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Abstract—In this article, we propose an index modulation
system suitable for optical communications, based on jointly
driving the time and frequency of the signal: an index-time
frequency hopping (I-TFH) system. We analyze its performance
from the point of view of its efficiency in power and spectrum,
and its behavior in terms of error probability for the non-
turbulent free-space optical (FSO) channel. We compare I-TFH
with already proposed index modulated systems of the same
nature, but where the amplitude or the number of transmitters
are driven instead of the signal frequency. We derive and compare
approximations for the average symbol and bit error probabilities
of all these systems. The simulation results show that said
approximations are tight enough for a wide range of signal-to-
noise ratios and system parameters. Moreover, I-TFH shows to
be better performing in BER and/or power efficiency than the
comparative alternatives, and may offer interesting properties in
a variety of contexts.

Index Terms—Index modulation, power efficiency, spectral
efficiency, error probability analysis, optical communications.

I. INTRODUCTION

IN our present situation of accelerated development of

standards and solutions for 5G, it has been made evident

that there is a challenge to meet the throughput requirements

at the PHY for the envisaged technologies and application

scenarios. This is leading to increasing efforts to propose

new solutions and innovative techniques to overcome such

difficulties. One of the most active fields is related to the so-

called index modulation (IM) systems [1]. Essentially, the idea

behind IM is the exploitation of some of the characteristics of

the signals or systems involved in a communication, so that

extra information is carried over, codified in the given setup

or through specifically chosen parameters.

In the past years, a variety of IM systems have been

proposed and studied, and many of them have been directly

associated with the infrastructure of the specific frontends.

For example, in the context of spatial modulation (SM), first

proposed in [2], one of the most popular alternatives consists

in the idea of configuring a multiple-input multiple-output
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Québec, ÉTS, LaCIME Laboratory, 1100 Notre-Dame west, H3C 1K3,
Montreal, Canada (e-mail: georges.kaddoum@etsmtl.ca).

(MIMO) system so that some extra information is codified

in the pattern of active antennas [3]. Closely related to these

developments, it has been also proposed the possibility to

appropriately drive the physical elements of reconfigurable

antennas to further enhance the possibilities of IM in the con-

text of RF [4]. Another instance of successfully profiting from

the several dimensions available in a MIMO communication

scheme can be found in the form of space-time-frequency

shift keying [5], where the diversity introduced in the system

is taken advantage of to counteract the effects of dispersive

channels. A recent tutorial about IM, including the state-of-

the-art and recent challenges can be found in [6].

Therefore, under the mentioned ideas, the receiver normally

requires a prior knowlgege and a continuous update of the

different channel state information (CSI) estimations between

transmitter and receiver antennas. This imposes a noticeable

challenge [7], and makes this kind of schemes very sensitive to

both noisy CSI estimations, as well as to correlated channels

[8], [9]. In addition, the switching time between antennas at the

transmitter, i.e. the duration of time needed by the RF switches

to carry out transitions between transmitting antennas, is

another impairment that restraints the implementation of some

of these systems, and may reduce their capacity [10].

Under other perspective, the possibility to choose differ-

ent subcarrier patterns in an orthogonal frequency-division

multiplexing (OFDM) system has originated the proposal of

a variety of OFDM-IM systems [11]. This kind of scheme

requires sharing an indexing look up table (LUT) between

communicating parties. In addition, the implementation of

the OFDM-IM receiver relies on the maximum likelihood

(ML) detector that needs to search over all the possibilities

of subcarrier combinations. Such class of receivers become

impractical for large combination values due to the exponen-

tially growing required decoding complexity [11]. In order to

tackle this challenge, different lower complexity detectors have

been proposed, such as the ones based on log-likelihood ratio

(LLR) detection strategies, or the so called low-complexity

(LC)-OFDM-IM [11], [12].

Additionally, code index modulation-spread spectrum

(CIM-SS) has been proposed as an alternative index-based

modulation to achieve higher throughputs [13]. This system

uses spreading codes to map the data in conjunction with the

constellation symbols. At the receiver, the spreading code is

first detected using the maximum autocorrelation value, and

then the modulated bits are detected. Hence, with the increase
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in the number of mapped bits, the receiver implementation and

the shortage of appropriate available spreading codes become

challenging issues.

However, current envisaged 5G developments are not ex-

clusively bound to RF, and are also being addressed in the

optical wireless communications (OWC) context. The idea is

that light can be a valid alternative to ground the PHY for the

smallest scale deployments, so as to alleviate the scarcity of RF

spectrum and face the growing interference limitation concern,

by taking advantage of its localized nature and non-penetrative

characteristics. Therefore, the same ideas about IM and the

corresponding scenarios have been adapted for OWC, with

the stress on multicarrier applications (OFDM) and the usage

of multiple transmitters and receivers (MIMO) [14], [15], [16].

Furthermore, the idea to design IM systems well suited

for OWC is also encompassing proposals that go beyond

MIMO and OFDM, and, in the context of single carrier com-

munications, tries to exploit other additional features of the

corresponding setup. For example, a system has been proposed

to jointly use pulse position modulation (PPM) or frequency

shift keying (FSK), while driving the phase or the polariza-

tion of the coherent light signal, thus building a compound

symbol carrying information along diverse dimensions, with

increased efficiency [17]. Other proposals rely on using multi-

PPM (MPPM) and adding additional information along the

amplitude dimension of the active slots in the communication,

in order to build a quadrature amplitude modulation (QAM)

MPPM system [18].

