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Non-autonomous dynamical systems help us to understand the implications of real systems which
are in contact with their environment as it actually occurs in nature. Here, we focus on systems
where a parameter changes with time at small but non-negligible rates before settling at a stable
value, by using the Lorenz system for illustration. This kind of systems commonly show a long-
term transient dynamics previous to a sudden transition to a steady state. This can be explained
by the crossing of a bifurcation in the associated frozen-in system. We surprisingly uncover a
scaling law relating the duration of the transient to the rate of change of the parameter for a
case where a chaotic attractor is involved. Additionally, we analyze the viability of recovering
the transient dynamics by reversing the parameter to its original value, as an alternative to
the control theory for systems with parameter drifts. We obtain the relationship between the
paramater change rate and the number of trajectories that tip back to the initial attractor
corresponding to the transient state.

Keywords: Transient Dynamics, Non-autonomous System, Parameter Shift, Dynamic Bifurca-
tion, Rate-Induced Tipping

1. Introduction

The evolution of a system with time is typically divided into two different regimes: the transient and the
steady states. The latter corresponds to the asymptotic dynamics: after some time the system settles in this
state for an indefinite time unless it is perturbed. This final state might include not only fixed points, but
also limit cycles or chaotic attractors. The dynamics before the system settles in any of these attractors is
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what we call transient dynamics. This type of dynamics is also very rich and includes, as a classic example,
decaying oscillations before a fixed point, but also chaotic motion. When the system behaves in a chaotic
way for a finite amount of time before reaching an attractor, it is said to present transient chaos.

Traditionally, the study of dynamical systems has focused on the steady state as transients usually last
for a short-time scale and it has been assumed that the system’s dynamics can be reflected by the asymp-
totic behavior of models describing these systems. However, some systems present long-lasting transients
compared to the scale of the system. Additionally, the relevant time scales may correspond to the transient
regime rather than to the asymptotic one. Furthermore, transients may provide an explanation for sudden
regime shifts, even without any underlying change in external conditions.

Transient phenomena in autonomous systems has been studied in the past few years in several scientific
disciplines. Much of the work has focused on analyzing the factors that make a system prone to long
transients, for example, time-delay [Morozov et al., 2016]. Evidence of systems presenting relevant long-
lasting transients include ecological systems [Hastings, 2004; Hastings et al., 2018; Morozov et al., 2020], but
also different models in neuroscience [Rabinovich et al., 2006, 2008], power electronics [Warecki & Gajdzica,
2014], earthquake activity in seismology [Picozzi et al., 2019], and gravitational waves [Thrane et al., 2015].
Furthermore, transient chaos is relevant in a wide variety of systems ranging from optomechanics [Wang
et al., 2016] to electronic engineering [Bo-Cheng et al., 2010]. For a recent review on transient chaos see
[Lai & Tél, 2011]

Here, we focus on the study of transient phenomena in non-autonomous dynamical systems. In partic-
ular, in systems where one of the parameters varies slowly with time. The system can be mathematically
written as

dx

dt
= F (x,p(εt)), (1)

where ε is very small compared to the natural time scale of the system. This type of systems are fun-
damental to understand the relation of the system with its environment. Real systems are affected by
external conditions, which can be reflected as a gradual change in a parameter. Sometimes, the parameter
is controllable. One example is a ferromagnet within a low frequency magnetic field. In other cases, it is
not controllable, as in the context of climate dynamics.

Time series with long-lasting and physically relevant transients are often found in systems with pa-
rameter drift. Because of the duration of transients one may think that the system is at its steady state.
However, for a later time, they show a sudden transition to their real steady state.

Due to the fact that the time dependence of the parameter represents a small perturbation, the
associated frozen-in system, that is, the system with fixed parameters, provides useful information about the
non-autonomous system [Berglund, 2000]. In fact, the origin of the previously mentioned sudden transition
may be found in the crossing of a bifurcation in the associated frozen-in system. This type of bifurcations
are called dynamic bifurcations [Benôıt, 1991]. Recently, they have been also called bifurcation-induced
tipping points [Ashwin et al., 2012]. Either way, they refer to the regime shift that is produced due to the
slow passage through a bifurcation.

Dynamic bifurcations were studied when only regular attractors are involved. The case of the super-
critical Hopf bifurcation has been studied in [Neishtadt, 1987, 1988; Baer et al., 1989]. As a result, it was
found that the appearance of oscillations was delayed when the parameter is slowly drifting and that the
delay depends on the rate of the drift, what is called the delay effect. However, when chaotic attractors are
involved, dynamic bifurcations have been only studied so far for maps. In particular, the case of a Lorenz-
type map when the control parameter varies monotonically with time and when it induces a periodic
forcing, has been analyzed in [Maslennikov & Nekorkin, 2013; Maslennikov et al., 2018] respectively. Here,
we aim to broaden the current knowledge on dynamic bifurcations to flows presenting strange attractors.

