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ABSTRACT Cell-free massive multiple-input multiple-output (MIMO) is a novel beyond 5G (B5G) and
6G paradigm that, through the use of a common central processing unit (CPU), coordinates a large number
of distributed access points (APs) to coherently serve mobile stations (MSs) on the same time/frequency
resource. By exploiting the characteristics of new less-congested millimeter wave (mmWave) frequency
bands, these networks can improve the overall system spectral and energy efficiencies by using low-
complexity hybrid precoders/decoders. For this purpose, the system must be correctly dimensioned to
provide the required quality of service (QoS) to MSs under different traffic load conditions. However,
only heavy traffic load conditions are usually taken into account when analysing these networks and, thus,
many APs might be underutilized during low traffic load periods, leading to an inefficient use of resources
and waste of energy. Aiming at the implementation of energy-efficient AP switch on/off strategies, several
approaches have been proposed in the literature that only consider rather unrealistic uniform spatial traffic
distribution in the whole coverage area. Unlike prior works, this paper proposes energy efficient AP sleep-
mode techniques for cell-free mmWavemassiveMIMO networks that are able to capture the inhomogeneous
nature of spatial traffic distribution in realistic wireless networks. The proposed framework considers,
analyzes and compares different AP switch ON-OFF (ASO) strategies that, based on the use of goodness-
of-fit (GoF) tests, are specifically designed to dynamically turn on/off APs to adapt to both the number and
the statistical distribution of MSs in the network. Numerical results show that the use of properly designed
GoF-based ASO strategies under a non-uniform spatial traffic distribution can serve to considerably improve
the achievable energy efficiency.

INDEX TERMS Cell-free massive MIMO, energy efficiency, access-point switch on/off techniques,
millimeter-wave communications, goodness-of-fit.

I. INTRODUCTION
A. MOTIVATION AND PREVIOUS WORK
Cell-free massive multiple-input multiple-output (MIMO),
originally proposed by Ngo et al. in [1], is a novel wire-
less networking paradigm currently being investigated in
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the context of beyond 5G (B5G) and sixth generation (6G)
mobile communications. One of the defining and foremost
important features of cell-free massive MIMO is the replace-
ment of the classical cell-based structure, pervasive in current
wireless networks, by a large number of randomly deployed
access points (APs) scattered throughout the coverage area,
all connected to a central processing unit (CPU) that coor-
dinates the communications [2]. Note that this architecture
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eliminates the concept of cell altogether, hence also avoiding
cell-edge performance issues. Importantly, the large number
of APs, each potentially equipped with multiple antennas,
makes cell-free massive MIMO a distributed form of the
classical centralized massive MIMO, thus inheriting many
of its attractive features such as the channel hardening and
favourable propagation effects through the implementation of
simple signal processing at both transmission ends. Recent
research has shown that bringing the radio frequency (RF)
front-end closer to the users while allowing certain operations
to be conducted centrally (i.e., power and pilot allocation)
significantly outperforms conventional architectures such as
small cells or centralized MIMO strategies in providing a
uniform quality of service (QoS) throughout the network [3],
[4]. Moreover, the cell-free massive MIMO paradigm allows
for a variety of trade-offs in terms of performance, complexity
and fronthaul link requirements to be implemented depending
on the capabilities of both the CPU and the APs and/or
the capacities of the fronthaul links connecting the APs
to the CPU. In particular, it was shown in [4], [5] that conduct-
ing the precoding operation at the CPU in a cooperative cen-
tralized manner while relying on instantaneous channel state
information (CSI) leads to a considerable improvement over
simpler AP-based non-cooperative beamforming strategies.

On another front, the rapid increase in mobile data demand
over the last decade has virtually filled up most of the con-
ventional mobile/wireless frequency bands (from 300MHz to
6GHz), leading to the so-called spectrum crunch and the need
to explore alternative frequency regions to accommodate
future standards/services [6]–[8]. The so-called millimeter
wave (mmWave) band, located between 6 and 300 GHz, has
emerged as the most viable candidate in the short term and in
fact it is already playing a significant role in the roll-out of
fifth generation (5G) networks [9], a trend likely to be fully
developed in the context of B5G and 6G systems. Despite
the large chunks of available spectrum at mmWave bands,
this portion of spectrum presents important challenges from
a communication point of view, most notably, a very severe
propagation pathloss. Large antenna arrays with many radiat-
ing elements can be used to effectively implement mmWave
massiveMIMO schemes that, with appropriate beamforming,
compensate for the orders-of-magnitude increase in free-
space path-loss when compared to a sub-6 GHz environ-
ment (see [10], [11] and references therein). However, unlike
sub-6 GHz communications, where processing is completely
performed in the digital domain, at mmWave frequencies
the energy consumption and hardware cost associated to the
use of a large number of antenna elements precludes this
possibility. Instead, use is typically made of hybrid digital-
analog architectures whereby a large number of antennas is
interfaced through an analog front-end (implemented using
phase shifters) to a much smaller number of RF chains that
take care of down-mixing and analog-to-digital conversion
[12], [13]. The application of cell-free designs at mmWave
was first considered in [14] (subsequently expanded in [15])
in the context of uncorrelated channels and mainly targeting

power allocation strategies for energy-efficiency maximiza-
tion. The effects of fronthaul limitations in a cell-free massive
MIMO at mmWave frequencies under correlated fading was
studied in [16] along with a proposal to conduct user selection
in the likely event that the number of users in the system
exceeds the number of RF chains at the APs.

The deployment of a large number of antennas, either in a
centralized form as in massive MIMO or a distributed one as
in cell-free massive MIMO, raises concerns regarding energy
consumption both from the point of view of energy efficiency
but also when considering the overall emissions produced by
the mobile communication industry. In particular, the whole
of information and communication technology (ICT) indus-
try has been estimated to contribute up to about 23% of
the global carbon footprint and about 51% of global energy
electricity consumption by 2030 [17]. Addressing this issue,
energy efficient wireless communication (also called green
communication) has been an important research thread for
well over a decade and it is envisaged to continue to do so for
the foreseeable future [18]. Among the many green strategies
that have been proposed, one that is specially effective in
reducing the carbon footprint associated to cellular networks
is the one based on the so-called switch on/off algorithms
(see, for instance, [18]–[20] and references therein). Since
most networks are designed and deployed to cope with fully
loaded scenarios, a situation that most often is not sustained
at all times, these techniques aim at dynamically turning
on/off a fraction of the base stations (BSs) in response to
variations in the user locations and traffic demands. Typi-
cally, these strategies are combined with specific forms of
user association and cell zooming (i.e., cell breathing) see
[21]–[24]) that boost their performance. Very recent research
in [25] has shown that the application of switch on/off algo-
rithms in the context of cell-free massive MIMO, whereby
APs are dynamically (de)activated, has proved effective in
optimizing the energy efficiency of the network. However,
this work, which was framed in a sub-6 GHz context,
relied on the assumption of having homogenously dis-
tributed users in the spatial domain, a condition seldom met
in practice.

B. CONTRIBUTIONS
Motivated by the above works and open issues, our main goal
in this paper is to propose a green networking solution encom-
passing the design, performance evaluation and comparison
of energy-efficient access point switching (ASO) strategies
for cell-free mmWave massive MIMO networks when con-
sidering non-uniform spatial traffic densities. In particular,
the noteworthy contributions of our work can be summarized
as follows:
• Tractable expressions are derived for the energy/spectral
efficiencies, and the power consumption in cell-free
mmWave massive MIMO networks for the particular
case of zero-forcing (ZF) precoding/combining for both
the downlink (DL) and uplink (UL). Remarkably, these
mathematical expressions are able to account for the fact
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that there is a limited number of active RF chains at each
of the APs in the network.

• In contrast to previous works on switch on/off algo-
rithms for cell-free massive MIMO networks (see, for
instance, [25], [26]), this study contemplates a realis-
tic model to describe a non-uniform distribution of
mobile stations (MSs), thus capturing the heterogeneous
nature of spatial traffic density in practical wireless
networks [27].

• Aside from recasting existing adaptive ASO techniques
to the scenario at hand, novel ASO strategies are imple-
mented that rely on statistical goodness-of-fit (GoF)
tests, and govern the process of (de)activating APs in
such a way that the distribution of the resulting active
APmatches the non-uniform spatial distribution ofMSs.
These GoF-based strategies are shown to be compu-
tationally simple and to only depend on information
regarding the location of APs and the long-term spatial
distribution of MSs. In comparison to previous tech-
niques, our proposals attain a much better trade-off in
terms of jointly assessing performance, complexity and
implementability.

• Extensive simulation results show the energy efficiency
benefits of the proposed practical ASO strategies under a
comprehensive set of cell-free mmWavemassiveMIMO
scenarios. In particular, the impact the number of MSs
in the network and the RF infrastructure used at the APs
have on the spectral/energy efficiency of the proposed
network is evaluated under various non-uniform spatial
distributions of MSs.

