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Abstract

The theory of stochastic resetting asserts that restarting a search process at
certain times may accelerate the finding of a target. In the case of a classical
diffusing particle trapped in a potential well, stochastic resetting may decrease
the escape times due to thermal fluctuations. Here, we numerically explore the
Kramers problem for a cubic potential, which is the simplest potential with a
escape. Both deterministic and Poisson resetting times are analyzed. We use a
Monte Carlo approach, which is necessary for generic complex potentials, and
we show that the optimal rate is related to the escape times distribution in
the case without resetting. Furthermore, we find rates for which resetting is
beneficial even if the resetting position is located on the contrary side of the
escape.

Keywords: Stochastic resetting, Monte Carlo, Kramers problem, Mean first
passage time

1. Introduction

In principle, a particle trapped in a potential well is bounded in that region
of space forever. The bottom of the well corresponds to the stable state and
under any small perturbation the system returns to that point. This is because
the system has no energy to overcome the potential barrier. However, two mech-
anisms can change the particle’s fate, allowing it to escape: thermal activation
and quantum tunneling (see Fig. 1). Both effects may be present and one may
dominate over the other depending on the temperature of the system [1, 2, 3, 4].
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Figure 1: Two mechanisms allow the particle to overcome the potential barrier: thermal
activation and quantum tunneling. For a classical particle, after some time the noise induces
escapes from the well. The time necessary for the particle to escape is related to the time
needed to reach the top of the potential barrier, that is, the mean first passage time (MFPT).

If we deal with a classical problem where quantum tunneling is not possi-
ble, it is the presence of fluctuations and dissipation (that arise naturally in
the presence of a thermal bath, for instance) which eventually overcomes the
potential barrier. In other words, there is a nonzero probability to escape from
the potential well and if we wait for a sufficiently long time it is reasonable to
expect that the particle can escape from it. The problem that determines the
rate at which a Brownian particle escapes from a potential well is called the
Kramers problem [5]. For a review of the problem one may read [6] and for a
recent review on the subject and an extension to field theory, see [7].

The time necessary for the particle to escape is related to the time needed
to reach the top of the potential barrier. This time is usually referred to as
mean first passage time (MFPT). We use the term mean as we are dealing with
a stochastic process and different trajectories escape at different times.

In this paper we mainly investigate a mechanism that affects the MFPT:
stochastic resetting (SR). It is based on the idea that resetting to a given state
(usually the initial state) may accelerate a search process, in our case, a escape
process where the target is the top of the energy barrier. SR was first stud-
ied by Evans and Majumdar [8]. They showed that the MFPT of a diffusing
particle searching for a target in an infinite domain becomes finite when SR is
implemented. Also, they showed that MFPT presents a minimum for a certain
value of the resetting rate. The intuitive idea behind this is that by restarting
the process we avoid the realizations that get too far from the target. Evans
and Majumdar also showed that resetting creates a nonequilibrium steady state,
in contrast to a normal diffusing particle for which the width of the Gaussian
position distribution grows with time as

√
t.

Some natural processes such as animal foraging [9] or human visual search
[10] utilize this mechanism to reduce the search time. Also, it is known that
restarting computer algorithms may enhance their performance [11], as in sim-
ulated annealing [12], which is used to locate the global minimum of a potential
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landscape. At low temperatures, the algorithm may get stuck in a local mini-
mum for long periods of time and resetting gives the algorithm a second chance.
This method has also been applied to the process of RNA polimerization [13]
or, recently, to the Ising model [14]. For more applications, see [15].

In recent years, SR has been a hot topic for the research community. Several
papers have dealt with multiple targets [16], multiple searchers [17], resetting
in non-diffusive processes such as Levy flights [18] or telegraphic processes [19].
Different time-resetting distributions have been explored and also diffusion in
some simple potentials (logarithmic [20]; linear, quadratic, box potentials [21];
piece-wise linear potential [22]). Recently, SR was also experimentally studied
using holographic optical tweezers for the resetting [23, 24].