Another interesting phenomenon occurs to systems with parameter drift when there is multistability.
In this case, the parameter drift may cause the system to tip to another state. Sometimes, this happens
because the current attractor disappears and it has to tip to any of the rest of the attractors. More
surprisingly, this can happen for certain rates above a critical value, even if the first attractor is still stable.
In this case, the system cannot track the attractor and it tips to another one with a certain probability. This
has been called rate-induced tipping [Ashwin et al., 2012]. Besides, the study of the tipping probabilities
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for a monodimensional system including the passage through a chaotic attractor was shown in [Kaszás
et al., 2019], but they do not consider the case when the chaotic attractor coexists with other attractors.

Our goal here is to study the transient phenomena for a multistable system with parameter drift, in
particular the Lorenz system. The nature and duration of the transient dynamics and the transition to the
steady state can be explained by the delay effect previously mentioned. The bifurcation diagram of the
frozen-in system gives us information about the dynamics that has to be corrected by a scaling law that
relates the magnitude of the delay with the parameter rate of change.

The paper is organized as follows. We start in Sec. 2 with the description of the frozen-in system,
including the basins of attraction for the starting and ending points of the parameter shift. In Sec. 3, we
let the parameter evolve with time in such a way that the heteroclinic bifurcation is crossed. We uncover
an interesting scaling law that predicts the duration of the transient for the non-autonomous system. Also,
we show that the presence of a chaotic attractor induces unpredictability, causing a random tipping.

Next, in Sec. 4, we study the possibility of reversing the transient dynamics once the transition to
the steady state has taken place by reversing the parameter to its original value. For that purpose, higher
parameter rates have to be considered and rate-induced tipping is the phenomenon responsible for the
transient state recovery. Finally, the main conclusions of this work are discussed.

2. The Lorenz system

We have chosen the Lorenz system [Lorenz, 1963] described by the Eqs. 2, since it can be considered
as a paradigmatic example of a multistable system that presents both chaos and transient chaos. These
equations were proposed by Edward Lorenz as a simple model of convection dynamics in the atmosphere
(Rayleigh-Bénard convection). These equations also arise in models of lasers [Li et al., 1990] and chemical
reactions [Poland, 1993], among others. The equations of the system read as follows

ẋ = −σx+ σy,

ẏ = rx− y − xz,
ż = −βz + xy,

(2)

where σ, β and r are the system parameters. In the context of convection dynamics, σ is the Prandtl
number and is characteristic of the fluid, β depends on the geometry of the container and has no specific
name. Finally, r is the Rayleigh number and it accounts for the temperature gradient. In this context, x
represents the rotation frequency of convection rolls, while y and z correspond to variables associated to
the temperature field. We fix the classical parameter values as σ = 10 and β = 8/3. And we explore the
dynamics of the system in terms of the variation of r by using a bifurcation diagram.

Depending on the temperature gradient, i.e., the value of r, convection rolls may exist or not. This
can be seen in detail in the bifurcation diagram shown in Fig. 1). For r < 1 the only attractor is (0, 0, 0),
what means that the fluid remains at rest. At r = 1, the origin becomes a saddle through a supercritical
pitchfork bifurcation, and this instability is reflected in the bifurcation diagram by a discontinuous line for
r > 1. Two symmetrical branches

C± = (±
√
b(r − 1),±

√
b(r − 1), r − 1) (3)

are created and are stable until r = 24.74. The unstable manifold of the origin, W s(0), separates their
respective basins of attraction. The fixed points attractors C± correspond to convection rolls with the two
possible directions of rotation.

On the other hand, at r = 24.06, a chaotic attractor is born through an heteroclinic bifurcation which
makes the fluid become turbulent. For 24.06 < r < 24.74, the system is multistable (C+, C− and the
chaotic attractor coexist) and the attractor to which a given trajectory goes to depends on the initial
conditions.

Furthermore, at r = 24.74, the fixed points C± lose the stability through a subcritical Hopf bifurcation
and the chaotic attractor becomes the global attractor. Another important phenomenon occurs at r =
13.926, when a homoclinic bifurcation takes place. This implies that a chaotic saddle is born, making some
trajectories rattle around chaotically for a while before they settle down to C±, which is known as transient
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Fig. 1. Bifurcation diagram for the Lorenz system. For r = 1 a supercritical pitchfork bifurcation takes place and the
origin becomes a saddle point. For 1 < r < 24.06, two attractors coexist: the upper branch corresponds to C+ and the lower
branch corresponds to C−. For this range of r values, past the homoclinic bifurcation (when r > 13.926), trajectories may
be chaotic before settling to one the two fixed point attractors. For r > 24.06, the chaotic attractor is born in a heteroclinic
bifurcation and the three attractors coexist. Finally, for r > 24.74 a subcritical Hopf bifurcation leaves the chaotic attractor as
the global attractor. In the insets, the attractors are represented in phase space for the regions where multistability is present
(the stars mark the initial conditions).

chaos or preturbulence. This is not reflected in the bifurcation diagram as it only shows the steady state
dynamics. In phase space, the chaotic behavior is confined to the vicinity of the chaotic saddle [Tél et al.,
2006]. The lifetime of these chaotic transients increases with r until it reaches the value 24.06 when the
lifetime becomes infinite and the chaotic attractor appears.