C. PAPER ORGANIZATION AND NOTATIONAL REMARKS
The proposed green cell-free mmWave massive MIMO net-
work is introduced in Section II, where different subsections
are dedicated to describe the spatial modeling of the dis-
tribution of MSs, the spatially correlated channel model at
mmWave bands, the RF precoder/decoder design, the algo-
rithm used to select the MSs to beamform from each active
AP, the UL training phase and, finally, the DL and UL pay-
load transmission phases. The different performance metrics
used in this paper, including the spectral efficiency, the power
consumption model and the energy efficiency, are thoroughly
evaluated in Section III. The proposedASO strategies, assum-
ing scenarios with non-uniform spatial traffic distribution,
are fully described in Section IV. Numerical results and
discussions are provided in Section V and, finally, Section VI
concludes the paper.
Notation: Vectors and matrices are denoted by lower-

and upper-case boldface symbols, respectively. The q-
dimensional identitymatrix is represented by Iq. The operator
‖x‖ represents the Euclidian norm of vector x, whereas X−1,
XT , X∗ and XH denote the inverse, transpose, conjugate and
conjugate transpose (also known as Hermitian) of matrix X ,
respectively. With a slight abuse of notation, the operator
diag(x) is used to denote a diagonal matrix with the entries

TABLE 1. Summary of main parameters and variables.

of vector x on its main diagonal, whereas diag(X) is used to
denote a vector containing the elements of the main diagonal
of matrix X . The expectation operator is denoted by E{·}.
Finally, CN (m,R) denotes a complex Gaussian vector dis-
tribution with mean m and covariance matrix R, N (0, σ 2)
denotes a real valued zero-mean Gaussian random variable
with standard deviation σ , and U[a, b] represents a random
variable uniformly distributed in the range [a, b]. In order
to ease the reading of this paper, Table 1 summarizes the
definition of some of the most important parameters and
variables used in the different subsections (see also Table 2
summarizing the default simulation parameters used in the
numerical results section).

II. SYSTEM MODEL
As shown in Fig. 1, we consider a cell-free mmWave massive
MIMO network where M randomly distributed APs, each
equipped with an array of N antennas and connected to a
CPU via an infinite-capacity error-free fronthaul link, can
be activated to provide service to K single-antenna MSs.
The process of activation/deactivation of APs is basically
driven by the implementation of ASO strategies, with APs in
active (ON) and sleep (OFF) modes being indexed by the sets
MA
= {mA1 , . . . ,m

A
MA
} and MS

= {mS1 , . . . ,m
S
MS
}, respec-

tively, whereMA
∩MS

= ∅ andMA
∪MS

= {1, . . . ,M}.
Moreover, as the implementation of a dedicated RF chain to
each antenna results in unaffordable energy consumption and
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FIGURE 1. System model of a cell-free mmWave massive MIMO network
using ASO strategies and hybrid analog-digital precoding/decoding
schemes.

hardware cost in mmWave-based massive MIMO systems,
the number of required RF chains is reduced by relying on the
use of hybrid analog-digital precoding schemes. In particular,
as shown in Fig. 1b, it is assumed in this paper that each AP
is equipped with L ≤ N RF chains and that a fully-connected
architecture is arranged where each RF chain is connected to
all the antenna elements using N analog phase shifters.

The communication between the active APs and the MSs
is coordinated by the CPU through the use of a half-duplex
time division duplexing (TDD) algorithm in which each
frame is divided into three phases, namely, the UL training
phase, the UL payload data transmission phase and the DL
payload data transmission phase. During the UL training
phase, all MSs transmit training pilots allowing the active
APs to estimate the propagation channels to every MS in
the network. Channel estimates are then used to detect the
signals transmitted from the MSs in the UL payload data
transmission phase and to compute the precoding filters gov-
erning theDL payload data transmission. The combined dura-
tion/bandwidth of the training, UL and DL phases, denoted
as τp, τu and τd , respectively, should not exceed the coher-
ence time/bandwidth of the channel, denoted as τc, that is,
τp + τd + τu ≤ τc, with all these intervals specified in
samples (or channel uses) on a time-frequency grid. It is
worth pointing out at this point that although the small-scale

parameters characterizing the propagation channels linking
the APs and MSs can only be safely assumed to be static over
a coherence time-frequency interval of τc samples, the large-
scale parameters (i.e., path loss propagation losses and spatial
covariance matrices) can be safely assumed to be static over
a time-frequency interval τLc � τc [12], [28]. These par-
ticular channel characteristics will be leveraged in the next
subsections to simplify both the channel estimation and the
precoding/combining processes.

A. SPATIAL MODELING OF THE MS DISTRIBUTION
As we are interested in exploring the impact ASO strategies
may have on the performance of cell-free mmWave massive
MIMO networks with a non-uniform spatial traffic distribu-
tion, the location of MSs on the service area will be modeled
using the approach proposed by Lee et al. in [27]. This spatial
trafficmodel generates large-scale spatial traffic variations by
resorting to the use of sums of sinusoids capturing the charac-
teristics of spatially correlated log-normally distributed traf-
fic. In particular, let us consider an square area S of side D.
This target region is tessellated in a regular grid of NX by
NY rectangular cells (or pixels). A cell (or pixel) (x, y) where
x ∈ {1, . . . ,NX } and y ∈ {1, . . . ,NY }, is characterized by a
traffic density demand ρx,y (in MSs per pixel). To generate a
log-normal distributed traffic map, a Gaussian random field
is first produced as

ρGx,y =
2
√
T

T∑
t=1

cos
(
i(u)t <{px,y} + θ

(u)
t

)
× cos

(
j(u)t ={px,y} + φ

(u)
t

)
, (1)

where px,y = <{px,y} + j={px,y} is used to denote the
location (on a complex plane) of the center of pixel (x, y).
The angular frequencies i(u)t and j(u)t are random variables
uniformly distributed in the range [0, ωSmax], where ω

S
max is

defined as themaximum spatial spread used to control the rate
of fluctuations of the random field in the area S, and phases
θ
(u)
t and φ(u)t are random variables uniformly distributed in
the range [0, 2π ]. According to the central limit theorem, for a
large enough value of T , the symbol ρGx,y can be approximated
as a standard Gaussian random variable. In [27], Lee et al.
found that using T = 10 provides sufficiently accurate
results.

By calculating the exponential function of ρGx,y with the
location parameterµS and the scaling parameter σS , a spatial
traffic density matrix can be obtained whose elements ρx,y,
for all x ∈ {1, . . . ,NX } and y ∈ {1, . . . ,NY }, can be
expressed as

ρx,y = exp
(
σSρGx,y + µ

S
)
. (2)

These random variables are log-normally distributed and by
controlling the parametersµS and σS the corresponding log-
normal distribution can be scaled to fit the statistics of the
traffic distribution experienced in different scenarios [27].
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FIGURE 2. Probability density function of the number of MSs per pixel on
a square grid of side D = 500 m and square pixels of side 5 m in an urban
scenario (see parameters in [27, Table 1]).

The probability density function (pdf) of the number of MSs
per pixel can be finally calculated as

fMS
x,y =

ρx,y∑NX
x ′=1

∑NY
y′=1 ρx ′,y′

. (3)

For instance, Fig. 2 represents the pdf characterizing the
number of MSs per pixel on a square grid of side D = 500
m and square pixels of side 5 m using ωSmax =0.012673,
µS
=17.7956 and σS =2.1188, which are characteristic

values of urban scenarios according to [27, Table 1].

B. CHANNEL MODEL
Compared to lower frequency bands, propagation in the
mmWave band is characterized by very high distance- and
penetration-based propagation losses that lead to sparse scat-
tering multipath propagation, thus boosting the importance
of line-of-sight (LOS) propagation, reflection and blockage.
Furthermore, high antenna correlation levels may be expected
because of the use ofmmWave transmitters and receivers with
tightly-packet large antenna arrays. The peculiarities of these
mmWave channels can be captured by using a simplified clus-
tered channel model version inspired by the third generation
partnership project (3GPP) for Urban Micro-cell scenarios
described in [29] and by a variety of research works (see [8],
[16], [30], [31] and references therein).

According to this simplified clustered channel model,
the propagation link between the mth AP and MS k can
be either in outage, in LOS or in non-line-of-sight (NLOS)
conditions with probabilities [8]

pout(dmk ) = max
(
0, 1− e−aoutdmk+bout

)
, (4a)

pLOS(dmk ) = (1− pout(dmk )) e−aLOSdmk , (4b)

pNLOS(dmk ) = 1− pout(dmk )− pLOS(dmk ), (4c)

respectively, where dmk is the distance (in meters) between
the AP and the MS. The parameters governing these proba-
bilities are set to 1/aout = 30 m, bout = 5.2, and 1/aLOS =
67.1 m (see [8, Table 1]). When in outage conditions, this
propagation link will be characterized by infinite propagation
losses. When in LOS or NLOS conditions, however, a stan-
dard linear model with shadowing will be used that can be
expressed as [29]

Lmk [dB] = α + 10β log10(dmk )+ χmk , (5)

where α and β are frequency-dependent least square fits of
floating intercept and slope, respectively, and are selected
according to whether the link is in LOS or NLOS, and the
large-scale shadow fading component χmk is modelled as a
zero mean spatially correlated normal random variable with
standard deviation σχ .