The vast majority of the literature on SR is analytical, thus it is limited
to more or less simple systems that are mathematically tractable. Here, we
explore another approach using Monte Carlo simulations that can be used for
complex systems that arise non closed-form expressions. We apply it to the
problem of diffusion in a nonmonotonic potential that has one escape. We take
into account the statistical fluctuations of this method, but we show that it is
on agreement with some general analytic predictions. This numerical approach
allows to perform a complete study of the problem. We explore not only the
MFPT, but the FPT distribution. For example, we show that the optimal
resetting rate, r∗, is related to the FPT distribution for the system without
resetting.

Finally, the article is organized as follows. In section 2 we present the prob-
lem without resetting. We motivate our numerical approach and show how the
noise and the initial state affect the process. In sections 3 and 4 resetting at
deterministic and Poisson times are analyzed. Finally, we provide concluding
remarks at the end.

2. Diffusion in the Kramers problem

In a real world situation, diffusion can not always be considered to take place
in an infinite domain. On the contrary, diffusion is usually subjected to a bias.
These situations can be modeled as diffusion in a potential landscape, that is,
the Kramers problem. The Kramers problem is studied in diverse areas such
as atomic diffusion, where the potential accounts for the interatomic forces in a
crystal lattice [25], or in chemical reactions, where the potential barrier is the
activation energy needed to the break chemical bonds [26]. Another application
is that of Josephson junctions, for which the simplest model consists of a classical
particle in a tilted washboard potential in the presence of friction and thermal
noise [27].

We consider the diffusion of a classical particle trapped in the cubic potential
associated to the Helmholtz oscillator [28]:

V (x) =
αx2

2
− βx3

3
, (1)
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where we take α = 6 and β = 1, to obtain a potential shape as in Fig. 1. It is a
simple asymmetrical nonlinear potential with an escape on the right-hand side
of the well and an infinite wall on the other side. It is used to study a diverse
range of nonlinear phenomena such as [29]. The bottom of the well is located
at x = 0 and the height of the potential barrier is E0 = α3/(6β2) = 36. The
noiseless basin of attraction of the origin is delimited by V (x) = 36, that is, by
x+, the top of the potential barrier, and x−, the left-hand side position at the
same energy level. In our case, we have x+ = α/β = 6 and x− = −α/(2β) = −3.

Including the stochastic noise in Newton’s second law, we get the Langevin
equation for our process:

ẍ+ ηẋ+ V ′(x) = ξ(t), (2)

where ηẋ is the damping term and ξ(t) is a Gaussian white noise, so that
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = εδ(t − t′), where ε accounts for the noise intensity.
The diffusion constant, D, is related to ε through Einstein’s relation: ε = 2D =
2ηkBT , where kB is the Boltzmann constant and T is the temperature.

We take η = 0.1 so that we remain in the range of light damping as η2 < ω2
0 ,

where ω0 refers to the natural frequency of the noiseless system. Including the
derivative of the potential we get the final equation:

ẍ+ 0.1ẋ+ 6x− x2 = ξ(t). (3)

Throughout the whole paper we consider small noise intensities compared to
the height of the potential barrier E0: ε� E0, to model realistic situations and
to make sure that the trajectories do not escape immediately. For instance, for
ε = 1.8 the noise is a 5% of the height of the potential barrier: ε/(α3/(6β2)) =
1.8/36 = 0.05.

The damping and the noise terms are responsible for the system’s instability
and allow escapes from the potential well. On one hand the damping dissipates
kinetic energy and slows down the particle hindering the return to the equilib-
rium point. On the other hand, the noise acts as a random force that pushes
the particle away from the initial position. This combined effect results in a
nonzero probability to escape from the potential well.

In contrast with other stochastic resetting problems that did not considered
any escapes, our potential has one escape. In order to compute the MFPT, the
position x+ = 6 can be thought as a trap that absorbs the diffusing particle
once it is hit for the first time. Under this criterion the MFPT is the same
as the mean escape time. For higher noise and damping levels, we would have
to consider the chance of the particle coming back once it has passed x+ = 6.
Simulations were not stopped until further positions were achieved and no come
back was observed. Thus, for our parameters we are safe equating the MFPT
and the mean escape time.

2.1. Motivation: analytic versus Monte Carlo approach

Traditionally, stochastic resetting problems involve the analytical compu-
tation of the steady state probability density and the MFPT. Some papers
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have included numerical results to show the good agreement between both ap-
proaches, but a complete numerical analysis of the problem is lacking. Besides,
an analytic approach is not always possible for complex potentials and numerical
approaches are needed to explore more realistic situations.