Under the same perspective, two variants of optical space

modulation (OSM) have been proposed, namely, optical space

shift keying (OSSK) and spatial pulse position modulation

(SPPM). These two schemes constitute appealing solutions for

pulse-based OSM systems. For example, OSSK constitutes

a low complex OWC-adapted extension of radio-frequency

space shift keying (RF-SSK). This scheme employs incoher-

ent light sources and resorts to intensity modulation at the

transmitter and direct detection at the receiver side (IM/DD)

[19]. In other words, in OSSK, the information is conveyed

in the index of the pulsed LED. If there are L LEDs, they

can transmit log2 (L) bits per symbol duration under pure

OSSK. In the case of SPPM, the bits are mapped jointly into

the LED index and into the position index of a simple PPM

constellation, thus transmitting a number of additional bits

per symbol as compared to OSSK [20], at the cost of higher

bandwidth occupancy.

On the other hand, OWC systems based on FSK can be

interesting in types of channels where it is expected to have

high losses, limited available power, and where bandwidth

expenditure can be interchanged against a better error per-

formance for very low signal-to-noise ratios. Optical FSK

has accordingly been studied as practical alternative in these

situations [21]. In this case, the modulation process resorts to

driving the wavelength of the emitted light according to the

FSK principles, and can more appropriately be named Wave-

length Shift Keying (WSK). Another example of this kind of

systems can be found in [22], where it is denominated as Color

Shift Keying. Notice that in these cases light coherence and

elaborated optical frontends are required.

Other possibility to profit from the advantages of frequency

modulation in the optical domain consists in modulating the

intensity of the light according to the waveform pattern of

FSK. This can be considered a particular case of known optical

OFDM systems that resort to modulating the light intensity

(like DC-biased Optical OFDM, DCO-OFDM [23], or Asym-

metrically Clipped Optical OFDM, ACO-OFDM [24]), when

only a specific subcarrier is forced to be active at a given

period, thus producing a hopping pattern. A primary advantage

of such system is the fact that very robust and simple detectors

can be implemented, because light coherence is not required,

and the demodulation taking place in the electrical domain can

also be non-coherent. This makes frequency-based systems of

this kind interesting for simple LED-based systems requiring

just IM/DD.

According to all this, we propose here an IM system based

on MPPM, where an FSK symbol is sent during the active

slots, instead of just sending a single pulse shape unable to

carry any additional information. The system jointly drives

the time and the frequency axes, and therefore constitutes

an index-time frequency hopping (I-TFH) modulation. In this

work we will show how the power and error rate performance

will improve with respect to other IM alternatives, like QAM-

MPPM, while keeping very low complexity in transmitter

and receiver, at the cost of spectral efficiency. This is not a

great problem in the optical domain, where there is plenty of

available bandwidth. Therefore, it will be made evident that

I-TFH can be an appealing kind of signal modulation for the

PHY of power-limited OWC systems. Moreover, by its very

nature, it can be thought of as the basis for a combined time

and frequency hopping multiple access system with limited

interference under multi-user scenarios.

As will be detailed in the sequel, the main contributions of

this paper can be summarized as

• The proposal of the I-TFH system, and a new way

to demodulate QAM-MPPM, different from the original

alternative [25].

• Tight symbol and bit error probability approximations for

I-TFH and QAM-MPPM (in its new version).

• Comprehensive comparisons among I-TFH, QAM-

MPPM and SPPM in terms of spectral and power ef-

ficiency, and of error rate performance.

The structure of the article is as follows. In Section II

we describe the model for the I-TFH system, along with

the channel and the demodulation process, and revisit two

similar comparative alternatives. In Section III, we analyze the

performance of I-TFH and the comparative alternatives from

the point of view of their efficiencies, and derive approximate

expressions for the symbol and bit error probabilities. In Sec-

tion IV, we present simulation results, validate the tightness

of the error probability approximations previously derived, and

ascertain the comparative advantages of I-TFH. A final Section

is devoted to the conclusions.

II. SYSTEM MODEL

A. I-TFH model

In this section, we review and define the signals and

meaningful parameters for the I-TFH system. Along all this
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work, we will consider an i.i.d. binary source, and these means

that each of the symbols involved in the different setups will be

equiprobable. MPPM is the extension of PPM [26], [27], and

the MPPM symbol in a time interval T is typically defined

by sending w ∈ {1, 2, · · · , N} nonzero rectangular pulses

with a given time pattern within N > 1 slots, with duration

Ts = T/N each. The nonzero slots are called signal slots,

and the rest are called non-signal slots. The MPPM symbol

is therefore defined by an N -dimensional vector B, belonging

to the set

SMPPM =

{
B ∈ {0, 1}N :

N−1∑

k=0

Bk = w

}
. (1)

According to this, the number of bits per MPPM symbol

will be p2 =
⌊
log2

(
N
w

)⌋
. This number is maximum for

w = ⌊N/2⌋. This definition also means that we only use

2p2 ≤
(
N
w

)
MPPM symbols from the set SMPPM.

As a way to extend the possiblities of the MPPM symbol,

and make it carry additional information, instead of sending

just rectangular pulses in each of the w nonzero positions

within the MPPM symbol, an FSK modulated symbol may be

sent in each slot. Similar ideas have already been exploited,

for example by using PPM and jointly driving the phase or

polarization of the optical signal [17], or by using MPPM and

jointly driving the amplitude and phase of the signal slots to

carry QAM symbols [18].

