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Combined effects of the damping and forcing in
the underdamped time-delayed Duffing oscillator are
considered in this paper. We analyse the generation
of a certain damping-induced unpredictability due to
the gradual suppression of interwell oscillations. We
find the minimal amount of the forcing amplitude
and the right forcing frequency to revert the effect
of the dissipation, so that the interwell oscillations
can be restored, for different time delay values. This
is achieved by using the delay-induced resonance,
in which the time delay replaces one of the two
periodic forcings present in the vibrational resonance.
A discussion in terms of the time delay of the critical
values of the forcing for which the delay-induced
resonance can tame the dissipation effect is finally
carried out.

This article is part of the theme issue ‘Vibrational
and stochastic resonance in driven nonlinear systems
(part 1)’.

1. Introduction
The effects of the linear dissipation on both linear
and nonlinear oscillators are well known [1–3]. In this
sense, the amplitude of the oscillations decays and
eventually goes to zero more or less rapidly depending
on the magnitude of the damping term. However,
when the dissipation competes with an external forcing,
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oscillations may survive or decay, depending on the intensities of both terms. In fact, this
competition gives birth to different effects on the dynamics of an oscillator, as studied in [4],
where it has been analysed how the dissipation can introduce uncertainty in the topology of the
phase space of the system and how the forcing can counter it.

Here, we aim to extend the current knowledge on the effects of dissipation for time-delayed
oscillators. This kind of systems include a term that depends on a time interval [−τ , 0] of the
history of the system, where τ is the time delay. This term may destroy stabilities [5] and induces
oscillations on the system depending on its parameters. In physical and biological systems, the
time delay accounts for the finite propagation time as information is not immediately propagated
in nature. This means that the future evolution of the system depends not only on its present
state, but on its previous states. This is why we talk about history functions instead of initial
conditions. History functions are sets of initial conditions in the continuous time interval [−τ , 0]
[6]. For simplicity, in this paper, we use as history function: u0 = 1. Time-delayed systems can
be found in many practical problems. Among others, they are present in neural networks [7],
population dynamics [8,9], electronics [10] or meteorology [11].

We use the underdamped time-delayed Duffing oscillator due to the paradigmatic role
played in nonlinear dynamics. In the first part of this work, we explore the unpredictability
induced by the dissipation and relate it with different values of the time delay. Thus, we
show that the uncertainty can be reverted when the phenomenon of resonance is triggered.
The phenomenon of resonance in nonlinear systems has been deeply studied, for instance in
[12]. In particular, vibrational resonance (VR) [13,14] is a well-known resonance phenomenon
in which the amplitude enhancement is triggered by two periodic external forcings with different
frequencies. The delay term can play the role of one of the periodic forcings typically used in
vibrational resonance, and the resonance can be triggered by the cooperation of the time delay
and just one external periodic forcing as shown in [15]. The latter phenomenon has been called
delay-induced resonance and has been studied among other fields in the context of meteorology,
as for example the ENSO model in [16]. Other branches of science where time delay is relevant
(neural networks, population dynamics or electronics, as cited before) will be an important focus
of study in the following years.

Here, we start by countering the effects of the dissipation through the introduction of a periodic
forcing as small as possible in our time-delayed oscillator. In particular, we show that a certain
value of the forcing frequency is the more suitable to induce the resonance. Then, we continue
analysing the possibility of using the forcing to enhance the single-well oscillations, related to
particular values of the time delay τ , so that they are no longer confined in one of the wells.
In this case, we find that there is a critical value of the forcing amplitude that shifts the system
sensitivity towards another value of the forcing frequency.

For visualization purposes, we plot colour gradients in the parameter (pi, pj) space, where p
means a generic parameter, each colour related to the peak-to-peak amplitude of the oscillations
so that every couple of (pi, pj), i �= j with i, j ∈ N is coloured with the asymptotic amplitude
generated. We call this kind of plot amplitude basins. With the use of those amplitude basins
we show how the damping-induced unpredictability is connected with the suppression of
the interwell oscillations due to the appearance of fractal regions in the amplitude basins.
Moreover, they permit to easily visualize when the unpredictability is reverted or the single-well
oscillations disappear. Also, the analysis of those kind of plots makes it easy to determine the
critical values, commented above. Every numerical integration in this paper has been performed
using the method of steps to reduce our delay differential equation to a sequence of ordinary
differential equations which are solved by a Runge–Kutta algorithm with adaptative stepsize
control (Bogacki–Shampine 3/2 method).