Here, we deal with a SR problem with a potential whose analytical solution
is difficult to find because the calculations lead to a non closed-form expression
as we show in the following paragraphs. Details of the numerical calculations
and its limitations are also presented in this subsection.

Let us start with the analytical approach. We consider a particle whose
equation of motion is described by Eq. 3. This particle is reset to its initial
state (x0, ẋ0) at different times drawn from a distribution with a constant rate,
r. For the first passage problem we would like to solve the related backward
Chapman-Kolmogorov equation as we are interested in the probability of the
particle to survive until time t, starting from any initial position x, that is
Q(x, t). Denoting Q0 ≡ Q(x0, t), we have:

∂Q

∂t
= D

∂2Q

∂x2
− V ′(x)

∂Q

∂x
− rQ+ rQ0, (4)

where the last two terms account for a loss and a gain of probability due to
the resetting. The case with resetting can be derived from the case without
resetting once it is calculated [30]. Thus, for practical purposes, we solve firstly
the problem without resetting:

∂Q

∂t
= D

∂2Q

∂x2
− V ′(x)

∂Q

∂x
, (5)

with initial condition Q(x, 0) = 1 and boundary condition Q(6, t) = 0. In order
to solve this equation we take the Laplace transform:

q(x, s) =

∫ ∞
0

e−stQ(x, t) dt, (6)

which simplifies the problem to:

D
d2q

dx2
− V ′(x)

dq

dx
− sq + 1 = 0, (7)

with q(6, s) = 0. Notice that V ′(x) = 6x − x2 in our case. Hence, Eq. 7 is a
special case of the triconfluent Heun equation. The solution to this equation is
given in terms of the Heun functions:

q(x) = A×HeunT(−10
1
3 s, 3,−3 10

2
3 ,−10

1
3 (x− 3)

3
)

+B × e−
10x2(x−9)

27 ×HeunT(−10
1
3 s,−3,−3 10

2
3 ,

10
1
3 (x− 3)

3
) +

1

s
,

(8)

which are a type of advanced special functions [31]. There is no general closed-
form expression for these type of functions as the coefficients of their Frobenius
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expansions obey recurrence relations of at least three terms. The theory of Heun
functions is currently under study and has brought attention in the context of
quantum control and engineering [32].

For simpler potentials (logarithmic [20]; linear, quadratic, box potentials [21]
or a piece-wise linear potential [22]), Eq. 7 is exactly solvable as the coefficient
of the spatial derivative is simpler.

For complex potentials, we may use a Monte Carlo (MC) approach to avoid
the analytical difficulties. The drawback of this method is that it implies statis-
tical fluctuations and it is subject to error. However, we show that the error can
be kept small and that the results are on agreement with some general analytical
predictions.

The idea behind the Monte Carlo method is that if we want to estimate the
theoretical first passage time distribution (which is described by a distribution
with mean µ and standard deviation σ), we can take samples (X1, X2, ...XN ),
i.e., realizations of the stochastic process and average the passage times. By the
law of large numbers we know that if there are sufficient samples the average
must be close to the true value. Also, the Central Limit Theorem establishes
that the mean of a sample with size N is a random variable with mean value
µ̃ = µ and standard deviation σ̃ = σ/

√
N [33]. The standard deviation usually

is not known, but it may be estimated as

σ =

√√√√ 1

N

N∑
i=1

(Xi − µ̃)2. (9)

Thus, the Monte Carlo error in our estimation of the MFPT is σ/
√
N . This

is logical as the error decreases for very similar values and for a large number of
realizations. However, the error goes with the square root of N and this means
that increasing N to get one more decimal digit of accuracy requires a factor
of 100 increase in the number of trials, and thus, more computation time and
memory storage. Finally, the Central Limit Theorem may be used to establish
confidence intervals. For a confidence interval of 95%, we express our results of
the MFPT as:

MFPT = µ̃± 2σ√
N
. (10)

This uncertainty due to the statistical fluctuations is expressed in the form
of error bars in our graphs.

