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Notation:

Gross-Pitaevskii:

~ih, = —V26 +a(T)¢ ~ |b(T)| ¢ |9/

(Superfluid, no external magnetic field)

Introduce
a(T)
O = u
b(T)]|
and )
e — —fi, 2 = h
m ma(T)

to obtain the following form

—ik "y, = Viu + —u(l — |ul?)

[ dimensions of length. 25~ dimensions of time.
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Vortices: definitions and general considerations

Vortices in 2D: Disipative vs Hamiltonian
dynamics, Ginzburg-Landau and Gross-PitaevskKii

Vortex filaments
.Singularities and turbulence



Figure 13.1 The flow lines in a vortex.

Vortex as a singularity

Circulation
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— ik uy = Viu 4+ 172(1 - |u]P)u,

=n.fﬂ1

u= V@eiw 25 Madelung transform

@ = |uf? is the superfluid density, and 9 = 2«8 is the velocity potential,

the superfluid velocity v = V9.

Continuity equation

et + V- (ov) =0, p is pressure introduced via the equation of state

Bernoulli equation p= 2 [(9 = o 129-1/2v291/2] ’

P + %|V|2+p=0,

gquantum pressure,




¢ = v2x/l is the speed of sound

Euler equation; YVt +(v:V)v+Vp=0,

Vorticity: w=VxXV
wr+v-Vw—-—w-Vv=0

In the plane
wr+v-Vw=0
(Ordinary fluid)

w(x,t) = ZF() x — x;(t

Biot-Savart (2D)




uy = —2i 6 /6. Gross-Pitaevskii

E = %/‘de, H=Vu -Vu+ -;-(1 - lulz)z. Ginzburg-Landau energy

(Hamiltonian)

—tus = Vu + (1 = |ul?)x,

L(u) = %(uﬁt -Tuy) +Vu-Vi + %(1 — |u|?)%.  Lagrangian
S = [L(u)d*xdt

1= pe'?,

b:=p~ V3 +1- |Vo)? - 0%,

— pe = pV?9 +2Vp - V6.




Ginzburg-Landau equation (dissipative)

aw 2 ’

| | 5
F€|w|:f(;|vq:|2+4€2(1 —|w|&)2) alx:

Fe |V + 0V
- f (%v (U + 80) - V(U* + §U%)

+

1
e et bl L L 5 6\1'*))2) dPx

1
= F,[V¥] +/ (vw V(W) — 6—25\1:*\11(1 = |\If|2)) d’x+ 0 (|3\p|2)

1
= F, V] +f (—A\l! e (e |xv|2)) sW*dPx + 0 (lamz) .
€
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dPx.



Gross-Pitaevskii equation (Hamiltonian)

I~ — AV + ¥ — (W)W

o=

Fe |V + 0V
— f (%V (W +8W) - V(I* 4+ 50%)

L )2)

+

4;0 — (W +80) (V" +50° )))

1
= F,[V¥] +/ (V\Il V(W) — 6—25\1/*\1/(1 = |\11|2)) d’x + 0 (|5\p|2)

1
= F, V] +f (—A\lf e (e |\IJ|2')) sW*dPx + 0 (13\142) .
€

AV + (]l — |W = —1
T +W(l — W) BIT B

_ 28F Y] _ oW dFe I\PI / Fe[¥]]?
IPD




R/e n2 5 5 R
F-z:rrf ?p dé ~an“In —. (13.101)
1 €

The logarithmically diverging contribution (13.101) coming from the neigh-
borhood of each vortex is called the self-energy.

s
O

O O

Figure 13.19 Vortices in a domain 2. The free energy is separated into the self-
energy contribution (13.101) coming from a disk of radius R around each vortex
and the contribution coming from the exterior of the disks.
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N
1
F.[¥]=n (Zn%) In =+ W(ai, az,....an) + 0(),

i=l

Wi(ay,az,...,ar) = —m Zn,-nj In Ia; — aj| + B(g, 0%2),
i#]