This paper is organized as follows. We describe the model in §2 showing the role of the
damping term. The phenomenon of high amplitude oscillations in the two wells with a critical
value of the frequency is shown in §3. On the other hand, we show the phenomenon of delay-
induced resonance for the single-well oscillations in §4. Finally, the main conclusions of the
present work are presented in §5.
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2. The model and the damping effect
For our analysis, we consider an underdamped Duffing oscillator with a restoring force αx +
βx3, a damping term μẋ, a periodic forcing F cos Ωt, and a time delay term γ x(t − τ ). Thus, the
equation reads as follows:

ẍ + μẋ + αx + βx3 + γ x(t − τ ) = F cos Ωt. (2.1)

For convenience, we fix the parameters as α = −1, β = 0.1 and γ = −0.3 as in [12], so that the
system is bistable. As a consequence, the system possesses three equilibria: one unstable point at
the origin and two stable points at x∗ ≈ ±3.606, which are located at the bottom of the wells. To
calculate the equilibria, we set x(t) = x(t − τ ) = x∗, and we obtain the following results:

x∗ = 0, x∗
± = ±

√−α − γ

β
= ±

√
13 = ±3.606. (2.2)

Before exploring the combined effects of the forcing, the time delay and the dissipation, we
proceed to analyse the dynamics of the oscillator without forcing and delay term. This means
that assuming no forcing, F = 0, and assuming no delay term, γ = 0, so that the oscillations are
damped and confined to one single well due to the dissipation. As previously mentioned, the
time delay induces sustained oscillations in the system for certain values of the parameters (γ , τ ).
The dependence of the amplitude of these oscillations on τ has been studied in the case of the
absence of dissipation, μ = 0, in [16]. The results are summarized in figure 1a, where we show
the peak-to-peak values of the amplitude A versus the time-delay τ . The figure shows several
regions where the amplitude behaves differently for different intervals of time-delay values. As
it can be seen, there is a first region, Region I, τ ∈ (0, 1.76), with zero amplitude. In this case, the
delay does not induce oscillations. When τ is increased, oscillations are created but confined to
one well. This happens for τ ∈ [1.76, 2.68) and we call this interval as Region II. In Region III, where
τ ∈ [2.68, 3.6], the trajectories go from one well to another well leading to cross-well motion and
so the amplitudes jump to a value bigger than the width of the well. In this region, the motion is
aperiodic. We define Region IV located at the interval τ ∈ (3.6, 6.18), where the motion is periodic
and trajectories comprise both wells. In Region V indicated in figure 1a the motion becomes again
confined to one well.

For clarity, the dynamics of the system in all the above regions, when μ = 0, is displayed in
figure 2a–j. On the left column, we display the orbits in the phase space, while on the right column
we display the frequency spectra calculated through the fast Fourier transform (FFT), for each of
the regions. Naturally, for the first region, for which the oscillations decay with time to one of the
two fixed points x∗±, the FFT calculation of the frequency shows no peaks, i.e. no periodicity. For
the rest of the regions, it is important to notice that the amplitude does not correspond to the peak-
to-peak amplitude A as before. On the contrary, this amplitude M is calculated as xM − x∗, where
xM is the maximum amplitude value and x∗ is the stable fixed point. To better show the difference
between the amplitudes A and M we have depicted figure 3. In the legend of the panels, we show
the values of the maximum amplitude, Mmax, of the peak and the corresponding frequency, ωmax,
which is the frequency of the delay-induced oscillations.

Now, we want to go further and explore the effect of the time delay on the dynamics when
the damping μ �= 0. In figure 1b,c, we can observe the amplitude variation with τ for the damping
parameter values μ = 0.02 and μ = 0.04. As in the case μ = 0 described above, a similar pattern
of regions for the amplitude versus τ is observed, though for higher values of μ the dynamics
changes. As a matter of fact, we can see how the high-amplitude oscillations, corresponding to
Region IV, either disappear and the system remains at rest at a low energy as in the case μ = 0.04
or it happens for a few τ values as in the case μ = 0.02. To stress out this damping effect, we show
in figure 1d a zoom of Region IV for the μ = 0.02 case.