We numerically integrate Eq. 3 for 104 trajectories, so that the error is kept
small and computation times are manageable. We used the adaptive SOSRA
algorithm in Julia [34], which is specific for problems with additive noise [35]
and as options we chose reltol=abstol=10−3. We measured the time for which
each realization reached x = 6 and counted that as the first passage time.
Simulations were not stopped until x > 100 to ensure no comebacks happened.
Different initial locations are considered but the initial velocity, ẋ0, is always
considered to be zero.
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Now, we present our numerical results for the Kramers problem without
resetting. In the absence of noise and damping the system describes a periodical
limit cycle L, given that the initial condition is contained in the well, that is,
−3 < x0 < 6. This attractor can be seen in Fig. 2 in red, the initial condition
is chosen to be next to the left end, at x0 = −2.899, and it is marked with a
black point. In the presence of damping, the origin is the only attractor and
oscillations decay until this value. When noise is added, the particle follows a
path similar to the limit cycle L in the sense that it bounces back and forth
in the potential well, but periodicity is lost. Now the system can escape the
potential well, once it crosses the line at x > 6.

Figure 2: Trajectories in phase space for two realizations of the process described by ẍ +
0.1ẋ+ 6x− x2 = ξ(t). The black point marks the initial condition x0 = −2.899 and the limit
cycle for the undamped noiseless system is drawn in red for reference. The vertical dotted
lines denote the ends of the potential (x− and x+). In (a), the trajectory completes one cycle
before leaving the well, while in (b) the FPT is longer and it bounces back and forth multiple
times before reaching x+.

In Fig. 2 (a) the system completes a cycle before leaving the potential well.
There are other trajectories for which a cycle is not completed and the particle
never returns to the left side of the well, instead it immediately escapes. Finally,
there are other trajectories for which this transient state lasts for longer periods
of time and multiple cycles are described before leaving the well (see Fig. 2 (b)).

2.2. MFPT distribution: noise and initial condition dependence

The time that the particle takes on average to escape the potential barrier
depends on the noise intensity and on the initial condition. Firstly, we computed
the MFPT for a fixed initial condition and different noise levels to explore how
much this parameter affects the escape times.

In Fig. 3, we see the numerically calculated MFPT values for noise levels
ranging from 3.6 and 6.6% of the potential barrier and x0 = −2.899. A strong
noise, compared to the height of the potential barrier, makes trajectories escape
faster than a small noise. Similar trends are found for other initial conditions. It
can be seen that the error bars are smaller for stronger noises. This is because
a strong noise also reduces substantially the standard deviation of the FPT
distributions.
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Figure 3: MFPT dependence on the noise intensity for a fixed initial condition next to the
left-hand side end of the well: x0 = −2.899. As expected, trajectories escape sooner for higher
noise levels.

If we fix now the noise intensity to ε = 1.8 (5%), we can explore the MFPT
dependence with the initial condition. First of all, we fix x0 at one end of the
potential well, x0 = −2.899. Starting on the left-hand side of the well, we show
the first passage time distribution in Fig. 4 (a,b). In the y-axis we represent the
relative frequency, i.e., the empirical probability for a concrete value of FPT.
The sum of the bar heights is equal to one.

In Fig. 4 (a), we see that the histogram is cut for a range of y values in order
to visualize the bars for all FPTs. As it can be seen, most trajectories leave
the well for small times. The last computed trajectory escapes at t = 643.3. In
Fig. 4 (b) we show the same histogram, now for FPTs ranging from 0 to 20.
Approximately, 58% of the trajectories are in this range. From this perspective,
we can appreciate a wave pattern. The reason is the following. From 0 to a
time value called ton no trajectories escape as ton is the minimum time required
for the particle to escape due to its finite velocity. Afterwards, there is a big
wave corresponding to the trajectories that cross the well, passing through the
origin and escape. The second wave corresponds to trajectories that bounce
back and forth once as in Fig. 2 (a). The following waves correspond to an
increasing number of swings. The waves rapidly become difficult to distinguish
as the trajectories take different times to complete swings. Three long swings
(slow and/or big amplitude cycles) may take the same amount of time as four
quick swings (fast and/or small amplitude cycles).

