time instants for
the six-image batches is randomized, mimicking the behavior of traditional CNN training.

3.3. Network Training and Loss Function Definition

During training, the process explained below is performed for each batch of images.
First, a forward pass is made, and with the results obtained at the output of the class and
box branches, a loss is calculated for each image individually:

Lbox_head =
F

∑
i=0
Lbox_reg,i +

F+B

∑
i=0
Lcls,i, (1)

where F and B are the numbers of foreground and background detections in that image,
Lbox_reg,i is the Smooth-L1 Loss, and Lcls,i is the cross-entropy loss.

Once the loss of the detections of the batch images has been acquired, the loss of
re-identification between the detections of the six images is calculated. The total loss of the
batch is the sum of all losses of the individual images plus the re-identification loss:

Lbatch = LreID +
N

∑
n=0
Lbox_head,n, (2)

where N is the number of images in the batch, six for this case. This way, the gradients
calculated will take into account the information on the three kinds of output generated by
the network.

To calculate the re-identification loss, all possible pairs between the foreground detec-
tions (those with an IoU > 0.7 with the ground truth) are obtained, that is, all the possible
combinations between the detections of the batch images. The loss will be the sum of the
individual losses of all positive pairs and the same number of negative pairs. To select
which negative pairs are used, their losses are sorted in decreasing order and the ones with
the highest loss value are chosen, following an Online Hard Example Mining (OHEM)
technique, as presented in [32],

Then, the double margin contrastive loss [28] is calculated for each pair, as explained in [8]:

LreID =
1
2

N

∑
i

[
max

(∥∥∥ f (xr
i )− f

(
xp

i

)∥∥∥
2
− α, 0

)2
+ max

(
β− ‖ f (xr

i )− f (xn
i )‖2, 0

)2
]
, (3)

where α and β are the two constant margins and f
(
xr

i
)
, f
(

xp
i

)
, and f

(
xn

i
)

are the embed-
dings of the reference object, their positive pair, and the hardest negative pair, respectively.

3.4. Re-Identification Evaluation

To evaluate the quality of the re-identifications at the image stage, an algorithm has
been developed. It performs the following steps:

1. For each group of images at each instant, the detections in contiguous images are
compared. This distinction is made to speed up the evaluation procedure since there
is no possibility of re-identifiable detections between two images that are not adjacent.

2. For each pair of images, all possible combinations between detections of the same
class are compared. In this case, no additional geometric constraints are imposed,
since we want to test the performance of the embedding generation module and thus
the challenge is more significant.

3. A matrix of distances between the comparable detected objects is calculated (having
eliminated the pairs of different classes in the previous step) and the pairs whose
distance is below a threshold are chosen following the Hungarian method.
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4. A comparison of whether the obtained pairs actually correspond to the same object
according to the ground truth is made, and the statistics of TP, TN, FP, and FN
are elaborated.

A visual example of this process can be seen in Figure 3.

(a)

(b)

(c)

Figure 3. Re-identification evaluation process step-by-step. (a) The six images of the same instant,
with the detections obtained in each image. (b) Obtained distance matrix between the detections of
the front and right cameras. (c) Re-identified pairs made in the six images that have been marked as
True Positives (TP).

4. Experimental Results

For evaluation, the nuScenes dataset has been used, as it provides suitable sensor
configuration and annotations for assessing the performance of the presented approach—in
the 2D space, to validate the re-identification capabilities of the networks and its effect
on the baseline model and in the 3D space, so that it can be compared to traditional
alternatives. To accommodate the original label for the 2D experiments, the minimum
bounding boxes have been obtained from the projection of the 3D boxes in each of the
cameras. Moreover, the unique ID information of each obstacle has been kept to allow
subsequent re-identification validation.

For the experiments of the first part of the configuration, those concerning the 2D
detection in the image, the metrics of the KITTI object [1] dataset will be used. The min-
imum overlap percentage between detections and annotations required to consider an
object as detected is 50% for all classes and the difficulty level selected is moderate (mini-
mum bounding box height: 25 Px, maximum occlusion level: partly occluded, maximum
truncation: 30%). Although only the three most commonly used classes (pedestrian, car,
and cyclist) are shown in the tables, the evaluation is performed for all the classes of the
nuScenes dataset, and the all column is calculated with the weighted average of all of them.
The reID columns have been obtained following the procedure explained in the previous
Section 3.4.