Based on the large-scale propagation loss model just
described, the channel vector h̆mk ∈ CN×1 from the kth
MS to the mth AP (including both large-scale and small-
scale fading) can be generically characterized as a Ricean
fading channel consisting of a LOS component on top of
a Rayleigh distributed component modelling the scattered
multipath. That is,

h̆mk =

√
Kmk

Kmk + 1
hmk +

√
1

Kmk + 1
hmk , (6)

with a normalized LOS component

hmk = αmka
(
θmk,1, φmk,1

)
, (7)

and a normalized NLOS component

hmk =
Cmk∑
c=1

Pmk∑
p=1

αmk,cpa
(
θmk,cp, φmk,cp

)
, (8)

where Kmk is the Ricean K -factor, with Kmk = 0 for NLOS
propagation links and 10 log10(Kmk ) ∼ N

(
µK , σ

2
K

)
for LOS

propagation links. The parameter αmk = 10−Lmk/20ejκmk , with
κmk ∼ U[0, 2π ], is used to denote the large-scale com-
plex channel gain of the LOS component, Cmk and Pmk are
the number of contributing scattering clusters of the NLOS
component and the number of propagation paths per cluster,
respectively, αmk,cp is the complex small-scale fading gain
on the pth path of cluster c, and a

(
θmk,cp, φmk,cp

)
is the

normalized array response vector of the AP at the azimuth
and elevation angles θmk,cp and φmk,cp, respectively.

As suggested by Akdeniz et al. in [8], θmk,cp can be gener-
ated as a wrapped Gaussian around the cluster central angle
θmk,c with standard deviation given by the root mean square
(rms) azimuth angular spreads for the cluster. Furthermore,
φmk,cp can be generated as a Laplacian around the cluster
central angle φmk,c with scale parameters given by the rms
elevation angular spreads for the cluster. The azimuth clus-
ter central angle θmk,c is uniformly distributed in the range
[−π, π] and the elevation cluster central angle φmk,c is set
to the corresponding LOS elevation angle. The cluster rms
angular spreads are exponentially distributed with a mean
equal to 1/λrms that depends on whether we are considering
the azimuth or elevation directions. The small-scale scattering
fading gains are distributed as

αmk,cp ∼ CN
(
0, γmk,c10−Lmk/10

)
, (9)

where the cluster c is assumed to contribute to the scatter
fading with a fraction of power given by

γmk,c =
Nγ ′mk,c

Pmk
∑Cmk

j=1 γ
′
mk,j

, (10)
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with

γ ′mk,j = U rτ−1
mk,j 10

Zmk,j/10, (11)

where Umk,j ∼ U[0, 1], Zmk,j ∼ N (0, ζ 2), and the constants
rτ and ζ 2 being treated as model parameters [8].

Using this channel propagation model, the spatial covari-
ance matrix of the scattered multipath component hmk can be
obtained as

Rmk =E
{
hmkhHmk

}
= 10−Lmk/10

Cmk∑
c=1

γmk,c

×

Pmk∑
p=1

a
(
θmk,cp, φmk,cp

) (
a
(
θmk,cp, φmk,cp

))H
. (12)

and the spatial covariance matrix of the resulting channel
vector h̆mk can thus be expressed as

R̆mk = E
{
h̆mk h̆

H
mk

}
=

Kmk
Kmk + 1

hmkh
H
mk +

Rmk
Kmk + 1

. (13)

As stated by Özdogan et al. in [32], these spatial covari-
ance matrices, as well as the propagation path losses, Ricean
K -factors, and channel means, can be considered to be con-
stant over frequency-time intervals much larger than the
coherence interval τc and, consequently, they can be straight-
forwardly estimated in practice using the sample mean and
sample covariance matrices [33]–[36].

C. RF PRECODER/COMBINER DESIGN
Without loss of essential generality, it is assumed in this paper
that a hybrid precoding technique is used in which each RF
chain is dedicated to one and only one MS. In particular,
if K ≤ L, all active APs in the network provide service to the
K MSs and only K RF chains per AP are activated (one for
each MS in the network). If K > L, instead, each active AP
can only serve a subset of L MSs (one for each RF chain) and
thus, an algorithm must be devised to decide which are the
subsets ofMSs to be beamformed from each of the active APs
while ensuring that theK MSs are simultaneously served. The
number of active RF chains per AP can then be generically
expressed as LA = min{K ,L} (see Fig. 1b).

Channel reciprocity is exploited by implementing an
N × LA RF precoding matrix WRF

m , describing the effects
of the active analog phase shifters at the mth active AP,
which is common to the UL (RF combining phase) and
DL (RF precoding phase). Furthermore, denoting by Km ={
κm1, . . . , κmLA

}
the set of LA MSs beamformed by the mth

AP, it is assumed that WRF
m is a function of only the spatial

channel covariance matrices
{
R̆mk

}
k∈Km

, known at the mth

AP through spatial channel covariance estimation for hybrid
analog-digital MIMO precoding architectures [37]–[39]. The

Algorithm 1 Selection of MSs to Beamform From Each AP

Input: ξmk ∀mk,MA, MA, L, K
Initialization: K(0)

m = {1, . . . ,K } ∀m
M(0)

k =MA
∀k

A =MA

for i = 1 : MA(K − L) do
{Find edge producing max-min ξ (i)k when removed}
(m∗, k∗) = arg max

k∈{1,...,K }
min
m∈A

∑
n∈M(i−1)

k \m

ξnk

{Remove k∗ from the set of MSs served by AP m∗}
K(i)
m∗ = K(i−1)

m∗ \ k
∗

{Remove m∗ from the sets of APs serving MS k∗}
M(i)

k∗ =M(i−1)
k∗ \ m∗

{Update set of APs already serving L MSs}
if
∣∣∣K(i)

m∗

∣∣∣ = L then
A = A \ m∗

end if
end for
Output: Km = K(MA(K−L))

m ∀m ∈MA

use of long-term channel statistics such as the spatial covari-
ance matrices is a reasonable approach as they vary over very
long time scales and, moreover, they can be safely assumed
to be uniform across the whole system bandwidth, thus pro-
viding a good solution to the problem of designing a common
analog precoder for all subcarriers [39].

The Hermitian covariance matrix of the propagation chan-
nel linking MS k and AP m can be factorized using eigen-
decomposition as R̆mk = Umk3mkUH

mk , where 3mk =

diag
([
λmk,1 . . . λmk,rmk

])
contains the rmk non-null eigenval-

ues of R̆mk , andUmk is the N × rmk matrix of the correspond-
ing eigenvectors. This eigen-factorization can be exploited to
design the analog RF precoder/combiner stage by using the
well-known (constrained) statistical eigen beamforming [39],
[40], where

WRF
m =

[
wRF
mκm1 . . . w

RF
mκmLA

]
=

[
e−j
6 umκm1,max . . . e

−j6 umκmLA ,max
]
, (14)

with umk,max denoting the dominant eigenvector of R̆mk asso-
ciated to the maximum eigenvalue λmk,max, and the function
6 x returning the phase angles, in radians, for each element of
the complex vector x. The equivalent channel vector between
MS k and APm, including the analog RF precoder/combiner,
can then be defined as

gmk = WRF
m

T
h̆mk ∈ CLA×1, (15)

whose dimension LA is typicallymuch less than the number of
antennas of the massive MIMO array, thus making the small-
scale training phase computationally simpler.

D. SELECTION OF MSs TO BEAMFORM FROM EACH AP
As we only consider the use of analog precoding/decoding
stages in which each RF chain at a given AP is dedicated
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to a single MS, in those cases in which the number of MSs
is greater than the number of available RF chains at each
AP (i.e., K > L), the group of L MSs to beamform from
each active AP in the cell-free network, indexed by the sets
Km = {κm1, . . . , κmL}, for all m ∈ {1, . . . ,M}, will have to
be selected. Furthermore, as the RF beamforming/decoding
matrices at the APs are designed assuming only the avail-
ability of the large-scale spatial channel covariance matrices,
this selection process can only be based on this large-scale
CSI. Inspired by the Frobenius norm-based suboptimal user
selection algorithm proposed by Shen et al. in [41], an iter-
ative selection algorithm was proposed in [16] that, under
the constraint that each AP can only beamform to L MSs,
aims at maximizing the minimum average sum energy of the
equivalent channels between theMA active APs and any of the
K MSs in the network. Note that, using this algorithm, each
active AP will beamform to exactly L MSs and each MS will
be beamformed by at least one AP.