For other initial conditions, next to the ends of the potential well, similar
FPT distributions are found. For instance, for x0 = 5 (Fig. 4 (c)), the first
wave is very small as the chances for the system to escape immediately and not
bouncing are quite small. Due to the shape of the potential, the system tends
to cross the origin and bounce around that value. In that case, the second wave
is the biggest one and the followings decrease in magnitude. For more extreme
initial condition values, the big waves (the first for left-hand positions and the
second for right-hand positions) are even more important as it is more likely to
escape sooner.
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Figure 4: Probability distributions for the first passage times. In (a) and (b) trajectories
start at the left-hand side end of the well: x0 = −2.899. In (b) we show a zoom to visualize
the wave pattern. In (c) trajectories start close to the escape: x0 = 5 and the first wave,
corresponding to escapes with bouncing, is very small. For trajectories far from the ends as
x0 = 1 in (d), the wave pattern is lost.

The picture changes for initial conditions far from the ends as in Fig. 4 (d).
For them, the decaying amplitude wave pattern cannot be distinguished and
trajectories take much more time to escape (compare the scale in the y−axis).
Fot t = 20, only 15.04% of the trajectories have escaped the well. Remember
that for x0 = −2.899, the 58% of the trajectories had escaped.

The shape of the FPT distributions without resetting plays a crucial role
when resetting is added: it is the key to settle whether SR is beneficial or
not. There is an interesting metric called coefficient of variation (CV ), which
measures the ratio of the standard deviation and the mean (CV = σ/µ̃), that
is, the relative fluctuation. If the values of the distribution are disperse with
respect to the mean, then CV > 1; if not, CV < 1. Long tail distributions,
like the ones found for initial conditions at the ends of the well, tend to have
CV > 1.

It has been shown that when CV > 1, resetting helps the search process
rendering smaller FPT values [36]. If the fluctuations of the associated first-
passage times about their mean are sufficiently strong, resetting tames some of
the fluctuations. This can be easily understood looking at the histogram in Fig.
4 (a, b, c). Restarting the process would eliminate the long lasting trajectories
that delay the overall process. After the system is completely reset, we find the
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same histogram once again. We let some fast trajectories escape and reset the
process once again.

Figure 5 shows how the MFPT and CV depend on the initial condition.
Points to the right and the left of the origin have the same initial energy. The
MFPT is longer for trajectories starting around the origin, while trajectories
next to the ends escape twice faster. It is important to notice that due to the
asymmetrical shape of the potential, the MFPTs are not symmetrical at both
sides of the origin. For visualization, we have included a line that connects
two points for which the initial energy is the same. That is, ẋ2/2 = 0 and
V (x) = 6x20/2− x30/3 with x0 = (−2.899, 5). As it can be seen, points initially
at the same energy show different MFPTs whether they are initially located
further or closer to the escape at x+ = 6. For instance, x0 = 5, which is
close to the escape, shows a longer MFPT because the first wave in the FPT
distribution diagram is very small, as previously mentioned. This effect is more
pronounced at the ends of the well. The differences between the MFPT at left-
and right-handed locations diminish next to the origin.

Figure 5: Mean first passage time and coefficient of variation dependence on the initial con-
dition. (a) Realizations starting close to the ends of the wells escape twice faster than those
starting at the bottom of the potential. Due to the asymmetry of the potential, two initial
conditions located at the same height (as the ones connected by a line in the figure), thus hav-
ing the same initial energy, escape at different times. In (b) the CV serves as an indicator for
resetting positions that would reduce the MFPT. The limit CV = 1 is achieved for positions
at approximately a 40% of E0.

In Fig. 5 (b), we see that the CV dependence on the initial condition is not
symmetrical either. Furthermore, points above the line CV = 1 mark initial
conditions (and consequently reset positions as we are assuming it to be the
same) for which resetting is beneficial, in the sense that it reduces the MFPT.
These points are located at the ends of the well, while resetting to points near
the origin would increase the MFPT. The limit is approximately at a energy
level equal to 14.6 units of energy. Thus, resetting to points located (at least) at
a 41% of the height of the potential barrier is needed for SR to be advantageous.
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3. Resetting at deterministic times

For the rest of the paper, we focus on resetting to points for which CV > 1
for a fixed noise intensity: ε = 1.8. In this section, the resetting events take
place at fixed time intervals, which is the simplest strategy to start with.