Wia,ap,...,ay) = —m ann‘k In |aJ,- — ﬂkl

i#Fk
da;
v = —.
dt
(aj, ar, ...,ay) to the new locations (ay, ar,...,ay) + (8ay,dar, ..., day)
produces a change in energy
SF (W] =) VoWl a,....ax) - 8a; + O(e). (13.114)
i

SV = vai . 8a;,

i



W 5
-2 80 ) = E25F [ W],

{

i 2
<W,5w>:/(zvi.vw,~) ;V\pj-aaj d%,

fvw; - VWid*x = 2n8;jn} In(1/€) + O(1).

The resultis zero if i # j since the vortices do not overlap. Hence we conclude
that

W sw =) " 27n} In(1/e)v; - Sa; + O(1) (13.118)
9t = <JUH; i i . 2.

i
Inserting (13.118) and (13.114) into (13.116), we obtain

|In€| ' 1

Vi = — VagWay,a,...,an), 13.119
= U 27 a; Wiay, a N) ( )




dii(a; — ag Oki(ax — a;j
Va;WZ—Nannk( ji(a; k)+ ki (ak j))

2 2
i#k aj — a| laj — ax|
a; —da;
= —2n Zn,‘njl—jr (13.120)
j a,——aj|

[t follows that the motion of each vortex is governed by (Ginzburg-Landau)

da; | ni(ai —aj)
e Lo il - (13.121)
dT n; | . .|‘-
i ai —a;
with a new time scale
L
6&

"~ |lne|




Gross-PitaevsKii

ow
tﬁ_e AU 4+ U — (W2

H(\If)zezf( V|2 + (1—-|\v|))

A (CO)

31‘ SWw*

A\
<18— 5\11> == zi:VQiW(m.ag. ...,an) - oa;.

JFi aJ|

with T = €2t.






Gross-Pitaeveskii also supports wave-type solutions

2t +V-(ov) =0,

Bernoulli equation

% + %IVI2+IJ=0,

1?“, = 02?315‘ = 0.
Kelvin (sound) waves

c - -,f&p/-dg = 2r/l

- Interaction of sound waves and vortices
- Radiation by a moving vortex
- Vortex singularities as a source of sound



Vortex filaments

L .
w(x,0) = —dgt(s,0)

)

A

)’ f t(s") x [r — r(s)] s’

‘-(r) — A |r ~ r(j{}la



b= = (13.18)

The rate of change of t is a measure of the curvature x(s), and the resulting
vector is normal to the curve:

tc = xn. (13.19)
This means that n and the binormal
b=txn (13.20)

span the plane perpendicular to the local direction of the filament (see
Fig. 13.8).

To complete the geometrical description of a curve we need to specify the
derivatives of the basis vectors t, n, and b. One can show that in addition to
(13.19) (see for example [62]) one has

ng = —«t+7th, and by = —7n. (13.21)

The second scalar function, 7(s), is called the torsion of the curve. It describes
how b winds itself around the centerline. The three equations in (13.19) and
(13.21) are known as the Frenet—Serret formulas.



r i) x [r—rx(s")] . ,
hp=— 3 ds,
4 55| Se Ir —r(s")|
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S )5 =)+ O((s — "))
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5372
[r — r(s"}|3 = (62 +|s — 5’|‘) + O(|s — s’|4).
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— = + lower-order terms.
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Binormal flow equation (da Rios 1905)



k(s,t') = '®?

vnt—n2t
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Example 13.3 (Stability of a filament) The binormal flow equation (13.28) for
a vortex filament has a stationary solution corresponding to a straight filament
ry = se3. Now consider small perturbations of the form

r(s,t) =ro+e€g(s,t), (13.29)
with g perpendicular to e3: g(s, ) = gie; + gzez. It follows that
Iy X Iss = € (€3 + €g;) X g, = €e3 X gg; + O(€?),
so that, at linear order,
g =a(e3 x gg), (13.30)

wherea =T 1118‘1/(471).
The cross products of (13.30) with ez and e; yield the following equations
for the components of g:

81, = —A82.ss» 82t = 081,ss- (13.31)

The solution to (13.31) is of the form

| = Aeiks+otr iks+e (k)1

. 8 = Be

—
ot
5]
[V
(S

S

8
which results in the equations
Aw(k) = ak’B, Bw(k) = —ak*A.