At the beginning of the ith iteration of the algorithm,
a simple edge-weighted directed graph withMA source nodes
and K sink nodes is used to represent the cell-free massive
MIMO network. In this directed graph, the mth source node,
which represents the mth active AP, is connected to a group
K(i)
m of sink nodes, used to represent the MSs to be potentially

beamformed from the mth active AP. The average energy
of the equivalent channel linking the mth active AP and MS
l ∈ K(i)

m , which can be obtained as

ξml = E
{∣∣∣wRF

ml
T
h̆ml

∣∣∣2} = wRF
ml

T
R̆mlwRF

ml
∗
, (16)

is used to weight the connection (edge) joining themth source
node and the lth sink node in K(i)

m . Using this notation,
the average sum energy of the equivalent channels between
the MA active APs and MS k at the beginning of the ith
iteration can be obtained as

E (i)
k =

∑
m∈M(i)

k

ξmk , (17)

where M(i)
k is the set of active APs selected in previous

iterations to beamform toMS k . The reverse-delete algorithm
is used in this iteration to remove the edge (i.e., the RF chain
and associated beamformer) coming from one of those active
APs still beamforming to more than L MSs that maximizes
the minimum average sum energy per MS after removal. The
proposed algorithm, starting with a fully connected graph,
stops after MA(K − L) iterations with all active APs in MA

beamforming to exactly L MSs. A mathematical pseudocode
for this algorithm is shown in Algorithm 1.

E. SMALL-SCALE TRAINING PHASE: CHANNEL
ESTIMATION
During the UL training phase, all K MSs simultaneously
transmit pilot sequences of τp samples to the active APs and
thus, the LA × τp received UL signal matrix at the mth active

AP can be expressed as

Ypm =
√
τpPp

K∑
k ′=1

gmk ′ϕ
T
k ′ + Npm, (18)

where Pp is the transmit power of each pilot symbol, ϕk
denotes the τp × 1 pilot signal allocated to MS k , with
‖ϕk‖

2
= 1, and Npm is an LA × τp matrix of i.i.d. additive

noise samples with each entry distributed as1 CN (0, σ 2
u (N )).

Note that, since in most practical scenarios it holds that K >

τp, a given pilot sequence will be allocated to more than one
MS and, hence, pilot contamination will arise [28], [42].

As previously stated, considering scenarios where MSs
move slowly, it is reasonable to assume that the Ricean K -
factors Kmk , the LOS components hmk , and the scatter fading
correlation matrices Rmk change slowly and can be perfectly
known at themth active AP, for all k [43]. Under this assump-
tion, we can define

y̆pmk =
(
Ypm − E

{
Ypm

})
ϕ∗k

=

(
K∑

k ′=1

√
τpPp

Kmk ′ + 1
WRF

m
T
hmk ′ϕTk ′+Npm

)
ϕ∗k (19)

and

ğmk = gmk − E
{
gmk

}
=

√
1

Kmk + 1
WRF

m
T
hmk , (20)

and then derive the minimum mean square error (MMSE)
estimate for the channel between the kth MS and the mth
active AP as [43], [44]

ĝmk =

√
Kmk

Kmk + 1
WRF

m
T
hmk

+E
{
y̆pmk ğ

H
mk

} (
E
{
y̆pmk y̆

H
pmk

})−1
y̆pmk

=

√
Kmk

Kmk + 1
WRF

m
T
hmk

+

√
τpPp

Kmk + 1
RRF
mk9

−1
mk y̆pmk , (21)

where

RRF
mk = WRF

m
T
RmkWRF

m
∗
, (22)

1Note that in theUL of a fully-connected hybrid beamforming architecture
each reception chain is composed of N antenna elements, each connected
to a low-noise amplifier (LNA) characterized by a power gain GLNA and
a noise temperature TLNA. Each of the N LNAs feeds an analog passive
phase shifter characterized by an insertion loss LPS. The outputs of the N
phase shifters are introduced to a power combiner whose insertion losses
are typically proportional to the number of inputs, that is, LPC = NLPCin .
Finally, the output of the power combiner is introduced to an RF chain
characterized by a power gain GRF and a noise temperature TRF. Thus,
the equivalent noise temperature of each receive chain can be obtained as

Tu = N
(
T0 + TLNA +

T0(LPSLPCin−1)
GLNA

+
TRFLPSLPCin

GLNA

)
.

VOLUME 8, 2020 137593



J. García-Morales et al.: Energy-Efficient Access-Point Sleep-Mode Techniques

and

9mk = τpPp
K∑

k ′=1

RRF
mk ′

Kmk ′ + 1

∣∣∣ϕHk ′ϕk ∣∣∣2 + σ 2
u (N )ILA . (23)

The channel estimate ĝmk and the MMSE channel estimation
error g̃mk = gmk − ĝmk are uncorrelated random vectors
distributed as

ĝmk ∼ CN
(√

Kmk
Kmk + 1

WRF
m

T
hmk , Âmk

)
, (24)

and g̃mk ∼ CN
(
0, Ãmk

)
, respectively, where

Âmk =
τpPpRRF

mk9
−1
mk

(
RRF
mk

)H
(Kmk + 1)2

, (25)

is the covariance matrix of ĝmk and

Ãmk = E
{
g̃mk g̃

H
mk

}
=

RRF
mk

Kmk + 1
− Âmk (26)

is the covariance matrix of g̃mk .

F. DOWNLINK PAYLOAD DATA TRANSMISSION
Let us define sd = [sd 1 . . . sdK ]T as the K × 1 vector
of symbols jointly transmitted to the K MSs, such that
E
{
sd sHd

}
= IK . Assuming the use of a centralized baseband

precoder at the CPU, symbol vector sd undergoes some signal
processing operations before being transmitted, including a
power allocation process and a baseband precoding task at
the CPU, and an RF precoding process at the APs. Thus,
the transmitted signal vector from the mth active AP can be
generically expressed as

xm = WRF
m WBB

d mϒ
1/2sd , (27)

with WBB
d m =

[
wBB
dm1 . . . w

BB
dmK

]
∈ CLA×K denoting the

baseband precodingmatrix affecting the signal transmitted by
themth active AP, andϒ = diag ([υ1 . . . υK ]) being aK×K
diagonal matrix containing the power control coefficients in
its main diagonal. The power control coefficients are chosen
to satisfy the power constraints

E
{
‖xm‖2

}
=

K∑
k=1

υkθ
BB/RF
mk ≤ Pm, (28)

for all m ∈MA, where we have used the definition

θBB/RFmk = E
{∥∥∥WRF

m wBB
dmk

∥∥∥2} , (29)

and Pm is the maximum average transmit power available at
AP m. Using this notation, the signal received by MS k can
be expressed as

yd k =
∑

m∈MA

h̆
T
mkxm + nd k , (30)

where nd k ∼ CN (0, σ 2
d ) is the noise sample at MS k .

The vector yd =
[
yd 1 . . . ydK

]T containing the signals
received by the K scheduled MSs in the network can be
written as

yd =
∑

m∈MA

H̆
T
mxm + nd

=

∑
m∈MA

H̆
T
mW

RF
m WBB

d mϒ
1/2sd + nd

= GTWBB
d ϒ1/2sd + nd , (31)

where H̆m =

[
h̆m1 . . . h̆mK

]
∈ CL×K represents the

MIMO channel between the mth active AP and the K MSs,

WBB
d =

[
WBB

d mA1

T
. . . WBB

d mAMA

T
]T

∈ CMALA×K is the

digital precoding filter stage implemented at the CPU, G =
[GT

mA1
. . . GT

mAMA
]T ∈ CMALA×K is the global equivalent

MIMO channel (including the RF precoding/decoding matri-
ces) between the K MSs and the digital processing stage at
the CPU, with Gm = WRF

m
T
H̆m representing the equivalent

MIMO channel matrix between the K MSs and the digital
processing stage corresponding to the mth active AP and,
finally, nd = [nd 1 . . . ndK ]T is the vector containing the
noise samples at the MSs.
Assuming the use of the classical ZF multiuser-MIMO

(MU-MIMO) baseband precoder to tackle the spatial multi-
plexing, we have that

WBB
d = Ĝ

∗
(
Ĝ
T
Ĝ
∗
)−1

(32)

or, equivalently,

WBB
d m = Ĝ

∗

m

(
Ĝ
T
Ĝ
∗
)−1
∀m ∈MA, (33)

where we have assumed that G = Ĝ + G̃ and Gm = Ĝm +
G̃m. Consequently, the signal received by the kth MS can be
expressed as

yd k = gTk Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

ϒ1/2sd + nd k

=

(
ĝTk + g̃

T
k

)
Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

ϒ1/2sd + nd k

=
√
υksd k + g̃

T
k Ĝ
∗
(
Ĝ
T
Ĝ
∗
)−1

ϒ1/2sd + nd k (34)

The first term denotes the useful received signal, the sec-
ond term contains the interference terms due to the use of
imperfect CSI (pilot contamination), and the third term is the
thermal noise sample.