In Fig. 6 we show the phase space for a trajectory with resetting. The
black point marks the initial condition, which is also the reset position. The
trajectory moves around freely diffusing in the potential landscape until at t = 2,
the particle is immediately reset to the initial position. This bit is marked in
red. Here, we are assuming that reset is instantaneous. Obviously, this is a
simplification as in reality, resetting would always take some time. However,
we assume that resetting is quick enough compared to the diffusion movement.
For references in which stochastic resetting with time overheads is considered
see [37, 30]; for refractory periods after the resetting, see [38] and for stochastic
returns using an external trap, see [39]. At t = 4, the particle is reset once
again. As it can be seen, after two resetting events, the system escapes the
potential barrier.

Figure 6: Trajectory in phase space for a realization of the process described by ẍ + 0.1ẋ +
6x − x2 = ξ(t), with resetting at fixed time intervals of tr = 2 (red). The black point marks
the initial condition x0 = −2.899 and the vertical dotted lines denote the ends of the potential
(x− and x+). After two resetting events the particle leaves the well.

Now, we calculate the FPT distribution for a constant time reset tr = 2. We
simulate 104 trajectories and measure the time they need to escape from the
well. The numerical parameters are the same as in the previous section, except
that we introduce now callback functions to account for the resetting events.

In Fig. 7 (a) we see a zoom of the FPT distribution diagram to observe the
wave pattern. From t = 0 until the first resetting event, the diagram is the same
as in the case without resetting (Fig. 4 (b)). From t = 2 to t = 3.1 no trajectories
escape the well as after the resetting, at least a time corresponding to ton = 1.1
has to pass. This fact produces a escape in the form of perfectly defined waves.
In (b), we show the complete histogram where it can be seen that the peaks of
each wave follow a exponential decay. The FPT of the trajectory that escapes
the last is about 10 times smaller than without resetting. The relative frequency
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of the peaks (RF ) is adjusted to the following empirical trend:

RF = a · e−b·FPT , (11)

where a = 0.06274, b = 0.1521 and R2 = 0.9983. We conclude that stochas-
tic resetting at fixed time intervals produces an escape in the form of waves
of exponentially decreasing amplitude. This is logical as resetting happens for
fixed time intervals and the number of remaining particles trapped in the well
decreases at a fixed rate after each resetting event. Before the first reset, approx-
imately the 27% of the trajectories have escaped. When the process is restarted
we find the same escape pattern and again the 27% of the remaining trajectories
escape. This leads to the exponential decay trend numerically observed in Fig.
7 (b).

Figure 7: Probability distribution for the first passage time with deterministic resetting for
tr = 2. (a) After each resetting event no particles escape for a period of time equal to ton.
(b) In the full view of the histogram it can be seen that the peaks of the waves decrease
exponentially following the law shown in the inset.

Now, we may ask ourselves if there is an optimum value for tr, this is, if
resetting at a certain time interval is more beneficial than others. For that
purpose, we calculated the MFPT for a range of tr values, keeping the rest of
parameters fixed.

Figure 8 shows this dependence for two different initial conditions located
at the ends of the potential well (x0 = −2.899 and x0 = 5). For these points
the CV if higher, so resetting to them will be more effective. A horizontal
line marks the MFPT without resetting for reference. It can be seen that in
both cases for small values of tr, SR delays the escape process as the system
is continuously returning to the initial point. Afterwards, we find a minimum
which marks the optimal resetting time interval: t∗r . For t = t∗r , approximately
a quarter of the trajectories have already left, so resetting gives a second chance
to the trajectories that were stuck and did not escape fast enough. For higher
values of tr, the MFPT tends slowly to the MFPT without resetting as resetting
at very long intervals tends basically to the no resetting case. For other initial
conditions with CV > 1, but located further form the ends, the behavior is
qualitatively the same but less drastic, that is, MFPT is not reduced as much.
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Figure 8: Mean first passage time dependence on the resetting time interval tr for an initial
condition close to the left-hand end of the well (a) and close to the right-hand end of the
well and the escape (b). In both cases there is an optimal value t∗r for which the MFPT is
minimum. This value corresponds to resetting after the big wave of trajectories in the non
resetting case have escaped (see Fig. 4). For shorter values of tr SR may hinder the escape
process. The horizontal line marks the MFPT for the case with no resetting for reference.
Surprisingly, we find a second local minimum after t∗r , corresponding to the second biggest
wave in the no resetting scenario.