In order to provide analytical support for the numerical results presented above, we perform a
linear stability analysis [17,18] for the fixed points x∗ = x∗± = ±3.606. Even though the analysis
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Figure 1. Themaximumpeak-to-peak amplitude A versus the delay term τ for equation (2.1) with F = 0. (a) The figure shows
the variation of the amplitude versus τ for μ = 0, showing the five regions for the different patterns of behaviour of the
oscillations amplitude. Panels (b,c) plot the same forμ = 0.02 andμ = 0.04, respectively. Panel (d) is a zoom of panel (b) to
better visualize the first τ values for which there are fluctuations in the trajectories amplitude in Region IV. In panels (b,c), the
vertical dotted red lines are the values of τ predicted by the stability analysis at which the fixed point x∗ = ±3.606 undergo
change of stability. (Online version in colour.)

is performed for x∗ = +3.606, for symmetry reasons it is equivalent for x∗ = −3.606. The
characteristic equation of the linearized system reads

λ2 + μλ + α + 3β(x∗)2 + γ eλτ = 0. (2.3)

We take λ = ρ + iω as the eigenvalue associated with the equilibria x∗±. The critical stability curve
is the one for which ρ = 0 as it implies a change of sign in Re(λ). For Re(λ) < 0, the fixed point is
stable while for Re(λ) > 0 is unstable. Substituting λ = iω in equation (2.3) and separating both the
real and imaginary parts, we obtain the following equations:

ω2 − α − 3β(x∗)2 = γ cos ωτ (2.4)

and
μω = γ sin ωτ . (2.5)

After squaring and adding both equations, and substituting the parameter values α = −1, β = 0.1,
γ = −0.3 and x∗ ≈ ±3.606, we obtain an equation relating the positive values of ω in terms of the
damping parameter μ given by

ω1,2 =
√

−5μ2 ∓
√

25μ4 − 290μ2 + 9 + 29
10

, (2.6)
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Figure 2. The representation of the phase space orbits and frequency spectra belonging to the different regions shown in
figure 1a. The computations are done with equation (2.1), for the parameter values F = 0 andμ = 0. From left to right, we
represent the orbit in phase space and the frequency spectrum of the oscillations. In panels (a,b), we take τ = 1, and the
asymptotic solution falls into a fixed point and the frequency spectrum shows no oscillations. In panels (c,d), τ = 2, and the
solutions are periodic and confined in onewell. In panels (e,f ), τ = 3, and the solutions are aperiodic. In panels (g,h), τ = 4.5,
and the solutions are sustained interwell periodic orbits. Finally, in panels (i,j), τ = 6.5, and the solutions are again confined
in one well. In the legend, the maximum amplitude,Mmax, and the trajectories related frequencies,ωmax, are displayed.
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Figure 4. Amplitude basins: the figure shows a colour gradient plot of the peak-to-peak amplitude of the oscillations in the
parameter space (μ, τ ) for the casewhen the forcing amplitude is F = 0. Panel (b) is a zoom corresponding to Region IV,where
0.025< μ < 0.04 and 3.6< τ < 5.25. It is interesting to notice how the fractalization of the yellowbasin becomesmore and
more important as the dissipation term grows. (Online version in colour.)

where ω1 and ω2 are the two positive values. We can easily derive

τ = arccos((ω2 − α − 3β(x∗)2)/γ )
ω

(2.7)

from equation (2.4), providing the τ values for which the stability changes in terms of the
parameters and the frequency. Note that due to the periodicity of arccos function, we can consider
as solutions either τ or (2π/ω) − τ . From equation (2.6), we can obtain the values ω1 = 1.613 and
ω2 = 1.788 when μ = 0.02, and ω1 = 1.615 and ω2 = 1.786 when μ = 0.04. The minimal value of τ

in the range considered that is obtained from these frequencies is 1.8211 for μ = 0.02 and 1.8943
for μ = 0.04. These values match with the numerically calculated values of τ for which the fixed
points lose stability as shown by the vertical dotted red lines in figure 1b,c. Besides, they mark the
end of Region I. Notice that the stability also changes for higher values of τ .