There exists a nontrivial solution for A and B provided that the determinant
vanishes, giving the dispersion relation

(k) + a*k* = 0. (13.33)

Hence w(k) = +ak?i, so perturbations will neither grow nor decay in time.
This is characteristic of systems with a Hamiltonian structure, where energy is
conserved. The nonlinearity of (13.33) points to the presence of dispersive phe-
nomena, where the waves forming an initial wave packet travel with different
speeds. The real solutions are of the form

g1(s,t) = cos(ks & akzr), g2(s,t) = sin(ks & akzt), (13.34)

representing helical propagation of the perturbation g. M







ar IIns~!
B ™ gy B e

r(s, 1) =t'"2GE), &= (13.35)

E = t/l/2’

where we have putt’ = fo — ¢. Inserting the similarity form (13.35) for the
similarity profile G(§) into (13.28) leads to

1
5GE) - %Gs(st) = G (§) x Gg&(8). (13.36)

From the matching condition (3.16) we conclude that the behavior of the
filament must be linear at infinity, and so

r(s,t) = Gis, s — %oo. (13.37)

Given that the problem is rotationally invariant, the only parameter that matters
is the angle € between the directions Gg and G .



Taking derivatives of (13.36) with respect to § and setting T = G we get

5 ‘
— ET;;- =T Tg’:;;-. (13.38)

We now rewrite (13.38) using the self-similar version Tg = «N and Nz =
—«k'T + B of the Frenet—Serret formulas (13.19), (13.21): ¥ and T are rescaled
versions of the curvature and torsion, respectively:

k(s,t) =t712E), t(s,t) =t""12%(). (13.39)

Thus we obtain

—%EN =T x (c&zN — ®T + ktB) = &eB+ 7T x (T x N)

— keB — kTN, (13.40)

where we have used the orthonormality conditions in (13.44) below. Scalar-
multiplying (13.40) by B and N, respectively, one finds that

oy

KE)=a, TE) =2 (13.41)

59

G = T(&). (13.42)

where the tangent vector T(§) obeys the Frenet—Serret system (13.13), (13.21).
Thus we have

T 0 a 0 T
N| =] -a o ¢&r N |, (13.43)
B/, 0 —£/2 0 B

together with the conditions

[T[=|N|=[B]l=1; T-N=T:-B=B-N=0. (13.44)



S. Gutiérrez, J. Rivas, L. Vega, Formation of singularities and self-similar vortex motion under the

(;(S) — ‘\j:(('())(s + 2%) - 4(‘(] l_:+ 0(1 /s3 ), o :I:OC.
A 3

r(S)_ \ ((0)— ’)(_()h+0(l/§ ) § — +00;

(n— ib)(s) = BE(co)e™ 4018 L O(1/5), s +o0:



Feynman's scenario for turbulence

R. P. Feynman, Application of quantum mechanics to liquid
helium®. Il. Progress in Low Temperature Physics. Vol. 1.
Amsterdam: North-Holland Publishing Company.



The energy spectrum of turbulence is a mean quantity and is one of the main
objects studied in turbulence theory. We write this spectrum as follows

BV =5 [ 60 ulxt e I, 2.1)
R?

The super-script (3D) refers to the fact that g represents the Kinetic energy

density in the 3D Kk-space, i.e.