Also, at r = 13.926 a pair of unstable limit cycles Γ± (not represented in the diagram), called homoclinic
orbits, are created and last until they are absorbed in the Hopf bifurcation at r = 24.74. For further details
about the homoclinic and heteroclinic bifurcations in terms of the organization of the respective two-
dimensional manifolds of 0, C± and Γ± see [Doedel et al., 2006].

Now, we focus on the dynamics before and after r = 24.06 in order to explore the effects of a parameter
drift when a strange attractor appears/disappears. This is why we present the basins of attraction for
r = 20, where transient chaos is present, and r = 24.5, where the chaotic attractor and the fixed point
attractors C± coexist.

For this purpose, we distribute N = 105 initial conditions uniformly, preserving approximately the
same density of points for any area on the sphere, that is, avoiding accumulation of points in the poles.
The radius of the sphere is fixed to 30 for all the simulations in this paper, but similar results are found
for other radii. The sphere is likewise centered at the halfway between C±: (0, 0, r − 1). The basins are
computed integrating the trajectories starting on the sphere by a Runge-Kutta algorithm with adaptive
step size control. The criterion for convergence to a particular attractor is that the trajectory enters a
sphere of radius 0.1 centered at C+/C−. For the basin at r = 24.5, we take a sufficiently long integration
time (the maximum time for trajectories to arrive to C± is around 90 and we take tf = 2000 as the final
integration time) and we consider that trajectories that do not converge to C+/C−, converge to the chaotic
attractor.
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Fig. 2. Basins of attraction for r = 20. (a) The sphere of initial conditions is represented with the trajectories that end
up in the C+ attractor depicted in red and the ones that end up in C− depicted in blue. The attractors are also represented in
the inside as points with matching colors. (b) We present a view in the (x, y) plane. Fractality appears in the basin boundaries
for z > (r − 1) = 19.

The basins of attraction for r = 20 are represented in Fig. 2: in red, the initial conditions that end
up in C+, and in blue the ones that end up in C−; the attractors are also represented in the inside as
points with matching colors. The sphere is divided in two, following approximately the symmetry plane
x+ y = 0. More precisely, the basin boundary is defined by the stable manifold of the origin W s(0). It is
important to notice that the blue face is nearer the red attractor and vice versa. There is also a circular
blue region that is immersed in the red region, and symmetrically there is a circular red region in the
backwards of Fig. 2(a). Finally, the basin boundary is smooth for z < (r − 1) = 19 (downside) and fractal
for z > (r − 1) = 19 (upside) and around the immersed circle. This fractality is a trace of chaos.

Fig. 3. Time to reach the attractors for r = 20. The numerically computed lifetime of the transients is represented
showing a wide range of lifetimes, denoted in the color bar, with higher values on the corresponding fractal regions from Fig. 2.
This corresponds to the trajectories presenting transient chaos.

The time that the trajectory needs to reach the attractors is depicted in Fig. 3. The lifetime is increased
for higher values of the temperature gradient, if r < 24.06. Comparing this figure with Fig. 2, it can be seen
that the fractal areas correspond to initial conditions that take the longest time to reach the attractors.
The explanation for this phenomenon is related to the stable and unstable manifolds of the chaotic saddle.
Points exactly on the stable manifold necessarily reach the chaotic saddle and never leave it (these points
are exceptional and are not shown), and points initially far from the stable manifold escape the chaotic
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saddle quickly (not showing transient chaos), while points near the stable manifold have a longer lifetime.
The closer to the stable manifold, the longer the lifetime of the transients is. Thus, the structure seen in
light blue in Fig. 3 is due the cut of the stable manifold of the chaotic saddle with the sphere of initial
conditions.

Fig. 4. Basins of attraction for r = 24.5. (a) The sphere of initial conditions is represented with the same color code as
before: red accounts for C+ and blue for C−. Yellow regions account for trajectories that head to the chaotic attractor. The
(b) and (c) panels show the (x, y) plane for z > 19 (view from above) and z < 19 (view from the downside) respectively.