We analyse in detail the effect of the damping on the time-delayed system when F = 0 in
figure 4. The amplitude is plotted for different (μ, τ ) values; from now on we refer to this kind
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of plot as amplitude basins and the amplitude of the oscillations are calculated peak to peak for
an easier display of the amplitude basins. For particular values of μ, vertical slices, we recover
the same pictures as in figure 1. In this case, from the bottom to the top, the dark blue is Region
I without oscillations, in the light blue area live the single-well oscillations (Region II), the green
area corresponds to interwell aperiodic oscillations (Region III) and the yellow one to high-
amplitude and periodic interwell oscillations (Region IV). It is remarkable how the damping only
appears to affect the latter region transforming it into the dark blue region where the amplitude
is zero. Finally, we have Region V, that also remains untouched by the damping.

Figure 4b shows a zoom of figure 4a, for values of the time delay and dissipation that generate
a more complex structure in the parameter space. Regions I and IV do not present smooth basin
boundaries like Regions I and II, for instance. On the contrary, it can be seen in this zoom that the
yellow and blue basins are intermingled leading to a non-integer fractal dimension for the basin
boundary. So that, a little variation in the parameters (μ, τ ) can change the motion of the system
from high-amplitude oscillations to staying at rest, without passing by intermediate states. In
other words, the damping produces a fractalization of the amplitude basins, which implies a
higher unpredictability for the system, showing only two possible states, interwell oscillations or
no oscillations at all. We refer to this phenomenon as damping-induced fractalization.

3. Restoring the interwell high-amplitude oscillation with a minimum value of
the forcing parameter F

In this section, we address the following question: is it possible to restore the high-amplitude
oscillations suppressed by the damping effect? The previous section showed how the damping
in our system (equation (2.1) with F = 0) reduces the high-amplitude oscillations of Region IV
(yellow in figure 4) making the trajectories fall into the fixed point (dark blue in figure 4). This
change may be undesired, particularly because a small variation in the time delay may cause a
dramatic change in the dynamics. In fact, in the amplitude basins the yellow and blue basins are
intermingled due to the damping-induced fractalization of the parameter space.

The phenomenon of delay-induced resonance studied in [16] for the overdamped case implies
that even for the parameter values for which the time delay does not induce sustained oscillations
a resonance may appear following a different mechanism. Our scenario is different, as the
underdamped oscillator presents oscillations and the damping term, for certain values, eliminates
these oscillations. However, we show that, even in this case, the delay-induced resonance
phenomenon appears and as a consequence a small forcing is a valid mechanism to gain back
the oscillations and reduce the fractality caused by the damping.

In the following subsections, we explore the parameter values for which a small periodic
forcing can restore the high-amplitude oscillations. To achieve our goal, we start analysing, in
the parameter space (Ω , τ ), the interaction between the damping parameter μ and the forcing
amplitude F. Then, for fixed μ and τ values, we study the (Ω , F) parameter space to evaluate
their effect on the oscillations amplitude. Here, we are mainly interested in Region IV for
μ ∈ [0.025, 0.04], for which the oscillations disappear and the fractalization is pronounced. Results
are presented in different subsections depending on which parameters are swept.

(a) Effect of the frequency of the forcing
As introduced before, we start analysing the (Ω , τ ) parameter space to study the impact of a
small periodic forcing amplitude, F = 0.02, for fixed damping parameter values. In fact, in figure 5
the forcing frequency Ω is varied for four values of μ. Remember that for μ = 0.02, when F = 0,
the yellow amplitude basin is still present and the fractalization of the basins only begins at its
boundary. On the other hand, for μ = 0.05 most of the yellow basin has disappeared. Therefore,
we can see that by adding the forcing for the first case, the dynamics does not barely change
(figure 5a), except for a widening at around Ω = 1. On the other hand, by taking a look to figure 4
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Figure 5. The erosion of the yellow amplitude basin in the parameter space (τ ,Ω ) are represented in the presence of a forcing
of amplitude F = 0.02. The colour bar relates the colour with the oscillations amplitude. Panels (a–d) show the basins for
μ = 0.02, 0.03, 0.04 and 0.05, respectively. (Online version in colour.)