In I-TFH, if the number of available frequencies is MF (a

power of 2), the number of modulated bits sent per compound

symbol is p1 = w log2 (MF ) = w·nF . To ensure non coherent

FSK demodulation (given that we want a simple system),

the minimum frequency separation should be 1/Ts among

adjacent FSK symbol frequencies. The number of bits per

compound I-TFH symbol is

pI−TFH = p1 + p2 = w · nF +

⌊
log2

(
N

w

)⌋
, (2)

and the binary rate turns out to be Rb = pI−TFH/T =
pI−TFH/ (NTs). In this way, each block of pI−TFH informa-

tion bits is segmented into a block of p1 bits to be carried over

w non-coherent MF−FSK symbols, and a block of p2 bits to

be carried over the specific MPPM pattern, B ∈ SMPPM.

With these ideas, we can now describe the waveform in

the time domain. If we want to consider the optical com-

munications (OC) channel, we have to make sure that the

waveform takes only positive values, given that in the sim-

plest OC general case (e.g. non-coherent LED- or laser-based

communications of any kind), the transmission would be made

using intensity modulation, and the reception at the photodiode

(PD) would be made through direct detection (standard low-

complexity IM/DD schemes). In this case, we may write the

electrical waveform, in a symbol period 0 ≤ t < T , as

s (t) = A

N−1∑

k=0

Bkp

(
t− kTs

Ts

)[
1 +m cos (2πfkt)

]
, (3)

where A > 0 is a constant amplitude value, Bk are the vector

components of B for the MPPM symbol, p (t) is the unit-

duration unit-amplitude rectangular pulse, 0 < m ≤ 1 is a

modulation index, and fk is the FSK symbol frequency, so

that

fk =

{
0, Bk = 0
ni(k)/Ts, Bk 6= 0

, (4)

where ni(k) ≫ 1 is a positive integer defining the specific

FSK frequency for the corresponding signal slot at the k−th

interval. It is to be noted that index i (k) = 0, 1, · · · ,MF − 1,

and

fi+1 − fi =
ni+1 − ni

Ts

=
1

Ts

, (5)

for minimum bandwidth usage in the non coherent case. The

signal defined in (3) contains a bias in the signal slots to

guarantee that it does not experience clipping at the optical

interface. In Fig. 1 we can see a depiction of an actual I-

TFH symbol in the time domain, and of its representation in

the time/frequency frame. As is done in already well-known

proposals resorting to IM/DD [18], [23], [24], we assume

this electrical signal is linearly converted into a light intensity

waveform.
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Fig. 1. Signal model for I-TFH in the time/frequency frame, and its
representation in the time domain.

As shown in Fig. 2, the received signal after the transduction

at the PD1 can be modeled as

rI−T (t) = Iph
N−1∑
k=0

Bkp
(

t−kTs

Ts

)[
1 +m

· cos (2πfkt+ θk)

]
+ z (t) , (6)

1Under the typical hypothesis in the field of IM/DD communications, its
output signal would contain a term proportional to the light intensity waveform
impinging the detector.
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where Iph is the PD instantaneous current, θk is an unknown

random phase that accounts for the non-coherent reception2,

and z (t) is an instance of white Gaussian noise with power

spectral density N0/2. The PD instantaneous current can be

decomposed as

Iph = ARG, (7)

where G is the optical channel gain and R is the responsivity

of the PD. The optical channel gain is constant in the case

of non-turbulent FSO channels, or time-variant in the case

of turbulent FSO channels. In this article, we consider a

constant non-turbulent FSO channel. The average received

optical power is proportional to the DC value of the received

signal current, and it is given by

Popt =
IDC

R =
w

N

Iph
R . (8)

The electrical average received symbol energy is

Es,I−TFH = wTsI
2
ph

(
1 +

m2

2

)
, (9)

and the squared minimum distance between received I-TFH

symbols is

d2m,I−TFH = TsI
2
phm

2. (10)

At the receiver side, to detect the MPPM signal slots, we

resort to the square-law detector (see Fig. 2), which calculates,

for each k = 0, · · · , N − 1,

rk =

∫ (k+1)Ts

kTs

rI−T (t)hr (t− kTs) dt, (11)

where hr (t) =
1√
Ts
p
(

t
Ts

)
is the normalized rectangular pulse

receiver filter. In these conditions

rk =
√
TsIphBk + nk, (12)

where nk is a zero-mean Gaussian random variable (RV) with

variance σ2
n = N0/2. To demodulate the first p2 bits, we

take the square |rk|2, and consider that the w highest values

correspond to the w signal pulses sent. For the purposes of

analysis, it turns out that the method applied to demodulate

MPPM produces the same RVs in every signal slot since the

FSK symbols cancel out in the correlation stage. It can be

demonstrated that the square-law detector RVs Xk = |rk|2
follow a scaled central chi-square distribution with one degree

of freedom if Bk = 0 (non-signal slot), and a scaled noncentral

chi-square distribution with one degree of freedom if Bk = 1
(signal slot). The conditional probability density functions

(pdf’s) are, respectively,

fX (x; 1) =
1√

2πxσ2
n

e
− x

2σ2
n , (13)

and

fX (x; 1,Ω) =
1

2σ2
n

(
Ω

x

) 1
4

e
− x+Ω

2σ2
n I− 1

2

(√
xΩ

σ2
n

)
, (14)

2Note that, given the model described, we have to understand coherence in
this context exclusively in the electrical domain.

where Ω = TsI
2
ph, and Iv (·) is the v-th modified Bessel

function of the first kind. The corresponding cumulative dis-

tributions are, respectively,

FX (x; 1) = 1− erfc

(√
x

2σ2
n

)
, (15)

where erfc (·) is the complementary error function, and

FX (x; 1,Ω) = 1−Q 1
2

(√
Ω

σ2
n

,

√
x

σ2
n

)
, (16)

where Qk (·, ·) is the Marcum Q-function [28].