The basins of attraction for r = 24.5 are represented in Fig. 4. Following the same color code as before,
red/blue regions correspond to initial conditions that end up in C+/C−. The initial conditions that end up
in the chaotic attractor are depicted in yellow. For the 105 trajectories, 10348 correspond to the red basin,
10130 to the blue basin and 79522 to the yellow basin. Thus, approximately the 20% of the trajectories
go to C+/C−. This time, the structure for the red and blue basins consists on two loops for z < 19 that
overlap in the plane x + y = 0 and four circular regions for z > 19 (one of each color on top and another
two smaller ones on the sides).

The lifetime of the trajectories that end up in either C+/C− were also computed. We can observe
that there is a wide range of lifetimes in Fig. 5. This is not due to transient chaos but to the fact that the
oscillations around C+/C− are slowly damped until they reach the attractor.

Fig. 5. Time to reach the C+/C− attractors for r = 24.5. (a) Red/blue points correspond to the attractors C+/C−.
Only the initial conditions that end in C+/C− are depicted, the rest of the sphere corresponds to initial conditions that end
up in the chaotic attractor. As we can see, the borders of the structure show higher lifetimes due to the slow oscillation decay
to the C+/C− attractors.(b) This panel shows the (x, y) plane of the previous panel.
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3. Dynamic Heteroclinic Bifurcation

In this section, we explore the dynamics of the system when the parameter that accounts for the temperature
gradient, r, slowly varies. The bifurcation diagram in Fig. 1 represents the dynamics for each value of r
when the system evolves with the corresponding fixed value of r. We are interested in the case when the
parameter varies during the evolution of the system. In other words, the parameter turns into a slowly
varying function of time of the form: r = r0 + εt, where ε is a sufficiently small parameter compared to the
natural time scale of the system. Bifurcations that are crossed due to this parameter time-dependence are
called dynamic bifurcations [Benôıt, 1991].

As previously stated, this type of bifurcations have been studied when they imply the appear-
ance/disappearance of regular attractors. For example, the dynamic pitchfork bifurcation for the Lorenz
system has been deeply studied. It was found that when the temperature gradient is increased, convection
rolls appear suddenly at a r > 1, which is what is called the delay effect. When the temperature gradient is
decreased they slowly decelerate and finally disappear for a r < 1, showing hysteresis. Furthermore, they
always follow the same equilibrium, i.e., roll in the same direction, to which one depends on the initial
conditions. The area enclosed in the hysteresis diagram depends on the adiabatic parameter, ε, and this
relation is defined by its corresponding scaling law [Berglund & Kunz, 1999].

As far as we know, the crossing of a bifurcation due to a slow parameter drift when chaotic attractors are
implied has been only studied so far for maps, for instance, in the Lorenz map in [Maslennikov & Nekorkin,
2013] and [Maslennikov et al., 2018]. Here, we study the dynamic heteroclinic bifurcation at r = 24.06 for
the Lorenz system. This implies a change in the number of the attractors and the appearance/disappearance
of a chaotic attractor.

In analogy with the delay effect found for the pitchfork bifurcation where the origin becomes unstable
but the system tracks that path for a period of time, we start our analysis for a value of r > 24.06 and we
decrease this value past the heteroclinic bifurcation where the chaotic attractor is no longer stable.

The first difference in this analysis with the one for regular attractors is that single trajectories are
no longer representative and do not contain all the possible dynamics, thus we follow an ensemble of
trajectories starting on the same sphere of initial conditions used in the previous section.

Moreover, we refer to Eqs. 2 as the frozen-in system when r is a fixed parameter and the non-
autonomous system to the same set of equations when r is a function of time in the following form

r =

 r0 for t < t1
r0 − ε · (t− t1) for t1 < t < t2
r0 − ε · (t2 − t1) for t > t2

r0

t1 t2

(4)

where t1 is the time for which the parameter shift starts and t2 when it ends. This way, we let the system
evolve to its steady state, the chaotic attractor in our case, before the shift in r starts. Besides, we call
tf > t2 the final observation time.

In Fig. 6, the x-component of a trajectory starting at the sphere, with the following parameters:
r0 = 24.5, t1 = 800, t2 = 4000, tf = 4000 and ε = 10−3 is shown. As we can see, the motion is chaotic
up until a value (when the line turns blue) for which there is a sudden transition to the attractor C−.
Equation 4 establishes a correspondence between time and the value of the temperature gradient, r, which
is also shown in the figure as a secondary x-axis. The transition from one regime to another appears for a
value of r < 24.06 that we call the critical value and designate it by rcr.