In order to evaluate the performance of the whole pipeline after the integration of the
re-identification module, the official nuScenes Detection Benchmark metrics are used.

4.1. Ablation Studies: Number of Embedding Dimensions

First, an analysis of the adjustment of the hyperparameters of the network has been
made, choosing the original configuration of the siaNMS network [8] but varying the
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number of dimensions of the output. Results are obtained for the network detection output
and the re-identification branch for each of the output dimensions. In addition, we compare
the results with those obtained in an equivalent training but without the re-identification
branch included. This experiment has been performed with 1000 pre-NMS proposals and
500 post-NMS proposals in training, and 500 pre- and post-NMS proposals in the test
stage. The results are shown in Table 1. The KITTI object image detection metrics have
been used for all nuScenes classes (pedestrian, car, cycle, cyclist, bus, truck, construction
vehicle, trailer, barrier, and cone) for the three frontal cameras of the validation split of the
nuScenes dataset.

Table 1. Evaluation results for the proposed approach while varying the output layer dimension of
the embedding branch. The best result for each column is highlighted in bold.

Num Dims
Classes (AP [%]) reID

Ped Car Cyclist All Precision Recall F1-Score

off 58.95 71.10 43.16 57.627 - - -
10 58.55 70.99 45.38 57.627 0.757 0.793 0.775
15 58.60 71.11 45.58 57.616 0.788 0.786 0.787
20 58.78 71.05 44.49 57.608 0.797 0.788 0.792
25 58.68 71.08 44.54 57.560 0.792 0.802 0.797
30 58.63 71.11 44.62 57.632 0.797 0.799 0.798
40 58.53 71.18 45.02 57.648 0.794 0.794 0.794
50 58.70 71.11 45.59 57.584 0.810 0.790 0.800

The Cycle and Cyclist classes have been obtained by selecting the nuScenes Bicycle and
Motorcycle classes and combining them with the with_rider attribute. This way the Bicycle
and Motorcycle objects with rider are Cyclists, and the ones without rider are Cycles.

As can be seen in Table 1, the results of both the re-identification branch and the
detection and classification branches vary slightly depending on the output size of the
re-ID branch. This is because the training of the network is conducted in an end-to-end
manner, and the ability of the network to generalize is altered by the introduction of the
third branch. That said, it can be generally observed that the inclusion of the obstacle
re-identification branch does not harm the network’s ability to detect and classify obstacles.
In fact, some of the obtained results slightly improve the object detection accuracy with
respect to the baseline, which implies that the quality of the feature maps obtained in the
intermediate layers of the network is improved by its optimization for a complementary
task, as previously observed in the literature [33,34]. The best result for each class is
marked in bold, and it can be seen that in most cases, the architectures that include the re-
identification branch achieve better results than those of the original architecture. Likewise,
we see that the re-identification results for all cases are similar and relatively good.

4.2. Ablation Studies: Re-Identification Branch Configuration

In the next experiment, we study the effect of changes in the structure of the re-
identification branch. For this purpose, several alternatives have been proposed, with
different numbers of neurons and intermediate layers, or eliminating altogether the con-
volutional layers and keeping only the fully connected ones, in a similar way as the other
two output branches are constructed. Table 2 shows the configuration of all the studied
options. Finally, Table 3 shows the detection and re-identification results for each design.
For all these configurations, a constant number of output dimensions, 25, has been chosen
so that the results are comparable. For the following experiment, 500 proposals during the
test phase have been chosen. Once more, the evaluation has been performed following the
KITTI object image detection metrics for all nuScenes classes, but this time the six cameras
of the validation split of the nuScenes dataset have been used.
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Table 2. Specifications of the tested configurations for the re-identification branch. k is the kernel size
used, C1–C4 is the number of output neurons of the convolutional layer, FC1–FC3 is the number of
output neurons of the fully connected layer.