Once the hypothetical w MPPM slots are thus located, to get

the additional p1 modulated bits as shown in Fig. 2, we apply

the standard non-coherent FSK receiver, which calculates, for

the k−th slot and i = 0, · · · ,MF − 1,

rIik =

∫ (k+1)Ts

kTs

rI−T (t)

√
2

Ts

cos (2πfit) dt,

rQik =

∫ (k+1)Ts

kTs

rI−T (t)

√
2

Ts

sin (2πfit) dt. (17)

The set of metrics

Yik =
∣∣rIik
∣∣2 +

∣∣rQik
∣∣2 (18)

are used to demodulate the FSK symbol: the highest value over

i will determine the hypothesis about the frequency that has

more likely been sent. In the signal slots, the average received

FSK symbol energy is

Es,FSK = TsI
2
ph

m2

2
, (19)

and, given that the filtered noise per dimension will have

variance σ2
n = N0/2, the FSK Es/N0 can be written as

Es

N0

∣∣∣∣
FSK

=
TsI

2
phm

2

4σ2
n

. (20)

As we are using energy normalized signals at the detection

stage to perform the correlations, the received Es/N0 for I-

TFH is

Es

N0

∣∣∣∣
I−TFH

=
wTsI

2
ph

(
1 + m2

2

)

2σ2
n

, (21)

because σ2
n = N0/2 in all the cases. In Fig. 2 we can see

the complete system model, including transmitter, channel and

receiver: b stands for the input bit sequence, and b̂ for the

estimated output bit sequence.

B. Review of QAM-MPPM

The I-TFH system will be compared to the already proposed

QAM-MPPM one [18]. We review the main definitions here

since we will use a different detection process, and these

details are needed to understand the results and comparison

scenarios. The received signal may be written as

rQ−M (t) = Iph
N−1∑
k=0

Bkp
(

t−kTs

Ts

)[
1 +m

·
(
AI

k cos (2πfct) +AQ
k sin (2πfct)

)]
+ z (t) , (22)
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Fig. 2. System model for I-TFH transmitter, proposed channel and receiver.

where fc = nc/Ts, nc ≫ 1, B = (B0, · · · , BN−1) ∈ SMPPM,

and
(
AI

k, A
Q
k

)
=

{
(0, 0) , Bk = 0(
sIi(k), s

Q

i(k)

)
, Bk = 1

, (23)

where si =
(
sIi , s

Q
i

)
∈ SQAM is the QAM symbol, i =

0, · · · ,MQ− 1, and SQAM is the QAM symbol set, with MQ

elements. The number of bits per QAM-MPPM symbol is

pQAM−MPPM = p1 + p2 = w · nQ +

⌊
log2

(
N

w

)⌋
, (24)

where we have defined nQ = log2 (MQ). As the DC com-

ponent turns out to be the same, the average optical received

power will be again as shown in (8), while the average energy

of the received symbol will be

Es,QAM−MPPM = wTsI
2
ph

(
1 +

m2

2
E0

)
, (25)

where E0 = E
[
‖si‖22

]
is the average energy of the QAM

constellation, and ‖ · ‖2 is the Euclidean norm of the vector.

In the sequel, we will consider a unit average energy constel-

lation, so that E0 = 1, and, with an appropriate choice of m,

clipping will be avoided. The squared minimum distance for

the QAM-MPPM symbols is

d2m,QAM−MPPM = TsI
2
ph

m2

2
min
i6=j

‖si − sj‖22, (26)

which will depend on the geometry of the QAM constellation.

If E0 = 1, we will have

min
i6=j

{
‖si − sj‖22

}
=





3
2(MQ−1) , nQ even,

2/3, nQ = 3,
3

2( 31
32MQ−1)

, otherwise.
(27)

We have considered MQ ≥ 4, square-QAM constellations for

even nQ, and cross-QAM constellations for odd nQ (with the

exception of nQ = 3, where it is rectangular).

The QAM-MPPM receiver can detect the MPPM part

as detailed in the I-TFH demodulation process (rather than

resorting to the usage of the I/Q metrics as in [25], which

yields worse results), because the correlation with hr (t) will

give exactly the same statistics, while the demodulation of the

QAM symbols requires evaluating

rIk =

∫ (k+1)Ts

kTs

rQ−M (t)

√
2

Ts

cos (2πfct) dt,

rQk =

∫ (k+1)Ts

kTs

rQ−M (t)

√
2

Ts

sin (2πfct) dt, (28)

where coherent detection is required. The result is

rIk =
√

Ts

2 IphBkmAI
k + nI

k,

rQk =
√

Ts

2 IphBkmAQ
k + nQ

k , (29)

where nI
k and nQ

k are independent zero-mean Gaussian RVs

with variance σ2
n = N0/2. In the signal slots, the average

received QAM symbol energy is

Es,QAM = TsI
2
ph

m2

2
E0, (30)

and the QAM Es/N0 can be written as

Es

N0

∣∣∣∣
QAM

=
TsI

2
phm

2E0

4σ2
n

. (31)