Something interesting here is that SR is reduced for values close to the escape
(on the right hand side of the well, figure (b)) and far from the escape (on the
left hand side, figure (a)). This is in contrast with other papers as [22] where
they studied SR in a V-shaped potential and found that SR expedites the search
process only when the reset location is on the same side as the absorbing trap.
Here, the point x = 6, that is, the top of the potential, is found more rapidly
even if the reset location is on the contrary side. In fact, for x0 = −2.899, the
MFPT reduces at its best to a 18% of the no resetting MFPT value, while for
x0 = 5, the MFPT reduces to a 35%.

Another difference that we find for our potential is the presence of a second
local minimum in the MFPT. For x0 = −2.899, the global minimum is t∗r = 2
and the second minimum is found for tr = 4.8. The explanation for this is the
following. The first minimum corresponds to resetting at a time for which in
the no resetting case the peak of the first wave has just passed. This means
that resetting right after the first bunch of trajectories has escaped is the best
strategy. The second minimum corresponds to resetting right after the peak of
the second wave in the no resetting case has passed. This is more beneficial than
other values right before or afterwards, but still the best strategy is resetting
after the first wave. Other minima are expected after the following waves but
they cannot be appreciated at our resolution.

In the case of x0 = 5, t∗r is found for a later value than in the previous case.
Concretely, t∗r = 4.1 because in the no resetting situation the important wave
was the second one and the first one could almost not be noticed. The second
minimum is found at tr = 7.1 and corresponds to third wave in the case without
resetting.

These results show that in a Kramers problem the best resetting strategy
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can be designed just by studying the case without resetting and fixing resetting
times after the first big escape wave.

4. Resetting at stochastic times

The nature of the resetting can be diverse. In the literature of SR it is
mostly considered to be a Poisson event. This is because they are ubiquitous
in real world problems and occur independently at a constant average rate, r.
They are memoryless processes in the sence that after an event has taken place,
the probability of another event taking place afterwards is not increased nor
decreased. Other resetting time configurations considered in preceding works
are deterministic [17], power-law distributed [40] or show a time [41] or position
dependence [42].

For Poisson events, the time that passes between successive events follows an
exponential distribution. Its probability density function is of the form f(t; r) =
r · e−r·t, where r is the rate parameter and the mean of the distribution is 1/r.
In Fig. 9, we show a time series of the process with SR for a given value of r.
The initial condition and resetting point is x0 = −2.899. Between the resetting
events, marked in red, the system is diffusing in the potential well following Eq.
3. For this realization, five resetting events occur before the particle leaves the
well trespassing x = 6.

Figure 9: Time series for a realization of the process defined by ẍ+0.1ẋ+6x−x2 = ξ(t), with
resetting at exponentially distributed times. After five resetting events (red), the trajectory
crosses the horizontal dotted line that marks the top of the potential and escapes.

For a large number of realizations, we get a histogram like the one in Fig.
10. In this case, the wave pattern found for deterministic resetting is lost as
each realization has different resetting times. Comparing this with Fig. 4 (b),
we can see that the height of the main peak is reduced as some trajectories
return to the initial point before the optimal value, delaying the escape process.
However, the MFPT and the standard deviation are largely reduced. Until
t = 20, approximately the 85% of the trajectories have escaped, while for the
case without resetting it was only the 58%.
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Figure 10: Probability distribution for the first passage times with stochastic resetting for
x0 = −2.899. In this case, the wave pattern is lost as each realization has different resetting
times. For other resetting positions for which CV > 1 we find qualitatively similar diagrams.

As in the previous section, we are interested in finding the optimal resetting
rate for which the MFPT is minimum. For a given initial condition x0 = −2.899,
we numerically calculate the escape time for 104 realizations of the process.
In Fig. 11 (a), we show how the MFPT varies with θ = 1/r. The MFPT
without resetting is marked as a horizontal line for reference. We find a similar
behavior as in the deterministic resetting scheme. Only that now the second
local minimum is not present. This is due to the fact that resetting times are
not always the same and, consequently, they do not correspond exactly with
any of the waves of the no resetting case.