we can see that for μ = 0.04 the yellow basins is completely gone. In fact, figure 5 shows us, as
we increase the values of μ, the erosion of the higher amplitude basin. But, it also shows that
the effect of introducing a forcing is to create a yellow ‘island’ around Ω = 1. This means that
near a specific frequency the forcing is able to counter the damping effects and to recover the
high-amplitude interwell oscillations. In figure 5c, where μ = 0.04, we can see that still the small
high-amplitude island resists, and it is centred around that frequency value. So, we call it the
resonance frequency Ωr = 1. It is interesting to note that this frequency value is different from the
ωmax observed in figure 2h. Now the yellow island disappears for μ = 0.05, figure 5d, suggesting
a shift for the minimal value for which the interwell oscillations disappear when the forcing is
present.

Additionally, it is remarkable that the yellow amplitude basin (τ ∈ [3.8, 4.5]) is the only one that
seems to be affected by the presence of the forcing or the damping. This region is less stable and
more susceptible to changes in the dynamics. Oscillations in one single well (light blue basin), the
rest state (dark blue basin) or aperiodic interwell oscillations (green basin), at these small values
of the forcing or damping, are not modified.

(b) Effect of the amplitude of the forcing
In the previous subsection, we have studied how the enhancement of the dissipation, with a
fixed small amplitude forcing, suppresses the high-amplitude oscillation except around an area
centred in Ωr = 1. In particular, for the value of μ = 0.04, which makes the interwell oscillations
disappear for F = 0, so that only a little island of high-amplitude oscillations remains. This is the
most interesting case to study, that is whether the interwell oscillations can be restored with the
right forcing amplitude. Therefore, we fix μ = 0.04 and plot, in figure 6, the amplitude basins in
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Figure 6. The reconstruction of the amplitude basins in the parameter space (τ ,Ω ) are shown for μ = 0.04 and in the
presence of a forcing with F = 0.04 (a), F = 0.08 (b), F = 0.1 (c) and F = 0.14 (d). (Online version in colour.)

the parameter space (Ω , τ ) but changing the forcing amplitude. In these last figures, it is possible
to see that the value of F, again, only affects the yellow amplitude basin. For the values of F
considered (F = 0.04, 0.08, 0.1, 0.14), we would not notice almost any effect if the time delay of our
system is outside Region IV. It is interesting to observe that in figure 6d the yellow basins break
through the barrier between regions, introducing interwell oscillations in Region V for forcing
frequencies near Ω ≈ 1.

On the contrary, for increasing values of the forcing amplitude, the yellow basin ‘island’ grows
up, around the frequency Ωr, reducing the fractalization. That is, near the resonance frequency the
damping-induced unpredictability can be suppressed. On the other hand, for different frequency
values even though it is possible to appreciate a reconstruction of the yellow basin, the structure
is complex and intermingled. This gives us the relevance of the frequency selection to trigger the
delay-induced resonance and to restore the interwell oscillations. It is also worth mention that in
Region IV there are values of τ for which, independently of the forcing parameters, the oscillations
reach the two wells. We refer to the yellow stripe around τ ≈ 5.

(c) Effect of the forcing amplitude and frequency for fixedμ and τ values
At this point, we know the μ and τ values where we focus our attention and we aim to explore the
parameter space (Ω , F). Therefore, we fix the value τ = 4.5, which is in the middle of the yellow
islands that has been created thanks to the damping forcing competition. In figure 7a,b, we start
focusing our attention around the frequency values that generated the yellow ‘island’ described
before, so Ω changes in the range of values [0.2, 1.4] while F in the range [0, 0.1], with μ = 0.03
and μ = 0.04, respectively. For μ = 0.03, we do not need a high forcing, that is F � 0.03, to restore
the high-amplitude oscillations for almost any value of Ω , in the interval kept in consideration.
However, for μ = 0.04, when the forcing is not present, the high-amplitude oscillations disappear
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of frequencies has been chosen to enclose the yellow ‘island’ observed in figure 5. Panels (c,d) are expansions of the panel (b)
for further values of the maximum amplitude F and for a wider band of frequencies. (Online version in colour.)

completely for the range of τ considered and they are only restored for a certain range of values
of Ω � 1. Also, the minimum amplitude of the forcing to restore the high-amplitude oscillations,
for almost all the frequency values in the interval, is F ≈ 0.1.