The received Es/N0 for QAM-MPPM is

Es

N0

∣∣∣∣
QAM−MPPM

=
wTsI

2
ph

(
1 + m2

2 E0

)

2σ2
n

. (32)

C. Review of SPPM

We will also compare I-TFH with SPPM [20], which is a

combination of PPM (MPPM with w = 1) and OSSK [19],

constituting another double indexing modulation. We review

here the main concepts of SPPM since we will define a signal

pattern appropriate to generate the comparison scenarios, that

goes beyond the signal patterns considered in the literature. If

the i-th OSSK transmitter is active from among MS possible

ones (a power of 2, in any case), and the PPM system has N
slots, the received signal will be

rS−P (t) = IphCi

N−1∑

k=0

Bkp

(
t− kTs

Ts

)
+ z (t) , (33)

where now
∑N−1

k=0 Bk = 1, Iph is a maximum possible PD

instantaneous current, and 0 < Ci ≤ 1 is the amplitude factor

acting as signature for a given transmitter. In our setup, this

coefficient will be chosen according to

Ci = 1− Lm

i

MS − 1
(34)

for i = 0, · · · ,MS − 1, and where 0 < Lm < 1 is a

limiting factor so that Iph (1− Lm) is the minimum possible

instantaneous current for a signal slot. This convenient equally-

spaced amplitude distribution can be configured by finding out

the losses for each of the paths, and setting the corresponding
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required transmission power for each transmitter. If MS = 2p1

and N = 2p2 , the system transmits

pSPPM = p1 + p2 = log2 (MSN) , (35)

bits per symbol. The average received optical power is now

Popt =
IDC

R =

∑MS−1
i=0 Ci

NMS

Iph
R . (36)

The average electrical symbol energy is

Es,SPPM = TsI
2
ph

∑MS−1
i=0 C2

i

MS

. (37)

The squared minimum distance for the SPPM symbols thus

described will be

d2m,SPPM = TsI
2
ph

(
Lm

MS − 1

)2

, (38)

corresponding to the case when we have equal PPM symbols

and transmitters with consecutive indexes.

After the matched filter stage, we can perform the SPPM

demodulation over the sample

rk =
√
TsIphCiBk + nk, (39)

where nk is a sample of Gaussian noise with σ2
n = N0/2. The

variable rk follows a Gaussian pdf with mean
√
TsIphCiBk

and variance σ2
n. The demodulation of PPM will be made by

locating the signal slot on the basis of the maximum of rk:

k∗ = argmax
k

rk. (40)

Once this is done, the demodulation of the OSSK symbol will

be made by finding the minimum distance with respect to the

expected current value, as

j∗ = arg min
j

∣∣∣rk∗ −
√
TsIphCj

∣∣∣
2

, (41)

and the corresponding index j∗ will be converted into the

corresponding bits. Note that we have here a trade-off between

the number of transmitters MS and the factor Lm: if Lm is

close to 1, the signal slots for higher transmitter indexes will be

more difficult to be correctly located in the PPM demodulation

step as they have less signal energy, but the OSSK symbol will

be better dilucidated in case of success. And conversely when

Lm is close to 0.

The average symbol energy for OSSK will be just equal to

the average symbol energy for SPPM, and the corresponding

signal-to-noise ratios will be

Es

N0

∣∣∣∣
OSSK

=
Es

N0

∣∣∣∣
SPPM

=
TsI

2
ph

∑MS−1
i=0 C2

i

2MSσ2
n

. (42)

III. SYSTEM ANALYSIS

In this section we will address the comparative analysis of

the I-TFH, QAM-MPPM and SPPM systems, from the point

of view of the efficiency of the scheme, and from the point of

view of the final error performance.

A. Efficiency analysis

We can compare the systems from the point of view of the

spectral efficiency, defined as

ρ ,
Rb

B
, (43)

where Rb is the binary rate of the system and B the occupied

bandwidth. Given that we are using rectangular pulse shaping,

and a slot period of Ts, the occupied bandwidth will be 2/Ts

for MPPM, QAM-MPPM and SPPM, and (MF + 1) /Ts for

I-TFH if we resort to minimal frequency separation for non

coherent FSK. The corresponding spectral efficiencies are as

given in Table I, in next page. As it may well be expected,

the FSK-based schemes will have poorer spectral efficiency

with respect to the QAM-based or the OSSK-based ones, but

in the sequel we will verify the advantages of I-TFH in terms

of power efficiency and final error performance.

The asymptotic power efficiency [29], [30] is defined as

η ,
d2m log2 (Msym)

4Es

, (44)

where d2m is the minimum square distance of the constellation,

Msym is the cardinality of the symbol set, and Es is the

average symbol energy. The corresponding expressions are

also given in Table I. The minimum in (52) and (58) is

the squared minimum distance between symbols of a QAM

constellation as written in (27), and depends on the specific

value of nQ. Notice that FSK and QAM cases are considered

within the context of this optical IM/DD setup, where we

have to avoid clipping by sending a nonzero DC value and

using a modulation index. From the point of view of power

efficiency, it can be seen that the FSK-based schemes will

perform better than the QAM-based or the SSK-based ones,

as may be expected. On the other hand, MPPM and PPM will

have better power efficiency than I-TFH.