The optimal rate is found for θ = 2.5, which corresponds to a mean resetting
interval of 2.5. This is slightly above the deterministic resetting t∗r value. For
practical purposes any resetting rate that arises a mean resetting interval simi-
lar to the time for the first wave in the case without resetting, will be beneficial.
In the case of resetting to points on the right-hand side of the well, then we are
referring to the second wave which is the big one. For x0 = 5, the optimal reset-
ting interval is θ = 5.5, which is also slightly above the deterministic resetting
case.

Finally, if the reset position is far from the ends, this is, points for which
CV ≈ 1, then the optimal θ increases and no longer corresponds to any of the
waves. This is because the first waves have a small amplitude. Consequently, the
MFPT is not reduced as much. For instance, if x0 = −2 for which CV = 1.0103,
then resetting is found for θ ∼ 35 and the MFPT reduces only to a 91% of the
MFPT without resetting. For these reset positions, the standard deviation
barely decreases for r∗ as opposed to reset positions at the ends of the wells (see
Fig. 11 (b)). In that case, the statistical fluctuations due to the Monte Carlo
method are a limitation as they depend on the standard deviation, remember
Eq. 10. To properly study these reset positions far from the ends, one would
need to increase N by two or three orders of magnitude.

In Fig. 11 (b), we show the MFPT (blue circles) and the standard deviation
(red diamonds) dependence with r. Here, we obtain an analytical result derived
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Figure 11: Mean first passage time dependence on the resetting rate. (a) The MFPT is
represented against θ = 1/r. The minimum corresponds to a mean resetting interval slightly
above the deterministic resetting t∗r value. (b) The MFPT and the standard deviation are
equal for the optimal rate, r = r∗ = 0.4.

by Reuveny [30], which asserts that the relative fluctuation (CV ) in the FPT
of an optimally restarted process is always unity. That is, for r∗:

MFPT = σ(FPT ). (12)

This result holds for any FPT process, given that the restart time is taken
from a exponential distribution (constant restart rate).

At r∗, the MFPT reduces approximately to a 28% of the MFPT without
resetting. Comparing this to the deterministic resetting strategy, the Poisson
resetting is less effective.

5. Conclusions

In this paper we have analyzed the stochastic resetting strategy in a Kramers
problem. We applied this technique to a particle diffusing in a potential with
one escape in order to minimize the mean escape time. We have shown that
stochastic resetting may be beneficial even for restarting positions on the con-
trary side of the escape.

Following an analytical approach is not always possible as in the case of
complex potentials because no closed-forms expressions arise. We have demon-
strated that the Monte Carlo approach, which is needed for realistic situations,
is in agreement with some analytical results and that this technique allows to
explore the system in a different way.

We have found that in the case without resetting the escape times distribu-
tion forms a wave pattern. As expected, the MFPT was found to decrease for
increasing noise levels. Also, it was found to decrease for trajectories starting at
a higher energy level (next to the ends of the well). Surprisingly, we compared
two trajectories starting with the same energy level and we observed that the
ones further from the escape presented lower escape times. The numerically
calculated coefficient of variation also served as an indicator for the efficiency
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of the stochastic resetting strategy. We found that CV > 1 for trajectories
starting at least at a 41% of the height of the potential barrier.

Then, we applied two resetting strategies: resetting at deterministic times
and resetting at exponentially distributed times (treating the resetting events
as Poisson events). In the first case, resetting drastically reduces the MFPT
and the escape times distribution takes the form of waves with exponentially
decreasing height. We also found that the best resetting strategy can be pre-
dicted in advance as the optimal resetting time interval is related to the wave
pattern in the no resetting case.

Resetting at exponentially distributed times is also beneficial, but is less
efficient than a periodic resetting. The optimum was found for rates slightly
smaller, that is, slightly longer mean time intervals than in the deterministic
resetting situation. In this case we retrieve another important analytical pre-
diction that asserts that for the optimal resetting rate, the MFPT equals the
standard deviation. In both cases, resetting to the contrary side of the escape
was the optimum.

Finally, we hope that our results and approach can be applied to areas where
diffusion in a potential barrier is relevant such as atomic diffusion, chemical
reactions or Josephson junctions, where SR can be an induced or natural process.
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