Conf. #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

k 3 3 5 5 5 5 3 3 3 3 3 - - - - -
C1 32 16 32 16 64 32 32 32 32 32 16 - - - - -
C2 64 32 64 32 128 64 64 64 64 64 - - - - - -
C3 - - - - - - - 64 128 - - - - - - -
C4 - - - - - - - 128 256 - - - - - - -
FC1 1024 4096 1024 4096 512 4096 4096 1024 1024 512 512 1024 1024 1024 1024 1024
FC2 256 1024 256 1024 256 1024 1024 256 256 256 256 1024 1024 512 512 256
FC3 256 256 256 256 256 256 256 256 256 128 128 256 - 128 - -

Table 3. Results of the evaluation of the different configurations for the re-identification branch
within the image detection network. Details of each configuration are given in Table 2. The best result
for each column is highlighted in bold.

Conf.
Classes (AP [%]) reID

Ped Car Cyclist All Precision Recall f1-Score

#0 58.80 71.40 43.60 57.28 0.803 0.804 0.803
#1 58.69 71.40 43.30 57.37 0.802 0.790 0.796
#2 58.83 71.36 43.53 57.20 0.800 0.792 0.796
#3 58.70 71.34 42.89 57.20 0.796 0.803 0.799
#4 58.68 71.31 43.62 57.25 0.819 0.793 0.806
#5 58.79 71.36 43.53 57.27 0.808 0.797 0.802
#6 58.77 71.44 43.83 57.37 0.811 0.804 0.807
#7 58.70 71.44 43.94 57.36 0.724 0.795 0.758
#8 58.74 71.37 43.11 57.29 0.717 0.801 0.757
#9 58.78 71.40 43.40 57.33 0.804 0.798 0.801

#10 58.66 71.37 43.34 57.32 0.799 0.802 0.800
#11 58.76 71.64 46.33 57.53 0.844 0.789 0.816
#12 58.86 71.53 43.34 57.45 0.840 0.784 0.811
#13 58.67 71.51 43.20 57.34 0.838 0.797 0.817
#14 58.76 71.44 43.43 57.47 0.838 0.800 0.819
#15 58.68 71.49 43.38 57.49 0.840 0.789 0.814

Based on the reference configuration #0, as shown in Table 3, variations made in the
other configurations have a slight effect on the obtained results. Although the alterations
in the network composition yield minor performance changes, configuration #11 presents
the best overall results, achieving the highest precision for cars (71.64%), cyclists (46.33%),
and all classes combined (57.53%), and a re-ID precision (0.844) in pair with the best
case scenario.

4.3. Image Detection Qualitative Results

To visually assess the operation of the pipeline, some qualitative results in the nuScenes
benchmark are presented. The model used follows the configuration #11 from Table 2
with an output dimension of 30, using 500 proposals in the RPN stage. For the remaining
experiments, these hyperparameters are kept.

Some examples of detection and re-identification results are shown in Figure 4. The
images show frames captured by the different cameras at the same temporal instant. It can
be seen how obstacle detection, even at long distances, is appropriately conducted and
how the obstacles appearing in adjacent cameras are re-identified (the bounding box of the
re-identified obstacles is drawn with the same color, chosen randomly).
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(a)

(b)

(c)

Figure 4. Qualitative examples of the image detections (a–c). The same color bounding box indicates
that the two obstacles from different cameras have been re-identified as the same. For the rest of the
bounding boxes: orange for cars, blue for pedestrians, and purple for cyclists.

4.4. Selected Hyperparameters

From the results obtained in Table 3, the configuration producing the highest mAP,
#11, is selected. For this re-identification branch model, we then analyze its effect on the
two best-performing output layers for re-identification purposes (F1 score), 30 and 50, as
shown in Table 1. The evaluation of these two configurations can be seen in Table 4. Based
on these results, configuration #11 with 30 dimensions at the output has been selected. This
configuration is used in the following experiments.

Table 4. Evaluation results for the final hyperparameters. The best result in each column is marked
in bold.

Num Dims
Classes (AP [%]) reID

Ped Car Cyclist All Precision Recall F1-Score

30 58.72 71.50 43.58 57.47 0.880 0.793 0.816
50 58.79 71.45 43.42 57.39 0.842 0.776 0.808

4.5. Three-Dimensional Obstacle Detection Quantitative Results

In this section, we evaluate the second stage of the proposed detection pipeline, which
involves taking as input a filtered point cloud in the form of a frustum for each of the
objects detected in the previous image-based detection stage and processing them through
a series of pointnet-based networks to estimate the parameters defining a three-dimensional
bounding box—position (x, y, z), dimension (l, w, h), and orientation (θ)—that encapsulates
the detected obstacle in the image space.
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As introduced in [8], to leverage the outcome of the re-identification step in the 3D
box estimation, the region2frustum operation shown in Figure 1 needs to be adapted so that
it can produce more refined filtered point cloud candidates from matched detections across
adjacent cameras:

1. For detections appearing in a single camera, we follow the process outlined in the
original F-PointNets paper. A projection of the point cloud onto the bounding box of
the obstacle is performed, and the points within the box are selected.