G. UPLINK PAYLOAD DATA TRANSMISSION
In the UL, the vector of received signals at the output of the LA
RF chains (including the RF phase shifters) of the mth active
AP is given by

rum =
√
Pu

K∑
k ′=1

gmk ′
√
ωk ′suk ′ + num

=

√
PuGm�1/2su + num, (35)
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where Pu is the maximum average UL transmit power avail-
able at any of the active MSs, su = [su1 . . . suK ]T denotes
the vector of symbols transmitted by the K MS, � =

diag([ω1 . . . ωK ]), with 0 ≤ ωk ≤ 1, is a matrix con-
taining the power control coefficients used at the MSs, and
num ∼ CN (0, σ 2

u (N )ILA ) is the vector of additive thermal
noise samples at the output of the LA RF chains of the mth
active AP. The received vector of signals at each of the active
APs in MA is forwarded to the CPU where it is processed
using a baseband combining matrix. In particular, assuming
the use of ZF MIMO detection, the CPU uses the detection
matrix

WBB
u =

(
Ĝ
H
Ĝ
)−1

Ĝ
H
= WBB

d
T

(36)

or, equivalently

WBB
um =

(
Ĝ
H
Ĝ
)−1

Ĝ
H
m = WBB

dm
T
, ∀m ∈MA, (37)

to jointly process the vector zu =
[
zuT1 . . . zu

T
M

]T and obtain
the vector of detected samples

yu = WBB
u zu =

√
PuWBB

u G�1/2su + ηu
=

√
Pu�1/2su +

√
PuWBB

u G̃�1/2su + ηu, (38)

where ηu = WBB
u nu. Again, the first term denotes the useful

received signal, the second term contains the interference
terms due to the use of imperfect CSI, and the third term
includes the thermal noise samples. The detected sample
corresponding to the symbol transmitted by the kth MS can
then be obtained as

yuk =
√
Puω

1/2
k suk +

√
Pu
[
WBB

u G̃�1/2su
]
k
+ ηuk , (39)

where [x]k denotes the kth entry of vector x.

III. PERFORMANCE METRICS
A. SPECTRAL EFFICIENCY
Analysis techniques similar to those applied, for instance,
in [3], [5], [28], [45]–[47], are used in this section to derive
DL and UL spectral efficiencies (also known as achievable
rates). In particular, the sum of the second and third terms
on the right hand side (RHS) of (34), for the DL case, and
(39), for the UL case, are treated as effective noise. The
additive terms constituting the effective noise are, in both
DL and UL cases, mutually uncorrelated, and uncorrelated
with sd k and suk , respectively. Therefore, both the desired
signal and the so-called effective noise are uncorrelated. Now,
recalling the fact that uncorrelated Gaussian noise represents
the worst case, from a capacity point of view, and that the
complex-valued fast fading random variables characterizing
the propagation channels between different pairs of AP-
MS connections are independent, the DL and UL spectral
efficiencies (measured in bits per second per Hertz) can be
obtained as follows. The DL spectral efficiency is given by

Sed (υ) =
K∑
k=1

Sedk (υ) =
τd

τc

K∑
k=1

log2 (1+ SINRd k) , (40)

with

SINRd k =
υk∑K

k ′=1 υk ′$kk ′ + σ
2
d

, (41)

where

$kk ′ =

[
diag

(
E
{
WBB

d
H
g̃∗k g̃

T
k W

BB
d

})]
k ′
. (42)

Analogously, the UL spectral efficiency is given by

Seu(ω) =
K∑
k=1

Seuk (ω) =
τu

τc

K∑
k=1

log2 (1+ SINRuk) , (43)

with

SINRuk =
Puωk

Pu
∑K

k ′=1 ωk ′δkk ′ + σ
2
ηuk

(N )
, (44)

where

δkk ′ =
[
diag

(
E
{
WBB

u g̃k ′ g̃
H
k ′W

BB
u

H
})]

k
, (45)

and

σ 2
ηuk

(N ) = σ 2
u (N )

[
diag

(
E
{
WBB

u WBB
u

H
})]

k
. (46)

B. POWER CONSUMPTION MODEL
In a cell-free massive MIMO network implementing an ASO
strategy, APs can be either in active or sleep mode. More-
over, an AP in active mode can be either receiving signals
during the UL training and payload data transmission phases,
or transmitting information during the DL payload data trans-
mission phase. When in active mode, the power consumption
at the mth AP depends on the UL spectral efficiency Seu(ω)
during the UL payload data transmission phase or on the
radiated power Ptxm during the DL payload data transmission
phase. But it also depends on parameters such as the effi-
ciency of the power amplifier, the power consumed by the
small-signal RF transceiver and the baseband circuitry, or the
losses produced by the feeder, the DC-DC power supply,
the main supply, or the cooling system [48]–[52]. When in
the sleep mode, the AP is kept in a state allowing a fairly
rapid activation and hence it is not completely turned off.
It is thus in a reduced power consumption state in which,
although it is not radiating or receiving power, there are
components such as the power supply, some of the signal
processing blocks, and part of the cooling system that are
still active and thus consuming power. Accordingly, a linear
model can be used to approximate the total power consumed
at the mth AP as (see, for instance, [48]–[52] and references
therein)

PAPm =


Ptxm(υ)
αAPm

+ PAP,fixmd + LAP
AP,chain
md DL Active

BξAPm Seu(ω)+ PAP,fixmu + LAPAP,chainmu UL Active
PAP,fixm sleep + LAP

AP,chain
m sleep Sleep,

(47)
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where αAPm is the power amplifier efficiency at the mth AP, B
is the system bandwidth, ξAPm is the traffic-dependent power
consumption coefficient (in Watt per bit/s), PAP,fixmd and PAP,fixmu
denote, respectively, the DL and UL power consumption fig-
ures that are independent of both the number of RF chains and
the traffic load, PAP,chainmd and PAP,chainmu model the DL and UL
traffic-independent power consumed by the circuitry related
to each RF chain of the mth AP, respectively and, finally,
PAP,fixm sleep and PAP,chainm sleep are the RF chain-independent and RF
chain-dependent power consumed by the mth AP when in
sleep mode.

A similar power consumption model can be established for
the fronthaul links connecting the APs to the CPU. In partic-
ular, the power consumed by the mth fronthaul link when in
active mode depends on the amount of traffic it has to convey
and, thus, the total power consumption can be approximated
as [2], [53]

PFHm =


BξFHm Sed (υ)+ PFH,fixm DL Active
BξFHm Seu(ω)+ PFH,fixm UL Active
PFH,fixm sleep Sleep,

(48)

where ξFHm is the traffic-dependent power consumption coef-
ficient (in Watt per bit/s), PFH,fixm is the traffic-independent
power consumption when in active mode, and PFH,fixm sleep
accounts for the power consumed by the mth fronthaul link
when in sleep mode.

The power consumption model for the MSs can also be
approximated as

PMS
k =

Bξ
MS
k Sedk (υ)+ P

MS,fix
k d DL

Puωk
αMS
k

+ PMS,fix
k u UL,

(49)

where, again, αMS
k is the power amplifier efficiency at the kth

MS, ξMS
k is the traffic-dependent power consumption coeffi-

cient (in Watt per bit/s), PMS,fix
k d and PMS,fix

k u model the power
consumed by the internal circuitry of the MS independently
of the average radiated power, and Sedk (υ) denotes the DL
spectral efficiency of the kth MS.
Putting all the pieces together, the total power consumption

of the cell-free massive-MIMO network can be modeled as

PT d (υ) = PfixTd + B
K∑
k=1

ξMS
k Sedk (υ)

+

M∑
m=1

(
τd

τc

Ptxm(υ)
αAPm

+ BξFHm Sed (υ)
)
, (50)

for the DL payload data transmission phase, and as

PT u(ω) = PfixTu +
K∑
k=1

τu

τc

Puωk
αMS
k

+B
M∑
m=1

(
ξAPm + ξ

FH
m

)
Seu(ω), (51)

for the UL payload data transmission phase, with

PfixTl =
τl

τc

[
K∑
k=1

PMS,fix
k l

+

M∑
m=1

(
PFH,fixm + PAP,fixm l + LAP

AP,chain
m l

)
+

M∑
m=1

(
PFH,fixm sleep + P

AP,fix
m sleep + LAP

AP,chain
m sleep

)]
(52)

where l has been used as a token to represent either the DL
(l = d) or the UL (l = u). As stated by Desset et al. in [50],
although this simple linear model is not designed to provide
very accurate absolute figures, it will enable a fair comparison
among different on/off switching strategies for green cell-free
massive-MIMO networking.

C. ENERGY EFFICIENCY
The energy efficiency during the DL and UL payload data
transmission phases can be expressed as

Eed (υ) =
BSed (υ)
PT d (υ)

(53)

and

Eeu(ω) =
BSeu(ω)
PT u(ω)

, (54)

respectively. We can also define a weighted energy efficiency
metric as

Ee(υ,ω) = (1− µ)Eed (υ)+ µEeu(ω), (55)

where 0 ≤ µ ≤ 1 is a weighting coefficient allowing for the
control of a trade-off between DL andUL energy efficiencies.