Although we are interested in small values of the forcing parameter F, we show in figure 7c,d
an expansion of figure 7b. This gives us a better understanding of the amplitude basins, by
showing them for higher values of the forcing F and for a more complete range of frequencies Ω .
In fact in figure 7c the value of the forcing F goes from 0 to 1 and Ω goes from 0 to π . In figure 7d,
the value of the forcing F goes from 0 to 10 and Ω goes from 0 to 2π . In all the figures, it is possible
to appreciate that the effect of the forcing is either none or it suddenly makes the amplitude jump
into a sustained oscillation between the two wells of the potential. If we compare the figures and
the gradient bar on the right side of each of them, it is possible to check the previous affirmation.

Finally, in figure 7d, it can be seen that the amplitude basins for higher values of F become more
complex and that the role played by the frequency becomes really complicated. Also, for F � 2 the
higher amplitude for the oscillations appears around a different value of the forcing frequency,
i.e. Ω = 2, the same behaviour could be seen for μ = 0.03, but the figure is not in the panel for lack
of further information. It appears that the parameter space can be divided in two areas: for small
forcing values on the bottom of the figure, the system is more sensitive to the Ω = 1 frequency,
while for F > 2 the system frequency sensitivity shifts towards Ω = 2. It makes that value of the
forcing amplitude a critical value that divides two different behaviours of the system, at least for
Region IV, so we call it FIV

c ≈ 2.

(d) Forcing amplitude to recover the interwell oscillations in Region IV
Finally, it is relevant to study the effects of the forcing amplitude in the same way we did for the
dissipation. Therefore, we decided to plot, in figure 8a, the (F, τ ) parameter space, for μ = 0.04
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Figure 8. (a) The amplitude basins in the (F, τ ) parameter space forμ = 0.04,Ω = 1, τ ∈ [0.01, 7] and F ∈ [0, 0.14]. Panel
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and Ω = Ωr, and compare it with the (μ, τ ) plot of figure 4a. The value of the damping term has
been fixed in order to study the possibility to restore the interwell oscillations for a case where the
oscillations are completely damped.

It can be seen in figure 8a how the high-amplitude oscillations (yellow region) are restored for
increasing values of F. Interestingly, the figure shows a mirror symmetry with respect to figure 4a.
The system’s dynamics can be checked in figure 8b, where we represent a slice of figure 8a, for
F = 0.14. It is possible to see that the figure is similar to figure 1a, which displays the evolution
of the amplitude versus τ for the case μ = 0. In fact, in figure 8a,b, it is possible to appreciate that
all the regions that remained unaffected by the damping are also not affected by the forcing. On
the other hand, the system’s behaviour in Region IV is the same as with μ = 0, once the forcing
amplitude reaches values close to F = 0.14.

In the light of these results, we can confidently say that the damping-induced unpredictability
has disappeared and, finally, the interwell oscillations have been restored by increasing a small
amount the forcing parameter F. Also, in Region IV, the no-damping situation is fully recovered
due to the interaction of the time delay and the forcing, i.e. the delay-induced resonance
phenomenon.

In figure 9, we show, from left to right, the phase space orbits and the FFT of two trajectories
with different F values, for a better understanding of actual result. In the first case (figure 9a,b),
for the chosen F value, the parameters correspond to a region before the beginning of the yellow
basin, while in the second one (figure 9c,d) the parameters correspond to the yellow basin. It can
be seen that in figure 9b the oscillation frequency matches the forcing frequency, while in figure 9d,
when the delay-induced resonance is triggered, the oscillations frequency is different. Actually,
the frequency of the sustained interwell oscillations is ω = 1.35, which is in agreement with the
frequency of the delay-induced oscillations of Region IV (F = μ = 0), as we can check in figure 2h
and its legend.