2. For detections appearing in two cameras simultaneously, we employ a union of the
filtered point clouds from each camera, Pi ∪ Pj, where Pi, Pj are the corresponding
point sets with two detections re-identified as the same object. The process involves
the following steps:

(a) We first obtain the filtered frustum for each individual detection, following the
same procedure as for unique detections.

(b) Next, we verify if the point clouds obtained for each instance have com-
mon points.

(c) If there are no shared points, it is considered a false positive re-identification,
and the merging of objects is discarded.

(d) If shared points exist, the match is considered spatially coherent, indicating a
correct re-identification. The two filtered point clouds are merged, retaining
only the unique points.

(e) Finally, the central axis of the detection is computed by calculating the average
angle between the two outermost angles from the detections in both cameras.
A deeper explanation of this process can be read in [8].

To evaluate the results, the proposed method (siaNMS) is studied against three other
approaches. The Original configuration, namely the results obtained by the baseline F-
PointNets model with the 2D detection network unaltered. A second one uses the detection
network presented in this article, but without carrying out the union of re-identified objects
(2D+embedding). A third pipeline, where a Non-Maximum Suppression (NMS) algorithm is
applied to the results obtained from the Original configuration (Original+NMS), such as the
one presented in the original paper [8].

The assessment encompasses the different metrics provided by the nuScenes dataset,
considering various aspects such as positional error, size error, and orientation error, among
others, for all annotated types of obstacles. More details can be found in the nuScenes
object detection task [3].

Table 5 shows the results for Average Precision (AP ↑) (%), Average Translation Error
(ATE ↓) (m), Average Size Error (ASE ↓) (%), and Average Orientation Error (AOE ↓)
(rad) for the car, pedestrian, and cyclist classes. Similarly, Table 6 shows the averaged
results across all classes. The experiments were conducted in the following manner: The
Frustum Pointnets detection network was trained with the frames of the training split
of the nuScenes dataset and the validation split of the nuScenes dataset was used for
evaluation. To better understand the impact of the proposed approach, the same evaluation
has been performed taking into account only the object instances that appear in more than
one camera.

Table 5. Comparison of the 3D object detection performance on the nuScenes validation set in
different regions of interest. Results for Car, Pedestrian, and Cyclist classes. The best result for each
column is highlighted in bold.

Area
Car Pedestrian Cyclist

AP ATE ASE AOE AP ATE ASE AOE AP ATE ASE AOE

all

Original 48.2 0.434 17.1 0.493 58.4 0.263 28.5 1.194 44.2 0.252 26.1 0.898
2D+embedding 47.8 0.427 17.1 0.486 57.1 0.259 28.4 1.200 43.9 0.247 26.4 0.890
Original + NMS 48.7 0.436 17.1 0.487 56.0 0.259 28.5 1.188 46.6 0.257 26.1 0.903
siaNMS 51.5 0.422 17.1 0.476 59.7 0.246 28.5 1.203 46.3 0.243 26.2 0.874
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Table 5. Cont.

Area
Car Pedestrian Cyclist

AP ATE ASE AOE AP ATE ASE AOE AP ATE ASE AOE

overlap

Original 41.7 0.439 16.8 0.477 44.2 0.355 28.4 1.136 34.0 0.301 26.7 0.843
2D+embedding 41.6 0.433 16.7 0.463 43.5 0.359 28.3 1.133 32.5 0.288 26.4 0.799
Original + NMS 44.8 0.442 16.8 0.472 47.9 0.345 28.4 1.138 35.7 0.311 26.3 0.876
siaNMS 50.1 0.416 16.7 0.435 50.2 0.330 28.6 1.148 41.5 0.261 26.0 0.597

Table 6. Comparison of the 3D object detection performance on the nuScenes validation set in
different regions of interest. Results for all classes. The best result for each column is highlighted
in bold.