IV. AP SWITCHING STRATEGIES BASED ON
GOODNESS-OF-FIT
Optimal ASO strategies aim at activating the subset of MA
APs providing the maximum energy efficiency. Determining
the optimal subset of APs, however, is an NP-hard problem
that calls for the evaluation of the performance provided by all
possible combinations ofMA out ofM APs. Hence, the imple-
mentation of computationally feasible selection strategies
will only be possible by relying on the development of heuris-
tic suboptimal algorithms. In the following we describe some
heuristic ASO strategies that are based on the GoF theory.
Under ideal conditions, the set of selected APs should be
adapted to scenario variations due to, among others, changes
in the number and/or location of MSs or changes in the
geographical distribution of shadow fading. In most practical
situations, however, these variations occur too quickly so as
to allow the implementation of realistic ASO schemes that
can adapt to them. The GoF-based ASO strategies have been
specifically designed to cope with long-term non-uniform
spatial traffic densities. In particular, it seems intuitively sat-
isfactory to try to match the spatial distribution of active APs
to that of the MSs in the network in an attempt to selectively
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activate that parts of the network where most likely active
users are located. This is the rational behind the GoFmethods
presented next. The performance provided by these ASO
schemes will be benchmarked against that provided by three
of the ASO strategies previously proposed in [25], that have
been suitably adapted to the mmWave scenario:
• random selection ASO (RS-ASO): Active APs are ran-
domly selected and the only parameter that is optimized
in trying to maximize the energy efficiency of the net-
work is the number of active APs as a function of
the number (or spatial density) of MSs in the serviced
area. The energy efficiency performance improvement
provided by the elementary RS-ASO strategy will serve
as a lower bound on the performance improvement any
other sensible ASO scheme may bring along.

• minimum propagation losses-aware ASO (MPL-ASO):
The set MA of active APs is selected based on large-
scale propagation losses between APs and MSs. For
those cases in which MA ≥ K , the algorithm selects
(in an ordered manner) the group of MA APs showing
the minimum propagation losses to the K MSs in the
network. For those cases inwhichMA < K , instead, a set
ofMA virtualMSs is first generated by relying on the k-
means clustering method and the previously described
procedure is then applied to the virtual MSs to select the
set of active APs. A detailed explanation of this ASO
strategy can be found in [25]. It is important to note at
this point that the pace at which the APs would have to
be switched on/off under this strategy would be so high
that it would be hardly implementable in practice.

• optimal energy efficiency-based greedy ASO (OG-ASO):
This is an iterative greedy algorithm that, starting with
the M available APs in the first iteration, in the ith iter-
ation of the algorithm evaluates the (M +1− i) possible
configurations of (M − i) active APs resulting from
switching off one of them, and selects the configuration
maximizing the energy efficiency. The algorithm iterates
until obtaining the configuration of active APsmaximiz-
ing the energy efficiency of the network. The energy
efficiency performance improvement provided by this
unrealistic ASO strategy will serve as an upper bound
against which to compare the performance provided by
the other ASO schemes.

A. MOTIVATION FOR GOODNESS-OF-FIT
When a particular probability distribution has been specified
to model a random phenomenon (such as the spatial dis-
tribution of MSs) the validity of the specified or assumed
distribution model may be statistically verified or disproved
by using GoF tests [54]–[58]. In this context, we can use GoF
techniques to determine which APs should be turned on or off
in such a way that the resulting AP distribution matches the
non-uniform MS distribution.

As previously described in Section II-A, we consider that
the target region is tessellated in a regular grid of NX by
NY rectangular pixels, and the probability density of MSs on

pixel (x, y) is denoted as f MSx,y . For a given set MA of active
APs, we can determine an estimate of the probability density
of APs f APx,y on this particular pixel as

fAPx,y =
M (x,y)
A

MA
, (56)

where M (x,y)
A is the number of active APs on pixel (x, y),

and MA is the number of active APs in the target region.
Thus, relying on (56), the GoF techniques can establish a
link between the spatial distribution ofMSs (i.e., fMS

x,y values)

and the spatial distribution of active APs (i.e., fAPx,y values).
In particular, in the following subsections three novel ASO
strategies are proposed: two of them are based on widely
applied GoF techniques [54], namely, the Chi-square test, and
the Kolmogorov-Smirnov test, and the third one is based on
the concept of statistical energy, described byAslan and Zech
in [59]. The optimal number of active APs (under any of the
proposed GoF-based ASO strategies) when serving a given
amount of MSs would be the one providing the maximum
energy efficiency.

B. CHI-SQUARE BASED ASO
The Chi-square test (ChiS) is closely connected to a least
square fit between the observed normalized frequencies of
APs per pixel {fAPx,y }∀(x,y) with the corresponding theoretical

probability densities {fMS
x,y }∀(x,y). Given a setMA of selected

active APs, the GoF metric implemented by the ChiS test can
be expressed as

D(ChiS)
MA =

NX∑
x=1

NY∑
y=1

(
fAPx,y − f

MS
x,y

)2
fMS
x,y

. (57)

The lower the value ofD(ChiS)
MA the better theGoF between the

spatial distributions of MSs and active APs. Hence, by using
(57) the optimal ChiS-based ASO (ChiS-ASO) algorithm
would be the one selecting the APs whose corresponding
D(ChiS)
MA value is minimum. Having a large number of APs

in the network, however, NP-hardness forbids the implemen-
tation of a brute force algorithm to solve this optimization
problem. Consequently, an iterative ChiS-ASO algorithm is
proposed that, starting with a set containing all the APs in the
network, in each iteration switches-off the single AP leading
to the minimum D(ChiS)

MA value when removed.

C. KOLMOGOROV-SMIRNOV BASED ASO
The ChiS test just described is an important special case of
the power-divergence statistic [58] and is computationally
simple. Unfortunately, however, it also has a serious draw-
back: as it neglects the correlation between adjacent elements
of the histogram (i.e., between adjacent pixels), it exhibits
a rather poor performance in detecting slowly varying devi-
ations between both the analytical and predicted statistical
distributions [55]. Furthermore, the ChiS scheme requires of a
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large number of intervals and/or samples, that is, it requires of
largeMA, NX and NY values. In this regard, the Kolmogorov-
Smirnov test (KS)-based approach has some advantages over
the ChiS test. In particular, with the KS-based strategy the
problem associated with small number of intervals and/or
samples would not be an issue [55]. Moreover, the KS-
based ASO (KS-ASO) algorithm takes into consideration the
possible correlations between adjacent elements (or pixels)
by using the cumulative distribution functions (CDFs) in
calculating the discrepancy metric.

For the one-dimensional case, the KS test considers simply
the largest absolute difference between the two CDFs as a
measure of misfit. In this case, the result of the test is indepen-
dent of the direction of ordering of the data, that is, it is inde-
pendent of whether we consider the cumulative probabilities
P(x > X ) orP(x < X ). In a multi-dimensional case, however,
defining the CDF as P(x < X , y < Y , . . .) is ambiguous
since the directions in which we choose to order the different
random variables are arbitrary. In fact, in an n-dimensional
case there are 2n − 1 independent ways of defining the
CDF. A straightforward way to avoid the dependency of the
KS test on the particular orderings chosen is to specify the
discrepancy metric as the largest absolute difference between
empirical and theoretical CDFs when all possible ordering
combinations (i.e., 2n) are considered [60], [61]. In our par-
ticular two-dimensional case, this corresponds to recognizing
that the statistical descriptions of the spatial location of both
APs and MSs in all four quadrants of the plane defined by
(x < X , y < Y ), (x < X , y > Y ), (x > X , y < Y ) and
(x > X , y > Y ) are equally valid, and that the discrepancy
metric can be obtained as the largest of the four differences in
empirical and theoretical CDFs. This can be mathematically
expressed as

D(KS)
MA = max

i∈{1,2,3,4}

{
max
x,y

∣∣∣FAP,ix,y − F
MS,i
x,y

∣∣∣} , (58)

where the theoretical and empirical CDFs describing the
spatial distributions of MSs and APs, respectively, in the four
quadrants of the plane can be obtained from fMS

x,y in (3) and

fAPx,y in (56) as

FCE,1x,y =

x∑
i=1

y∑
j=1

f CEi,j , FCE,2x,y =

x∑
i=1

NY∑
j=y

f CEi,j ,

FCE,3x,y =

NX∑
i=x

y∑
j=1

f CEi,j , FCE,4x,y =

NX∑
i=x

NY∑
j=y

f CEi,j , (59)

with CE denoting a token used to represent one of the com-
munication ends, either the AP (i.e., CE = AP) or the MS
(i.e., CE = MS).
Using, once again, a greedy strategy starting with a set

containing all the APs in the network, an iterative KS-ASO
algorithm switches-off, in each iteration, the single AP result-
ing in the minimum D(KS)

MA value when removed.