We depict, in figure 10, Region IV oscillation frequencies, ωmax calculated with the FFT, for
different orbits changing the values of the parameters μ and F. In particular, in figure 10a we
show the frequencies of the delay-induced oscillations setting F = μ = 0. Then, in figure 10b–d, we
show the oscillation frequencies for μ = 0.04 and F = 0.01, F = 0.1 and F = 0.14, respectively. We
can appreciate that as the forcing amplitude grows, the oscillation frequencies are restored to the
no-damping case. In fact, in figure 10b, the frequencies are nothing similar to the non-damping
case. On the other hand, in figure 10c, the frequencies curve is almost restored, except for some
boundary τ values that are related to the zones of the region on the parameter space in which
there still remains some fractalization. Finally, figure 10d shows that the oscillation frequencies
return close to the values of no-damping case. To corroborate it, we have plotted the curve fits in
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Figure 9. Representation, from left to right, of the phase space orbits and the FFT of two trajectories. In panels (a,b), the
parameters are set to fall before the beginning of the yellow basin of figure 8a, while in the others to fall inside it. In particular
for both trajectories we set τ = 4.5,Ω = 1 andμ = 0.04, but for the upper one F = 0.01 and for the lower one F = 0.1.
From the legend, note that in (b)ωmax (marked in the figure as a red dotted line) matches the forcing frequencyΩ = 1, while
this does not occur in (d).

figure 10a–d. The relation is polynomial and reads

ωmax(τ ) = p1τ
2 + p2τ + p3. (3.1)

The coefficients of the two polynomials are p1 = 0.04, p2 = −0.7 and p3 = 3.6, with deviations of
small order.

The point is that the case without dissipation is restored, not only regarding the oscillations
amplitude, but also regarding the oscillations frequencies. This is the effect of the conjugate
effect [16] that suggests that if the oscillator is driven by a small forcing, we can enhance those
oscillations, by adding a delay term. In this context, the delay plays the role of the forcing in
triggering the resonance, so that the final oscillation frequency matches the delay frequency ω

instead of the forcing frequency Ω , like in our case.

4. Delay-induced resonance for the single-well oscillations
In the previous section, we focused on the effect of the forcing as an element to restore the high-
amplitude oscillations that the damping had eliminated. In other words, we focused on the range
of τ for which the yellow amplitude basin disappeared. Now we consider the effect of the forcing
in the remainder of the range of τ . So we shift our attention to the single-well oscillations of
Regions II and V and explore the forcing parameter values, F and Ω that trigger the delay-induced
resonance and generate interwell oscillations in that region.

For values of τ outside Region IV, in figure 8a, the forcing does not have any effect. Thus,
we need to increase the magnitude of the forcing in order to change the dynamics for the rest
of the τ values. Particularly, we are interested in the possibility of increasing the energy of the
oscillations confined into one well, τ ∈ (2, 3) and τ > 6.18 (light blue regions online in figure 4a),

julia.cantisan
Rectángulo



13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200232

................................................................

1.6
2

1.5

1

0.5

1.6

1.4

1.2

1

0
4 5 6

1.4

1.2

1.8

1.6

w
m

ax
w

m
ax

w
m

ax
w

m
ax1.4

1.2

1

1

4

4 4 4.5 5 5.5 6

4.5 5

5
t t

t t
6

6

5.5

(a) (b)

(c)(d)

Figure 10. The variation ofωmax (the frequency of the delay-induced oscillations) with the time delay τ for (a) F = μ = 0,
(b) F = 0.01, (c) F = 0.1 and (d) F = 0.14 withμ = 0.04 andΩ = 1. In (b,d), the solid circles are the numerically computed
ωmax while the continuous curve is the polynomial fit (equation (3.1)). (Online version in colour.)