Area AP ATE ASE AOE

all

Original 32.87 0.526 29.81 0.928
2D+embedding 31.87 0.525 29.72 0.930
Original + NMS 32.46 0.529 29.75 0.925
siaNMS 33.18 0.521 29.58 0.915

overlap

Original 25.59 0.585 30.15 0.947
2D+embedding 24.93 0.588 29.93 0.929
Original + NMS 26.90 0.583 29.99 0.954
siaNMS 28.40 0.573 29.80 0.899

As can be seen in Tables 5 and 6, the AP results of all classes improve when using the
method proposed in the article in contrast to conventional methods. For the car class, the
average accuracy increases by more than 3% with respect to the original method, more than
1% for pedestrians, and more than 2% for cyclists. Although these numbers may not suggest
a major effect of the proposed additional re-identification branch, its real impact is being
diluted by the fact that only a reduced portion of objects leads to redundant detections and
is affected by truncation.

As a consequence, when the results are analyzed considering only those objects
falling in the regions of overlap between contiguous cameras, it can be observed that these
improvements are much more accentuated, especially in bulky categories such as cars—
more prone to be seen from multiple views—where the gain in AP goes up to 8.4%. In
addition to improving the number of detections, the quality of the detections is also affected,
reducing the average errors of position, size, and orientation of all classes with respect to
the original method and practically all with respect to a conventional NMS method.

4.6. Three-Dimensional Object Detection Qualitative Results

Similar to the process of visualizing the impact of the proposal in the image space,
this section includes qualitative 3D results of the final system compared to the ones of
the reference framework. Here the detections are presented in the LiDAR bird’s-eye view,
which displays the LiDAR readings as seen from an orthographic top view, where each
cell represents a square pillar lying in a theoretical ground plane. The images in Figure 5
show some frames from the validation split of the nuScenes dataset comparing the two best
approaches (i.e., Original+NMS and siaNMS). In green are the ground truth boxes, while
the boxes obtained by the full pipeline proposed in this article are painted in blue. As can
be seen in the three cases, the number of false positives is reduced, and the quality of the
detections is improved in terms of positioning and orientation of the obtained boxes.
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(a)

(b)

Figure 5. Results on nuScenes validation set. In (a) the original approach (Non-Maximal Suppression
(NMS)) is used, while in (b), the proposed architecture is used. The images show the Light Detection
and Ranging (LiDAR) point cloud in a bird’s-eye view. The color coding of the point cloud corre-
sponds to the distance of each point from the coordinate origin of the cloud, with purple indicating
the points closest to the origin, transitioning through blues, greens, and yellows for points further
away. The obstacles’ ground truth boxes are depicted in green, while the detections of the proposed
pipeline are shown in blue.

5. Conclusions

In this work, the capabilities of a well-established camera–LiDAR sequential fusion 3D
object detection pipeline have been enriched to make it more suitable for its use in multi-
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camera setups, where its performance deteriorates when duplicate detections of the same
object appear. To this end, the 2D object detector module of its first stage has been extended
by means of an embedding branch that enables the re-identification of instances across
contiguous cameras. Unlike the predecessor study, the siaNMS block is now integrated as
part of the decoding layers of the network in a multi-task fashion, allowing for its training
in an end-to-end manner.

The presented approach significantly outperforms both the baseline model and the
traditional NMS technique. Moreover, the addition of the new branch has led to an
improvement in the quality of the features extracted by the encoder, enhancing the network
detection and classification outcome, as demonstrated in the conducted analysis on the
nuScenes dataset.

Further experimentation shows that the early elimination of redundant detections also
benefits the results provided by the 3D box characterization model, reducing the negative
effects of truncated boxes on the image plane and thus contributing to a significant gain in
the overall performance of the system.

Building on the foundation laid by this research, we propose several avenues for
future exploration: First, the application of the re-identification branch to different types
of network architectures, including single-shot detectors and those using transformers.
This would test the versatility and effectiveness of the re-identification branch across
different state-of-the-art object detection frameworks. Another goal would be to integrate
the embedding comparison process directly into the inference stage of the network. This
would allow a single network to process multiple images simultaneously and output
unique detections for all objects present in all views.
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