D. STATISTICAL ENERGY-BASED ASO
In [59], Aslan and Zech introduce the concept of statistical
energy as a tool for multivariate GoF tests. Similar to what is
done when dealing with electric charge distributions, where
charges of opposite sign are in a state of minimum energy
when they are equally distributed, they define the statistical
energy of statistical distributions and use it to mathematically
describe a GoF test.

For a given set MA
=

{
mA1 , . . . ,m

A
MA

}
of active APs,

the statistical energy-based test aims at comparing the sample
of spatial locations of these APs (which follow an unknown
pdf) to the reference theoretical spatial pdf fMS

x,y of the MSs.
To this end, let us first define the location (on a complex
plane) of AP mAl , for all l ∈ {1, . . . ,MA}, as pAPmAl

, with
charge 1/MA. Furthermore, let us use the locations px,y of
pixels (x, y) for all x ∈ {1, . . . ,NX } and y ∈ {1, . . . ,NY },
which conform to the spatial pdf fMS

x,y in (3). Using these
components, the statistical energy test statistic in [59, (3.1)]
can be adapted to our problem at hand as

D(LSE)
MA =

1
MA(MA − 1)

MA∑
l=1

MA∑
n=l+1

Rlog
(∣∣∣pAPmAl − pAPmAn ∣∣∣)

−
1
MA

NX∑
x=1

NY∑
y=1

f MSx,y

MA∑
l=1

Rlog
(∣∣∣px,y−pAPmAl ∣∣∣) , (60)

where the logarithmic distance Rlog(r) = − ln(r + ε), with
ε = 1/(2 NXNY max{f MSx,y }), is used because, as shown in
[59, Fig.2], it provides a reasonably good performance in sce-
narios with very dissimilar spatial distributions (background
contaminations in the notation used by Aslan and Zech in
[59]). Again, a greedy strategy is implemented that, starting
with a set containing all the APs in the network, implements
an iterative logarithmic statistical energy ASO (LSE-ASO)
algorithm that switches-off, in each iteration, the single AP
resulting in the minimum D(LSE)

MA value when removed.

V. NUMERICAL RESULTS
This section presents a comprehensive set of numerical
results to qualitatively and quantitatively assess the perfor-
mance of the proposed ASO strategies in a cell-free mmWave
massive MIMO context in terms of both energy and spectral
efficiencies, and also overall power consumption. Particular
attention is paid to the effects caused by modifying the RF
infrastructure at the APs and the consequences of changing
the density of MSs per area unit and their corresponding
spatial distribution. As generally done in most cell-free back-
ground literature, an scenario is considered where APs are
initially uniformly distributed at random within a square cov-
erage area of side D whose boundaries are wrapped around,
thus effectively simulating the operation of a network with-
out boundary effects. Unlike most previous works, however,
the positions of the MSs follow a non-uniform distribution as
previously explained in Section II-A.
The main parameters used throughout all simulations in

this section are collected in Table 2. These parameters have
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TABLE 2. Summary of default simulation parameters.

been borrowed from a variety of prior research works (see,
for instance, [4], [16], [29], [31], [48], [51], [53]). Results
shown next have been obtained using the heuristic power
allocation introduced by Nayebi et al. in [5, eq. (21)] (i.e.,
υk = Pd/

(
maxm

∑K
k ′=1 θmk ′

)
for all k) for the DL case,

which can be deemed as a computationally simple approxi-
mation to the max-min power allocation approach, and a full-
power transmission strategy (i.e., ωk =1 for all k) for the
UL case. Nonetheless, it should be stressed that the proposed
framework is indeed applicable to any other power allocation
policy (such as those presented in, for example, [2], [3], [5]).
Finally, and following the work in [16], a balanced random
pilot assignment scheme is implemented whereby MSs are
allocated pilot sequences that are sequentially and cyclically
selected from the ordered set of available orthogonal pilots.

A. IMPACT OF THE ASO STRATEGY
We start by assessing in this subsection the performance
achieved by each of the proposed and considered ASO strate-
gies. Towards this end, Fig. 3 shows the impact of the ASO
strategy by depicting the overall average weighted energy

FIGURE 3. Impact of the ASO strategy on the average (equally) weighted
energy efficiency as a function of the number of active APs (weighted
UL/DL scenario with µ = 0.5).

efficiency as a function of the number of active APs when
a DL/UL weighting coefficient µ =0.5 (i.e., DL and UL
are given the same importance) has been enforced. It has
been assumed that the total number of APs in the system
is M = 100 and each of them is equipped with an 8 × 1
uniform linear array (ULA) of vertical half-wave dipoles and
L = 4RF chains. The results in this figure have been obtained
when simultaneously serving K = 16 MSs. As anticipated,
the energy efficiency achieved by the RS-ASO and OG-ASO
schemes act, respectively, as lower- and upper-bounds on the
performance attained by any of the other considered ASO
strategies. Note that the proposedASO schemes can be classi-
fied in three groups as a function of the system state informa-
tion they manage. In particular, the RS-ASO scheme would
be the only member in the first group, comprising those ASO
strategies that are completely unaware of the network state
and thus make blind AP switch-on/off decisions. The sec-
ond group, comprising the goodness-of-fit techniques-based
ASO schemes (i.e., the ChiS-ASO, the KS-ASO and the
LSE-ASO), assume that the spatial distribution of MSs on the
service coverage area is known, and make only use of very
large-scale system-state information in the form of the geo-
graphical location of the APs. It is remarkable the rather sig-
nificant performance improvement provided by these meth-
ods over the pure RS-ASO given their reliance of such a
coarse network-state information. Note how the achievable
energy efficiency increases the more APs are switched-off up
to a certain point where an optimum is reached which, for
this particular number of MSs, is located around MA =24,
20 and 18 active APs for ChiS-ASO, KS-ASO and LSE-ASO
strategies, respectively, which shows a significant deviation
from the optimum reached when relying on RS-ASO, located
aroundMA =34 APs.

The MPL-ASO and OG-ASO strategies make up the third
group, characterized by a certain degree of knowledge of the
short-term network-state information in the form of the large-
scale propagation losses between APs and MSs. Note that
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FIGURE 4. Impact of the ASO strategy on the DL average energy efficiency, spectral efficiency and power consumption as a function of the number
of active APs.

FIGURE 5. Impact of the ASO strategy on the UL average energy efficiency, spectral efficiency and power consumption as a function of the number
of active APs.

these losses are tightly connected to the instantaneous posi-
tions of the users over the coverage area. TheMPL-ASO strat-
egy dynamically adapts to short-term variations of the spatial
distribution of MS and, as shown in Fig. 3, greatly outper-
forms the ASO strategies in the first and second groups. The
energy efficiency provided by this strategy increases when
switching-off some of the APs until onlyMA =14APs are left
active. Finally, the OG-ASO scheme assumes the complete
knowledge of all long-term network-state information nec-
essary to calculate the achievable energy-efficiency, includ-
ing, among others, the channel spatial correlation matrices,
the power control matrices or the power consumption met-
rics and it is seen to outperform the rest of techniques.
However, and rather strikingly, the energy-efficiency perfor-
mance gap between this idealistic approach and the much
simplerMPL-ASO scheme is modest and, moreover, the opti-
mum number of APs to be left active virtually coincides
(MA =14 for MPL-ASO vs MA =13 for OG-ASO).

The energy efficiency, spectral efficiency and power con-
sumption versus the number of active APs is presented
in Figs. 4 and 5 for each of the considered schemes and
for both DL (i.e., µ =0) and UL (i.e., µ =1), respectively.
Note how now, when considering a pure DL setting (Fig. 4),
the optimal number of active APs necessary to serve K =
16 MSs is MA =44, 38, 30 and 26 APs for the RS-ASO,
ChiS-ASO, KS-ASO and LSE-ASO strategies, respectively,
and MA =15 and 13 APs for MPL-ASO and OG-ASO
strategies, respectively. In contrast, when focusing on the UL
case (Fig. 5), the optimal number of active APs necessary
to serve K = 16 MSs is MA =23, 14, 13 and 12 APs for
the RS-ASO, ChiS-ASO, KS-ASO and LSE-ASO strategies,
respectively, and MA =10 and 8 APs for MPL-ASO and
OG-ASO strategies, respectively. Jointly considering DL and
UL it is easy to conclude that, irrespective of the ASO in
use, the DL requires of significantly more infrastructure to
be active when compared to the UL, roughly the double
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FIGURE 6. Average energy efficiency as a function of the number of active APs under scattered (homogeneous), urban and concentrated (hot-spot)
spatial distributions of MSs (weighted UL/DL scenario with µ = 0.5).

number of active APs if energy efficiency optimality is to be
preserved. In fact, it can be generally concluded that for any
fixed number of APs, the energy efficiency of the UL always
exceeds that of the DL. This is basically due to two reasons.
Firstly, the average power consumption metrics in the UL
are considerably lower than the corresponding DL ones. Sec-
ondly, for an optimal number of active APs, the use of full
power transmission in the UL provides a clear advantage,
in terms of spectral efficiency, with respect to the constrained
power control transmission implemented in the DL. If a max-
min power control strategy was implemented in both UL
and UL, an almost identical spectral efficiency performance
would be obtained in both cases (see, for instance, results
presented in [16]), and the energy efficiency advantage shown
by the UL segment would only be due, in this case, to the
lower fixed power consumption.