Thus, we conclude that the delay effect is also present when chaotic attractors are involved. Further-
more, it is necessary a lower temperature gradient, exactly rcr = 23.3 for the previous example, to achieve
a constant rotation frequency of the rolls. However, if we let the system evolve to its steady state for each
value of r, which translated to our analysis would mean to make ε → 0, the transition would take place
exactly at the value in the bifurcation diagram, r = 24.06. For 23.3 < r < 24.06, the system tracks the
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Fig. 6. Time series for the non-autonomous Lorenz system with ε = 10−3. The secondary x-axis shows the time
dependence in the r parameter. It can be seen that the transient lasts for a long period of time and that the transition to the
steady state starts at r < 24.06, specifically, for r = 23.3 (when the line turns blue).

chaotic attractor although it is no longer stable. In other words, the chaotic attractor is a metastable state.
As previously mentioned, when dealing with chaotic attractors a single trajectory is not informative

enough and we should consider an ensemble of trajectories. For that reason, we take 104 initial conditions
on the sphere, and we exclude the ones that for r = 24.5 go to C+/C−. These correspond to the red/blue
basins in Fig. 4.

The attractor toward which the trajectory goes depends on the initial conditions. But for a single
initial condition, it depends on the precise moment that the trajectory is caught wandering in the chaotic
attractor, that is on t1. Using the same terminology as in [Kaszás et al., 2019], we call the basins for the
non-autonomous system: scenario-dependent basins. After this clarification, we fix t1 = 800, ε = 10−3,
r0 = 24.5, t2 = 4000 and tf = 4000, as before and we let the ensemble of trajectories evolve.

The value of rcr for the dynamic heteroclinic bifurcation is different for each initial condition unlike
for the dynamic pitchfork bifurcation for which the transition occurred at the same value of r for every
initial condition. In Fig. 7(a), we can see how the values of rcr follow a normal distribution with mean
〈rcr〉 = 23.071 and standard deviation σ = 0.2868.

Fig. 7. Critical value of the parameter r and scaling law for the heteroclinic dynamic bifurcation. (a) The
normal distribution of rcr for an ensemble of trajectories with a specific rate of change of ε = 10−3. (b) The mean value of rcr
for different values of ε. The stars correspond to numerically calculated values of 〈rcr〉, the power law fit is also shown in red.



January 12, 2021 14:27 IJBC-D-20-00266

Transient dynamics of the Lorenz system with a parameter drift 9

We may repeat the same procedure for different values of ε to study the effect of the parameter rate
of change. We focus on small, but non-negligible rates compared to the natural time scale of the system.
In our case, the period of revolution of convection rolls is of order 10−1. In Fig. 7(b), we calculated the
rcr for more values of ε on the range 10−4 − 10−2 which are marked as black stars. As we can see, for
higher rates the delay effect is more pronounced. For example, for ε = 10−2, the temperature gradient for
which the system suffers a sudden transition from a chaotic state to a stable state is 〈rcr〉 = 22.32, which is
significantly a smaller value than the rcr for ε = 10−3. Another consequence of this, is that for rapid shifts
in the parameter, the metastable state lasts longer. Also, as ε → 0, the standard deviation is reduced. In
the limit, that is, the frozen-in system, all the initial conditions suffer the transition at the same value of
〈rcr〉.

Finally, we derived the corresponding scaling law for the heteroclinic bifurcation. This equation relates
the value of the parameter for which the system abandons the chaotic attractor with the parameter change
rate. For that purpose, points in Fig. 7(b) are fitted to a power law of the form

〈rcr〉 = −a · ε1/4 + r0, (5)

where a > 0 is a constant and r0 = 24.5 in our case, with a R-square: R2 = 0.9999. This law indicates that
a small parameter change rate reduces the parameter value for the transition, but from a certain value an
increase in the parameter change rate does not reduce significantly the parameter value.

We may compare this with the same analysis for the pitchfork bifurcation for which rcr ∝ ε1/2. Unlike
the scaling law for the pitchfork bifurcation, our scaling law deals with the presence of chaotic attractors,
which to the best of our knowledge is a novel finding. This implies that the value of rcr in the scaling law
is a mean value from the ensemble approach.

We may ask ourselves about the spatial distribution of rcr in the sphere of initial conditions. However,
due to the presence of the chaotic attractor, there is no pattern and the initial conditions that lead to longer
and shorter metastable states are completely intermingled. We may say that the chaotic attractor acts as
a memory-loss agent. In the same way, the scenario-dependent basins do not show a pattern and both
basins (C+/C−: red/blue basin) are intermingled. The final destination of the trajectories is related to the
precise moment that the trajectory is caught wandering in the chaotic attractor when the parameter shift
starts rather than to the initial condition. In other words, predictability of individual trajectories is lost
because the passage through the chaotic attractor induces fractal basins of attraction. Similar phenomena
has been addressed as a random tipping in [Kaszás et al., 2019].