In Fig. 3 we can see the plane (1/η)-ρ, and how the different

systems perform in terms of efficiency. The best would be to

drive the upper left part of the plane (high spectral efficiency

against high power efficiency). The combined modulation-

MPPM systems will be placed more to the right as m decreases

(lower power efficiency). In any case, it is clear that QAM-

based systems are better from the point of view of the spectral

usage, but their power efficiency is poor. The trend of MQ = 8
is an anomaly due to its different geometry with respect to

the other QAM symbol sets. The SPPM systems can reach

spectral efficiencies as high as the spectral effiencies of QAM-

MPPM, but their power efficiency is low and gets worse as

MS increases. Lower values of Lm drive the plots to the right

part of the plane. We can also see that FSK-based systems

perform worse from the point of view of the spectral usage as

MF increases, but their power efficiency is clearly improved.

The MPPM case is better respecting the trade-off between

both efficiencies up to a point around 1/η ≈ 2.5 dB, where

the FSK-based and QAM-based systems start to outperform it.

The situation for PPM is similar as the one for MPPM, with

the particularity that its spectral efficiency is always lower.

Notice that this is only a part of the problem, since we are
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Spectral efficiency Asymptotic power efficiency

MPPM
ρ =

⌊

log2
(

N
w

)

⌋

2N
(45) η =

⌊

log2
(

N
w

)

⌋

2w
(46)

PPM
ρ =

w · nF +
⌊

log2
(

N

w

)

⌋

(MF + 1)N
(47) η =

log
2
(N)

2
(48)

I-TFH
ρ =

w · nF +
⌊

log2
(

N

w

)

⌋

(MF + 1)N
(49) η =

m2

(

w · nF +
⌊

log2
(

N
w

)

⌋)

4w
(

1 + m2

2

) (50)

QAM-MPPM
ρ =

w · nQ +
⌊

log2
(

N

w

)

⌋

2N
(51) η =

m2

(

w · nQ +
⌊

log2
(

N
w

)

⌋)

8w
(

1 + m2

2
E0

) min
i6=j

‖si − sj‖
2

2 (52)

SPPM ρ =
log2 (MSN)

2N
(53) η =

log
2
(MSN)MSL

2
m

4 (MS − 1)2
∑MS−1

i=0
C2

i

(54)

FSK ρ =
nF

MF + 1
(55) η =

m2nF

4
(

1 + m2

2

) (56)

QAM ρ =
nQ

2
(57) η =

m2nQ

8
(

1 + m2

2
E0

) min
i6=j

‖si − sj‖
2

2 (58)

OSSK ρ =
log2 (MS)

2
(59) η =

log
2
(MS)MSL

2
m

4 (MS − 1)2
∑MS−1

i=0
C2

i

(60)

TABLE I
SPECTRAL AND ASYMPTOTIC POWER EFFICIENCIES FOR THE DIFFERENT SYSTEMS.

-5 0 5 10 15 20 25 30
10

-2

10
-1

10
0

10
1

Fig. 3. Spectral efficiency (ρ) against the inverse of the asymptotic power
efficiency in dB (−10 log10 (η)), for different cases of interest. ’∗’: FSK, ’◦’:
QAM, ’�’: OSSK. Continuous lines: I-TFH. Dash-dotted lines: QAM-MPPM.
Dashed lines: SPPM. Dotted lines: MPPM and PPM. Data have been generated
for parameters m = 0.9, Lm = 0.7, N = 1, · · · , 512 and w = 1, · · · , N ,
where applicable.

not considering the error performance. As it will be shown in

the sequel, this is where I-TFH can offer its true advantages.

The complexity of the receivers in the electrical frontend

vary according to the architecture required. The MPPM/PPM

receiver only requires the calculation of N metric values,

which are the result of the pulse matched filter applied to

the PD output current at each time slot. The more elaborated

index modulated schemes, SPPM, QAM-MPPM and I-TFH,

require subsequent steps. In the case of SPPM, the output of

the matched filter should be processed as in a PAM (Pulse

Amplitued Modulation) receiver, to find the most appropriate

amplitude value in the ML (Maximum Likelihood) sense.

A higher complexity is required in the QAM-MPPM case,

since the received electrical current should be demodulated

coherently in order to get the estimation of the received data in

the I and Q channels. The case of I-TFH is in between SPPM

and QAM-MPPM, since we require a bank of correlators tuned

to the corresponding possible frequencies in the scheme, as in

traditional FSK, but no coherent demodulation of the electrical

waveform is required, so that we do not require capturing the

exact phase of the output PD current.

B. Error probability analysis

According to the detection model described for both I-TFH

and QAM-MPPM, the average symbol error probability can

be written as

Pe = 1− (1− Pe,MPPM) (1− Pe,mod)
w
, (61)

where Pe,MPPM and Pe,mod correspond to the average symbol

error probability of MPPM and of the additional modulation
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(FSK or QAM), respectively. This probability has been cal-

culated as one minus the probability of correct detection, and

this is the probability of correctly detecting MPPM on the one

side, and of correctly demodulating all of the w modulated

signal slots. This expression is valid in this context because

the demodulation of MPPM and of the additional modulation

are using independent statistics, and the modulated symbols

are independent from each other.