B. IMPACT OF THE DISTRIBUTION OF MSs
In order to seize how the concentration of MSs influences
the decision to choose the most appropriate scheme to max-
imize the energy efficiency, the effect that parameter σS has
on the network performance is now assessed. In particular,
results shown in Fig. 6 are presented for σS = 2.1188,
which corresponds to an urban common distribution of MSs
and that can serve as a baseline against which to compare
more concentrated distributions (σS = 8.4752) indicating
the presence of hot spots, and more scattered ones (σ S =
0.5297), representative of more homogeneous suburban envi-
ronments. Throughout this figure a symmetric UL/DL split is
considered (µ = 0.5).

The first and foremost effect worthwhile pointing out is
that ASO strategies based on GoF offer an energy efficiency
performance that greatly exceeds the one attained under the
random approach. In fact, note how, as expected, although
the performance of the pure RS-ASO algorithm is quite

acceptable under very homogeneous spatial traffic distribu-
tions, it exhibits a clear degradation as the MS distribu-
tion becomes more heterogeneous (i.e., with increasing σS ).
Among the GoF-based schemes, the homogeneous spatial
distribution is best discriminated by the KS-ASO strategy
and the ChiS-ASO scheme just offers a slight improvement
with respect to the pure random approach. The LSE-ASO
algorithm is also quite powerful under this circumstances and
clearly outperforms the ChiS-ASO scheme. As the concen-
tration of MSs increases, the behaviours of the ChiS-ASO
and KS-ASO strategies invert. In fact, the sensitivity of the
KS-ASO scheme to changes in the spatial distribution ofMSs
proves to be very poor. Remarkably, however, although the
discrimination power of the ChiS-ASO algorithm improves
when dealing with concentrated spatial distributions of MSs,
this ASO strategy is clearly outperformed by the LSE-ASO
approach. Summarizing, even though the KS-ASO scheme
would be the GoF-based strategy of choice in scenarios show-
ing a high degree of homogeneity in the spatial distribution
of MSs, the discrimination power of the LSE-ASO approach
is the one showing less dependence on the traffic spatial
distribution, thus making it the most versatile of them. These
results are very consistent with those presented by Aslan and
Zech in [59].

The MPL-ASO and OG-ASO techniques, owing to their
reliance on far more detailed network information, show
a considerable improvement in energy-efficiency perfor-
mance over the rest of approaches. Moreover, similar to the
GoF-based techniques, and given their inherent capability
to more adequately respond to the spatial distribution of
MSs, they also reflect a very significant improvement with
increasing σS .
Building on the remarks just made, and based on the degree

of use of network-state information, performance and com-
plexity, it can be concluded that the KS-ASO and LSE-ASO,
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FIGURE 7. Impact of the number of MSs on the UL average energy efficiency, spectral efficiency and power consumption as a function of
the number of active APs under the LSE-ASO strategy.

FIGURE 8. Impact of the RF infrastructure used at the APs on the UL average energy efficiency, spectral efficiency and power consumption
as a function of the number of active APs under the LSE-ASO strategy.

among all the proposed ASO strategies, represent the most
adequate schemes to be implemented in a cell-free mmWave
massive MIMO system. In particular, KS-ASO has shown
to be very effective in exploiting mild deviations from MS
distribution homogeneity (σS0.5297), whereas LSE-ASO
provides the best discrimination power when dealing with
spatial distributions of MSs showing a marked heterogeneity.
Owing to its very good performance across a variety of σS

values, indicative of its robustness, results presented over
the next subsections will focus on the use of the LSE-ASO
scheme. Furthermore, without loss of essential generality,
only the optimization of the UL segment (i.e., µ = 1) will be
considered (conclusions drawn by using other ASO strategies
and any other weighting coefficient µ would be qualitatively
equivalent).

C. IMPACT OF THE NUMBER OF MSs IN
THE NETWORK
Figure 7 studies the impact the number of MSs has on the
UL average energy efficiency, spectral efficiency and power

consumption as a function of the number of APs. As it can
be observed, increasing the number of MSs in the network
results in an increase in both the average spectral efficiency
and the average power consumption. However, the dissimi-
lar increments induced in these two metrics result in quite
unalike effects on the average energy efficiency of the net-
work. In particular, fixing the number of active APs, when
increasing the network load (i.e., more MSs), results in aver-
age spectral efficiency increments that more than compensate
for the increase in average power consumption, hence raising
the average energy efficiency. On the contrary, fixing the
number of MSs, increments in the number of active APs
translate into small improvements in spectral efficiency and
a considerable raise of the consumed power, thus resulting in
a substantial deterioration of the average energy efficiency
of the network. Therefore, when aiming at a high energy
efficiency of the a cell-freemmWavemassiveMIMOnetwork
it is of prime concern that the number of active APs is
appropriately adapted to the number of MSs to be serviced.
This insight is in fact reinforced by noting that the optimal
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number of active APs increases with the number of MSs in
the network.

D. IMPACT OF THE RF INFRASTRUCTURE
USED AT THE APs
To understand how the RF infrastructure used at the APs
influences the performance of the system, Fig. 8 represents
the energy efficiency, spectral efficiency and power consump-
tion versus the number of active APs assuming that each of
them is equipped with an 8 × 1 linear uniform array and
use an analog precoder with L = 2, 4 and 8 RF chains.
Note that the latter case indeed corresponds to a system
with fully digital processing capability. Results shown next
have been obtained assuming the use of a LSE-ASO strategy,
and the availability of M = 100 APs to serve K = 16
MSs. Naturally, both the average spectral efficiency and the
power consumption increase with the number of available RF
chains. Since the number of active RF chains at each of the
APs in the network is equal to LA = min{K ,L}, increasing
the number of available RF chains is always beneficial for
scenarios where K ≥ L. Furthermore, note how, as Fig. 7
reveals, the optimum number of active APs to maximize
energy efficiency decreases with the number of RF chains
available at each AP. In particular, for the scenario under
consideration, with L = 2 RF chains the optimal number of
active APs is equal to M∗A =16, whereas using L = 8 RF
chains at each of the APs, the corresponding optimal number
of active APs is equal toM∗A = 12.

VI. CONCLUSION
This paper has presented a comprehensive analytical frame-
work for the evaluation of the energy efficiency of AP
sleep-mode techniques for cell-freemmWavemassiveMIMO
networks with non-uniform spatial traffic density. Based on
this framework, different ASO strategies have been proposed
whose goal is to dynamically turn on/off some of the APs
in accordance with metrics related to the spatial distribution
of MSs in the network with the objective of maximizing
the energy efficiency. Towards this end, a realistic model
to describe a non-uniform distribution of MSs has been
included in the analysis that serves to capture the spatial
traffic heterogeneity.

Aside from revisiting known ASO algorithms in the new
context, three novel schemes based on goodness-of-fit tech-
niques (i.e., ChiS-ASO, KS-ASO and LSE-ASO) have been
introduced whose rationale is to try to match the spatial
distribution of active APs to the one of the MSs. Addition-
ally, one more technique, termed MPL-ASO, that relies on
the AP-to-MS propagation losses has also been postulated.
Remarkably, this new family of GoF-based ASO strategies
(in particular KS-ASO and LSE-ASO) has been shown to
perform considerably better than a pure random procedure
while relying only on very large scale information in the
form of estimates of the spatial distribution of MSs and
spatial location of the APs. In particular, KS-ASO has shown
to be very effective in exploiting mild deviations from MS

distribution homogeneity, whereas LSE-ASO provides the
best discrimination power when dealing with spatial dis-
tributions of MSs showing a marked heterogeneity and,
furthermore, its performance is very robust against changes
in the spatial distribution of traffic. In turn, the MPL-ASO
algorithm, while requiring some large-scale information (i.e.,
AP-MS large-scale fadings), can neglect extra information
the optimum OG-ASO technique requires (i.e., spatial cor-
relation matrices, power control matrices, power consump-
tion metrics) with only a small performance penalty while
being considerably less complex. Results have shown that
increasing the network load (more MSs) implies activating
more APs to attain the optimum point of operation in terms
of energy efficiency. The RF infrastructure at the APs is also
seen to play a key role. In particular, the average energy
efficiency increases as the number of active RF chains used at
the APs grows but, interestingly, this in turns allows optimum
operation with a smaller number of active APs.

Future work will concentrate on the use of more sophis-
ticated power control strategies and hybrid analog-digital
precoding stages, the study of more reactive ASO algorithms
as well as its implementation issues, and also, the impact the
use of finite-capacity fronthaul links between the APs and the
CPU may have on the current analytical framework.
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