3.1. Transient chaos interpretation

So far, we have defined the delay effect for the dynamic heteroclinic bifurcation, but this phenomenon can
be interpreted from a different point of view in the context of transient dynamics. The Lorenz equations
with r defined by Eq. 4 form a non-autonomous system, which can be considered to present transient chaos
as the duration of the chaotic dynamics is finite (see Fig. 6). In this context, the scaling law predicts the
end of the transient state.

In the previous section, the scaling law predicted the value of the temperature gradient for which the
dynamics changed as past r = 24.06 the chaotic attractor was considered to be a metastable state. In
the time framework, the scaling law predicts when the system suffers a transition to its steady state. The
transient dynamics may last for long periods of time; therefore, the transient is not a negligible part of the
dynamics as it has been considered before, and it is fundamental to uncover a law that predicts the end of
this state.

To characterize a nonattracting chaotic set, as the chaotic saddle responsible for the transient chaos,
we may analyze the decay in the number of trajectories that still present a chaotic behavior [Maslennikov
& Nekorkin, 2013]. In Fig. 8 we represent, for different decay rates, N(t) as the normalized number of
trajectories in the chaotic attractor for a time t. As we did earlier, we exclude the ones that at r = 24.5
belong to the C+/C− basins. Note that the decay in r starts at t = 800. When the curves decrease to zero,
the transient chaos phase ends and every trajectory reaches its steady state, i.e., the C+/C− fixed point
attractors.
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Fig. 8. Normalized number of trajectories that remain in the chaotic attractor for a time t. At t = 800, the
parameter starts decreasing, but the chaotic attractor constitutes a metastable state for some time later than before reaching
the steady state. Therefore, the transient behavior is shown. For a certain parameter change rate, the trajectories do not reach
the steady state at once; instead they follow a normal distribution. For slow parameter change rates the transient dynamics
lasts for a longer period of time. This may create the false impression that the transient regime is the steady state.

As we can see, in all cases, the decay with time follows a sigmoid which is related to the normal
distribution for rcr in Fig. 7(a). Note that rcr and time are equivalent through Eq. 4. In fact, we are
representing nothing more than the complementary cumulative distribution function of Fig. 7(a) in terms
of time.

The S-shape of Fig. 8 reflects that the majority of trajectories decay more or less at the same time
(same rcr), while some of them decay earlier or later. The curve for ε = 10−3 is further from the rest of
them as we showed in Fig. 7(b) that 〈rcr〉 ∝ −ε1/4, thus as ε→ 0, the 〈rcr〉 decreases and the time for the
transition increases non-monotonically.

The scaling law on Eq. 5 predicted that for high parameter change rates the temperature gradient
could be decreased to a low value before turbulence disappeared. In this new interpretation, we add that
in terms of time, the transient dynamics is shorter in that case. Finally, the scaling law can be written in
terms of time using Eq. 4:

〈τ〉 = a · ε−3/4 + t1, (6)

where τ refers to the lifetime of the transient dynamics, t1 in our case is 800 and a is a positive constant.
We conclude that in non-autonomous systems, the transient dynamics may present an unexpected long-

term behavior. After a period of apparent equilibrium, in our case chaotic, the system suffers a transition to
its truly steady state. The transient dynamics duration depends on the parameter rate of change through
the scaling law. For slow rates, the transients last for a long period. This may be an undesired effect for a
experimentalist as a parameter may be changing too slowly to notice and the dynamics may seem stable.
Additionally, due to the presence of the chaotic attractor, the final destination of the trajectory after the
transient dynamics becomes unpredictable.

4. Reversibility

Sometimes, the long-lasting transients that appear in systems with parameter drifts may be followed by
an undesirable state. This problem has been addressed from a control theory approach, where a small
perturbation may keep the system in the desired transient state [Aguirre et al., 2004]. For instance, this
approach has been proposed to prevent species extinction maintaining the system in the transient chaos
regime [Shulenburger et al., 1999]. Here, we tackle the problem from a different perspective.
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For systems with parameter drifts, the parameter may be controllable and we may ask ourselves whether
it is possible to reverse the dynamics by reversing the parameter to its original value. For example, we can
see that in the non-autonomous Lorenz system, a chaotic transient precedes a sudden transition to a fixed
point as shown in Fig. 6. An intuitive way to avoid the latter, is to increase the temperature gradient again
in order to recover the chaotic dynamics that was lost. However, if we analyze the frozen-in bifurcation
diagram, the fixed point attractors C+/C− are stable before and after the heteroclinic bifurcation at
r = 24.06. This implies that it may not be so easy to avoid these states and a complete study of them
would be needed.