6
25

6 30

20

10

4

2

0 5 10

20

15

10

5

4t t

2

0 5

F F

10

(b)(a)
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namely Regions II and V, so that they become interwell oscillations. To that end, the amplitude
basins in the (F, τ ) parameter space for higher values of the F are depicted in figure 11a,b for Ω = 1
and Ω = 2, respectively. The first frequency choice has been taken to carry on the previous section
analysis; the second one is related to figure 7d, where for a higher value of the forcing amplitude,
the higher-amplitude oscillations pop up for precisely Ω = 2. In fact, in that figure, for τ = 4.5 and
for F > 2, the oscillations amplitude rises to A > 20. Thus, in figure 11, we can see how the light
blue amplitude basin reaches the interwell oscillations.
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We conclude that it is possible to enhance the oscillations confined to one well of Regions
II or V, so that they become interwell oscillations when the amplitude of the forcing increases.
Also, figure 11a,b shows that the system’s response for Region II is different depending on the
frequency value. In fact, in both figures we can divide Region II in two different areas: the single-
well oscillations area, on the left, and the interwell oscillations area, on the right. The two regimes
have a clear boundary in the two figures but different critical F values. It is possible to find those
critical parameter values where the dark blue zone finish along with the single-well oscillations,
at τ ≈ 2.2 and for F ≈ 2.4 in figure 11a and at τ ≈ 2.4 and F = 3.5 in figure 11b.

Moreover, in this last figure, we can divide the interwell oscillations area (Region II) in two
subareas: one in the middle of the figure (the light blue online), where the system reaches the
interwell oscillations and the other one on the right (the yellow one online), in which the interwell
oscillations rise at their maximum value, i.e. A ≈ 30 or more. It can be appreciated, just as we
commented before for figure 7d, that for a certain critical F value the system sensitivity to the
forcing frequency shifts from Ω = 1 to Ω = 2. For Region IV, it was FIV

c ≈ 2, for Region II it is FII
c ≈

5. So, we can say that those critical Fc discriminate two different regimes in those two regions:
small- and high-amplitude forcings. So that, the system is more sensitive to the frequency Ω ′

r = 1
before the critical value Fc and then becomes more sensitive to Ω ′′

r = 2 for values of F beyond
the critical one. Finally, also Region V arises to interwell oscillations in both figures but does
not show the same behaviours as Region II. Therefore, the amplitude of the oscillations does not
change significantly from one plot to the other, although, for Ω = 1, the interwell oscillations start
for a smaller value of the forcing amplitude.

5. Conclusion
We have analysed the effect of the damping on the dynamics of the underdamped time-delayed
Duffing oscillator. Firstly, we have shown that for small damping parameter values, high-
amplitude oscillations (related to Region IV of time delay values) are damped while the rest
of the dynamics is not affected. This effect of the damping produces a fractalization in the
parameter space increasing the unpredictability of the system. We have demonstrated that this
unpredictability can be reverted by a very small forcing amplitude with a specific value of the
resonance frequency, Ω ′

r = 1, through the delay-induced resonance phenomenon. Note that this is
a similar resonance effect as vibrational resonance where one of the external periodic forcings is
substituted by the delay term. Moreover, not only the oscillations amplitude is restored, also the
oscillations frequencies of the case without forcing and damping are restored, thanks to the effect
of the conjugate phenomenon.

Then, we have found a critical value of the forcing amplitude, FIV
c = 2 that switches the system

sensitivity to the forcing frequency towards Ω = 2. So that, for F > FII
c the higher oscillations

amplitude are reached for Ω = 2, while for smaller values are reached for Ω = 1.
Finally, we proved that the same resonance phenomenon may be used to produce interwell

oscillations for τ values inside Regions II and V, for which the oscillations are bounded to one well,
even without dissipation. The forcing amplitude, in these cases, needs to be of a bigger magnitude
to induce the intrawell oscillations. Moreover, the forcing amplitude plays, again, a key role in
the system sensitivity to the forcing frequency for Region II. In fact, we have found a threshold
value of the forcing amplitude, namely FII

c ≈ 5. For smaller values of the forcing amplitude, the
system resonates for Ω = 1. While for values of F higher than FII

c , the resonance frequency is Ω = 2.
Finally, we expect that this work can be useful for a better understanding of the delay-induced
resonance phenomenon in the presence of both dissipation and forcing. On the other hand, Region
V reaches the interwell oscillations for a smaller value of F when the forcing frequency is Ω = 1.
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