The average symbol error probability of MPPM can be

obtained with the help of the distributions (13), (14), (15) and

(16) as [26]

Pe,MPPM = 1− w

∫ ∞

0

fX (x; 1,Ω)

· (1− FX (x; 1,Ω))
w−1

FX (x; 1)
N−w

dx, (62)

which is one minus the probability of correct detection. This

last probability is calculated on the basis of the probability

of having a received Xr sample with value x for one of the

signal slots, and received values larger than x for the w − 1
additional signal slots, times the number of different signal

slots, and the probability that the N −w non-signal slots have

a received Xr value lower than the given x, averaged over the

range of Xr. Notice that this expression is valid regardless of

whether we are in the I-TFH case of in the QAM-MPPM case,

since both use the same RVs Xr to detect MPPM. Equation

(62) does not have a closed form expression and should be

calculated numerically.

The average symbol error probability of FSK can be calcu-

lated as

Pe,FSK =

MF−1∑

l=1

(−1)
l−1

l + 1

(
MF − 1

l

)
e
− l

(l+1)
Es
N0

∣

∣

∣

FSK . (63)

If the additional modulation is QAM, we have the corre-

sponding average symbol error probability as a function of

the number of bits per symbol:

Pe,QAM =





2

(
1− 1√

MQ

)

·erfc
(√

3
2(MQ−1)

Es

N0

∣∣∣
QAM

)
, nQ even,

5
4erfc

(√
1
6

Es

N0

∣∣∣
QAM

)
, nQ = 3,

2

(
1− 1√

2MQ

)

·erfc
(√

3

2( 31
32MQ−1)

Es

N0

∣∣∣
QAM

)
, otherwise.

(64)

On the other hand, the calculation of the average bit error

probability requires taking into account all the possibilities to

get erroneous bits. In [17] an expression is defined which is

useful when w = 1, and exclusively when the demodulation

of MPPM and the addtional modulation are independent. With

a little algebra, the expression can be generalized, as shown

in [31], to

Pb =
p2

p1 + p2
Pb,MPPM

+
p1

p1 + p2
(1− Pe,MPPM)Pb,mod

+
nmod

p1 + p2
Pe,MPPMPb,mod

min(w,N−w)∑
l=1

(
w

l

)(
N−w

l

)
(w − l)

(
N

w

)
− 1

+
nmod

p1 + p2
Pe,MPPM

min(w,N−w)∑
l=1

(
w

l

)(
N−w

l

)
l
2

(
N

w

)
− 1

, (65)

where Pb,MPPM and Pb,mod are the average bit error proba-

bilities of MPPM and of the additional modulation, respec-

tively, and nmod is the number of bits per symbol in the

additional modulation (nF or nQ). Equation (65) collapses

to the mentioned expression in [17] when we set w = 1. The

first term in the RHS of (65) is the proportion of erroneous

bits due to errors in the demodulation of MPPM; the second

term is the proportion of erroneous bits due to errors in the

demodulation of the additional modulation when the MPPM

symbol is correctly detected; the third term is the proportion

of erroneous bits due to errors in the demodulation of the

additional modulation when MPPM detection is in error, but

only taking into account the signal slots correctly identified;

and the fourth term is the proportion of erroneous bits due to

the demodulation process of the additional modulation applied

to the non-signal slots incorrectly identified as signal slots

during MPPM detection. In this last case, it is assumed that,

in average, half the bits are in error. The previous formula is

an approximation for non-integer log2
(
N
w

)
, because the third

and fourth terms take into account all the possibilities for

the distribution of signal and non-signal slots. In general, the

difference with the true error probability will be negligible for

practical values of N and w, as it will be made evident in the

results section.

The average bit error probability for MPPM can be calcu-

lated from its average symbol error probability as [32]

Pb,MPPM =
2p2−1

2p2 − 1
Pe,MPPM. (66)

As an instance of orthogonal signalling, the average bit error

probability of FSK can be calculated as

Pb,FSK =
2nF−1

2nF − 1
Pe,FSK. (67)

In the case of using Gray coding, the average bit error

probability of QAM can be calculated as

Pb,QAM =
Pe,QAM

nQ

. (68)

The case of SPPM is somewhat more involved, since we

use a single metric to demodulated both the PPM and the

OSSK bits, and this leads to a situation where the probabilities

cannot be so easily decomposed. If we consider that the i-th
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transmitter has transmitted, the symbol error probability of

PPM can be straightfordwarly calculated as

Pe,PPM (i) =
N − 1

2
erfc



√

TsI2phC
2
i

4σ2
n


 , (69)

and, in case the PPM slot is correctly detected, the symbol

error probability of OSSK can be estimated by means of the

union bound (UB) technique as

Pe,OSSK (i) =
1

2

MS−1∑

j=0

j 6=i

erfc



√

TsI2ph (Ci − Cj)
2

8σ2
n


 . (70)

The SPPM average symbol error probability will thus be

Pe,SPPM = 1− 1

MS

MS−1∑

i=0

(1− Pe,PPM (i))

· (1− Pe,OSSK (i)) , (71)

where we have calculated the error probability conditioned

to the i-th transmitter having transmitted as one minus the

probability of correct detection in this situation, and we have

averaged afterwards. Note that in [20] this has been calculated

by averaging Pe,PPM (i) and Pe,OSSK (i) separately, though

the difference is numerically negligible for high signal-to-noise

ratios, where the UB converges.