For that purpose, in this section, we analyze what happens to the system if the temperature gradi-
ent increases with time and the heteroclinic bifurcation is crossed ‘from the left’. The equations for the
parameter r read:

r =

 r0 for t < t1
r0 + ε · (t− t1) for t1 < t < t2
r0 + ε · (t2 − t1) for t > t2

r0

t1 t2

(7)

Once again, we take a sphere of 105 initial conditions and we let these trajectories evolve with time.
Regarding the parameters in Eq. 7, there are some restrictions in order to reverse the dynamics. First of all,
we take the initial temperature gradient to be in the range 13.926 < r0 < 24.06. In particular, we consider
r0 = 20 since for this parameter we have already calculated the corresponding basins of attraction in the
frozen-in system (see Fig. 2). We aim to increase the temperature gradient in such a way that those red
and blue basins corresponding to C+/C− (the undesirable state), map to the yellow basin corresponding
to the chaotic attractor (the desirable state).

The ideal situation would be to fix t1 to a higher value than the maximum lifetime calculated in Fig. 3,
that is, t1 > 140. By doing so, we ensure that all initial conditions have reached C+/C−. However, it can
be checked that once a trajectory is close enough to C+/C− it cannot escape, no matter the rest of the
parameter values in Eq. 7. By close enough, we refer to the same criterion used for the basins of attraction,
that is, that the trajectories enter into a sphere of radius 0.1 centered at C+/C−. Higher values of the
radii, around 5, mark the no return limit. Taking that argument into account, we set t1 = 0, so that the
parameter starts increasing from the beginning of the trajectory, when it is still on the sphere, far enough
from the C+/C− attractors.

For the same reason as before, if we take slow parameter rates, the trajectories will enter the no return
limit. Thus, the third restriction is about ε. For the range of ε considered in the previous section, the
system does not tip to the chaotic attractor. In fact, we found that a minimum rate close to 5 · 10−2 is
needed. This type of tipping, where the system fails to track a continuously changing quasi-static attractor
for a certain critical rate is called rate-induced tipping or R-tipping [Ashwin et al., 2012]. In our case, as we
are not letting the system to reach C+/C−, no traditional rate-induced tipping is possible [Kaszás et al.,
2019].

On the other hand, the last parameter, t2, is fixed in such a way that for every ε, the temperature
gradient stops at r = 24.5. For example, for ε = 10−1, the value of t2 is 45, since 20+10−1 · (45−0) = 24.5.

Now, we show the results for various parameter rates above the limit. Figure 9 shows the scenario-
dependent basins for ε = 5 · 10−1, 10−1, 7 · 10−2 and 5 · 10−2. Additionally, we have included the basins for
the frozen-in equations at the starting and ending values of the parameter shift, that is, r = 20 and 24.5,
in order to compare the size of the yellow regions, corresponding to initial conditions that end up in the
chaotic attractor.

As we can see, the faster the parameter shift, the closer to the basin for r = 24.5. For slower parameter
rates, as ε = 10−2, we obtain that the scenario-dependent basin is the same as the basin for r = 20. In other
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Fig. 9. Rate-induced tipping phenomenon. The scenario-dependent basins of attraction for different values of ε showing
that for high parameter change rates a significant number of trajectories tip to the chaotic attractor. We also show the basins
of attraction of the frozen-in system for r = 20 and r = 24.5 for comparison. In all cases we have fixed t1 = 0, r0 = 20 and
rf = 24.5.

words, no tipping from C+/C− to the chaotic attractor is possible. For ε = 5 · 10−2, a few trajectories
starting near the stable manifold of the chaotic saddle at r = 20 tip to the chaotic attractor. This is
because points in that region have longer lifetimes and show transient chaos in the static case, see Fig. 3.
For ε = 7 · 10−2 and 10−1, this effect is stressed. And for ε = 5 · 10−1 the number of trajectories that tip
to the chaotic attractor are significantly increased and the basin boundaries are smoothed.

Even for the initial conditions that do not tip, these trajectories are affected by an increase in the time
to reach the C+/C− attractors. This long-lasting transient is explained by the fact that the attractor is
continuously changing and the difficulty to track its path is more severe for higher parameter change rates
as shown in Fig. 10 for ε = 5 · 10−1. The transient lasts for a longer time compared to the frozen-in case,
even if it does not tip to the chaotic attractor.

Finally, we have calculated the tipping probability as defined in [Kaszás et al., 2019]. In our case, it
corresponds to the proportion of the part of the basin of attraction of C+/C− at r = 20 that is mapped
to the chaotic attractor, A, at r = 24.5 by the end of t2. The evolution of the tipping probability with the
rate of change of the parameter r is shown in Fig. 11. As we can see, the probability increases with ε, since
more initial conditions tip to the chaotic attractors for higher parameter change rates. At a value around
10−1 the curvature changes sign and around 5 · 10−1 the tipping probability saturates and approximately
half of the trajectories tip to the chaotic attractor.