(§]
8]
~—~—

(= / EPP)(K)dk. (

R3

1
2

On the other hand, for isotropic spectra the same information is contained in a 1D
spectrum which is obtained from E®? by integration over the unit sphere in the

3D k-space. This gives
E(D) (k) = 4nk*ECPP) (k)

so that E'P)(k) represents the energy density over k = IKI,

400

(1) = / E"P) (k)dk. (2.3)

0

| —



E[ID::I = CEEI.I'IIBA: 5}-':31

Kolmogorov law



‘Energy in . bottle
: . neck

<3 : Energy out
~ . T

= :

S0 - e m
L ie, K~

Kolmogorov :

cascade : Kelvin wave cascade

kp ke log ok



Wave turbulence (or weak turbulence)

l'()'l . (!)(k)l/l +g’ [dkl [(ikz [dkg,(S(k — kl — k2 —+ k3)

Ot
x V(k,ky, ko, k3 (k) (k)™ (ks), (11)
where (k) = k2/2 and V(k,k;,ks.ks) = 1. Such a four-wave

weakly interacting system in the WT regime must be described by the
following equation for the wave action” n(k) = | (k)|*:

on(k)
ot

— 47'Cg [dkl [dkz [dkg,b(k = kl — k2 I k3)

x o(w(k) — o(k;) — o(ky) + o(ks))
1 | | 1
x n(k)n(ky)n(ky)n(ks) [n(k) + ATk - (k) — )|

(12)

Using Zakharov transformation on the k variables, ”' two power
law solutions of the type n ~ k" are possible in this system with

vg = —2B/3 —d, (13)
vy = —28/3—d+a/3, (14)



which correspond to energy (~g) and particle () cascades. Here, d is the
spatial dimension of the system, while « and f§ are the degrees of homoge-
neity of @ and V, ie, w(ik) = 2*w(k) and V(/ky, 2k, Aks, Aky)
— ).ﬁV(kl,kz,k3,k4). In the case of 3D GPE, we have x =2, f§ =0,
and d = 3. These parameters lead to the energy and wave action cascade
power law spectra, which are vy = —3 and vy = —7/3, respectively.

Kelvin waves and the decay of quantum superfluid turbulence

Luiza Kondaurova®?, Victor L’vov?, Anna Pomyalov? and Itamar Procaccia?

Y Institute of Thermophysics, Novosibirsk 630090, Russia
2 Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel

We present a comprehensive statistical study of free decay of the quantized vortex tangle in
superfluid *He at low and ultra-low temperatures, 0 < 7" < 1.1 K. Using high resolution vortex
filament simulations with full Biot-Savart vortex dynamics, we show that for ultra-low temperatures
T < 0.5K, when the mutual friction parameters a ~ o’ < 107>, the vortex reconnections excite
Kelvin waves with wave lengths A of the order of the inter-vortex distance £. These excitations
cascade down to the resolution scale A& which in our simulations is of the order A ~ £/100. At
this scale the Kelvin waves are numerically damped by a line-smoothing procedure, that is supposed
to mimic the dissipation of Kelvin waves by phonon and roton emission at the scale of the vortex
core. We show that the Kelvin waves cascade is statistically important: the shortest available Kelvin
waves at the end of the cascade determine the mean vortex line curvature S, giving S = 30/¢ and play
major role in the tangle decay at ultra-low temperatures below 0.6 K. The found dependence of £S
on the resolution scale A& agrees with the L’vov-Nazarenko energy spectrum of weakly-interacting
Kelvin waves, Epn o k—5/3 rather than the spectrum Ein o k=1, suggested by Vinen for turbulence
of Kelvin waves with large amplitudes. We also show that already at T = 0.8 K, when a and o’
are still very low, a ~ o’ < 1072, the Kelvin wave cascade is fully damped, vortex lines are very
smooth, S ~ 2/f and the tangle decay is predominantly caused by the mutual friction.



Venues for research

.Understanding superflow in connection with
.moving bodies: vortex generation

Vortex filaments equations

.The reconnection problem is totally open
.(both in normal and super fluids)

.Wave turbulence equations are not totally
.Justified as limit of GP

.Uncertain exponent in turbulent cascade of

Kelvin waves
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