The shape of the numerically calculated points describe a sigmoid, specifically, a Gompertz type
function of the form

P = a · e−b·e−c·ε
, (8)

where a is the saturation value, i.e., a = 0.5151, b = 6.139 and c is the growth rate. In our case, c = 21.07
with an R-square of 0.9881. As we can see, the growth in the tipping probability is slower for low and
high values of ε and it reaches a saturation value for which no matter how fast the parameter is shifted,
approximately half of the trajectories never tip to the chaotic attractor. These trajectories correspond to
the ones with lower lifetimes in the frozen-in case.

The results presented above show that it is possible to change the fate of trajectories that would reach
the C+/C− attractors by increasing the parameter r. At the beginning of this section, we considered a
trajectory with a chaotic transient preceding a sudden transition to an undesirable state, like the one in
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Fig. 10. Transient lifetime comparison for the frozen-in case and the non-autonomous system with ε = 5 ·10−1.
Even for the trajectories that do not tip to the chaotic attractor, the transient regime duration is increased when the parameter
shifts as it is more difficult to track the attractor.

Fig. 11. Tipping probability dependence with ε. This probability accounts for the number of trajectories that tip from
C+/C− to the chaotic attractor, A, by the end of the parameter shift. For higher parameter change rates more trajectories
that belonged to the red/blue basins at r = 20, tip to the chaotic attractor when the parameter shifts. The numerically
calculated points are fitted to a sigmoid, specifically, the Gompertz function.

Fig. 6, and we asked ourselves whether it is possible to reverse this dynamics by reversing the parameter
to its original value, that is r = 24.5. In the light of the results shown, this is not always possible.

Once a trajectory has decayed to either one of the fixed points, that is, time has passed so that r has
decreased below rcr, reversing the parameter to its original value is not enough to reverse the dynamics.
However, if we observe this behavior for a single trajectory, we may still be able to reverse the dynamics
for other trajectories. As we showed in Fig. 7(a), each initial condition decays to the fixed point at a
different time, or likewise at a different parameter value r. This means that for r > (〈rcr〉 − σ), there are
still trajectories in the chaotic region which after some time would decay to C+/C−, and an increase in the
temperature gradient may keep these in the desirable state. For higher parameter change rates, a higher
number of trajectories will tip to the chaotic attractor as shown in Fig. 11.
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Another consequence is that if we want to make sure that the chaotic behavior is not recovered once
the temperature gradient is increased for any trajectory, we have to decrease this parameter to a value of
r < 〈rcr〉 − σ.

5. Conclusions

In this paper we have studied the phenomenon of transient dynamics in a non-autonomous system. In
particular, we have analyzed the Lorenz system subjected to a small parameter drift. First of all, we have
characterized the associated frozen-in system. We have observed that when the parameter crossed the
heteroclinic bifurcation value, the system continued tracking the chaotic attractor for further parameter
values until it reached a critical value at which it jumped to its truly steady state. Thus, we have concluded
that the so-called delay effect is also present in systems with strange attractors. Furthermore, it constitutes
the origin for the long-term transient dynamics before the system settles at its steady state.

We derived a scaling law to relate the duration of the transient in the non-autonomous system to the
parameter rate of change. We have shown that for higher parameter change rates, the transient dynamics
is shorter, while the deviation from the bifurcation value of the parameter that causes the transition is
larger. This relation is governed by a power law.

Finally, we have analyzed the possibility of recovering the transient dynamics by reversing the param-
eter value to its original state, as an alternative to the control theory for non-autonomous systems. For this
purpose, higher parameter rates were considered. Above a critical rate, rate-induced tipping takes place
and some trajectories initially far from the fixed point attractors tip back to the chaotic attractor. We also
have showed the sigmoid relation between the number of trajectories that change their fate and end up in
the chaotic attractor and the parameter change rate. For this purpose, the reverse on the parameter must
start before r > 〈rcr〉−σ. Even for the trajectories for which the system does not tip, we have showed that
the transient dynamics duration is enlarged.
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Shulenburger, L., Lai, Y. C., Yalçinkaya, T. & Holt, R.D. [1999] “Controlling transient chaos to prevent
species extinction,” Phys. Lett. A 260, 156–161.

Tél, T. & Gruiz, M. [2006] Chaotic dynamics: An introduction based on classical mechanics, (Cambridge
University Press, UK).

Thrane, E., Mandic, V. & Christensen, N. [2015] “Detecting very long-lived gravitational-wave transients
lasting hours to weeks,” Phys. Rev. D 91, 104021.

Wang, G., Lai, Y. C. & Grebogi, C. [2016] “Transient chaos-a resolution of breakdown of quantum-classical
correspondence in optomechanics,” Sci. Rep. 6, 1–13.

Warecki, J. & Gajdzica, M. [2014] “Long lasting transients in power filter circuits,” Comput. Appl. Elect.
Eng. 12, 324–333.