The average bit error probability will be very similar to the

expression (65), particularized to w = 1. If we write

Pe,PPM =
1

MS

MS−1∑

i=0

Pe,PPM (i) , (72)

the PPM average bit error probability can be written as

Pb,PPM =
2p2−1

2p2 − 1
Pe,PPM, (73)

because it is an instance of orthogonal signalling. In this case,

we will have

Pb,SPPM =
p2

p1 + p2
Pb,PPM

+
p1

p1 + p2

1

MS

MS−1∑

i=0

(1− Pe,PPM (i))Pb,OSSK (i)

+
p1

p1 + p2

Pe,PPM

2
, (74)

where

Pb,OSSK (i) =
2p1−1

2p1 − 1
Pe,OSSK (i) . (75)

C. Calculation of the average symbol error probability of

MPPM

The main challenge to calculate both the average symbol

error probability and the bit error probability for the joint

systems I-TFH and QAM-MPPM is the effective calculation

of (62), because its numerical calculation turns out to be not

very stable. As an initial convenient way to get approximations

to the error probabilities, we can resort to the UB on the ML

demodulation of MPPM. This is based on finding the MPPM

vector pattern B placed at minimum Euclidean distance with

respect to the actual received vector r = (r0, · · · , rN−1), after

the matched filter stage. The demodulation of MPPM using

the quadratic detector does not converge to the performance

of such ML detector even for high signal-to-noise ratio, but

the penalty can be shown to be at most a few tenths of

dB. Considering all this, if S∗
MPPM is the subset of SMPPM

containing the 2p2 possible MPPM vector patterns in the

alphabet, we can approximate the true MPPM symbol error

probability as

Pe,MPPM ≈ 1
2p2+1 (76)

·
∑

B∈S∗
MPPM

∑

B
′∈S∗

MPPM

B
′ 6=B

erfc



√

TsI2ph‖B−B′‖22
8σ2

n


 .

This is simply the UB over all the possible SPPM symbols

contained in the set S∗
MPPM, where the norm ‖B − B

′‖2
accounts for the number of slots where the patterns represented

by vectors B and B
′ differ, assuming ML demodulation over

the values of rk (12).
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Fig. 4. Difference between I− 1
2
(z) and e

z
√

2πz
.

Other possibility to approximate (62) arises from the fact

that the modified Bessel function of the first kind of order

−1/2 can be asymptotically approximated by [33]

I− 1
2
(z) ≈ ez√

2πz
, (77)

with z large and real. In Fig. 4 we have represented the

difference between the Bessel function and the approximation.

It can be seen that the difference is fast decreasing with

increasing z, and that the main difference is for the argument

closest to 0. This means that for increasing signal-to-noise

ratio the expected difference between using the function and

its approximation will be in practice negligible. After some
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elementary algebra and a chage of variable, it can be shown

that (16) becomes

FX (x; 1,Ω) ≈ 1− 1

2
erfc

(√
Ω

2σ2
n

)
− 1

2
erfc

(√
x−

√
Ω√

2σ2
n

)
.

(78)

With the variable change t = x2 and developing the binomials

related to (1− FX (x; 1,Ω))
w−1

and FX (x; 1)
N−w

, equation

(62) becomes

Pe,MPPM ≈ 1− w

2w−1

w−1∑

p=0

N−w∑

l=0

(
w − 1

p

)(
N − w

l

)

· (−1)
l
erfc

(√
Ω

2σ2
n

)w−1−p ∫ ∞

0

1√
2πσ2

n

e
− (t−

√
Ω)2

2σ2
n

·erfc
(
t−

√
Ω√

2σ2
n

)p

erfc

(
t√
2σ2

n

)l

dt, (79)

where now the calculation of the integrals is tractable numer-

ically.
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Fig. 5. Simulation results and average symbol error probability approxima-
tions for MPPM, when N = 12 and w = 5.

In Fig. 5 we show a comparative case, where the actual

symbol error rate (SER) of MPPM is plotted against both

approximations. As it may be seen, the UB approximation

is lower than the actual SER, because the error rate is a bit

worse for the square-law detector, as expected. It can also be

seen that this approximation diverges for low signal-to-noise

ratios. On the other hand, the approximation based on the

asymptotic behavior of the modified Bessel function of the

first kind is almost exact in the whole range depicted, and

does not diverge in the low signal-to-noise ratio zone. The

only problem with this alternative is that, due to numerical

stability issues, it cannot reach very low error probabilities.

Nonetheless, this is not a major problem, since this happens

for error probability values below the zone of interest (around

10−10).

Notice that the UB-based approximation, though less tight,

is easier to compute than the one based on the approximated

Bessel function. Therefore, depending on the computational

resources available, and on the specific need for accuracy, one

approximation or the other could be more convenient to get a

first approach to the true error probabilities.

IV. SIMULATION RESULTS

As we are in the optical domain, the error rate results will

be presented against the average received optical power. The

power spectral density of the noise for the optical receiver can

be calculated as [34], [35]

N0 =
4kBTF

RL

+ 2 |q| IDC + (RIN)I2DC , (80)

where kB is the Bolztmann constant, T is the absolute

temperature, F is the receiver electronics noise factor, RL is

the PD load resistor, q is the electron charge, and (RIN)
is the relative-intensity noise factor. The first term on the

RHS is the thermal noise, the second the shot noise, and the

third, the relative-intensity noise. In all the simulations, we

will take the following typical parameter values: T = 290
K, RL = 50 Ω, the noise figure of the receiver electronics

NF = 10 log10 (F ) = 10 dB, (RIN) = −155 dB/Hz, and

the channel responsivity R = 0.5 A/W. To obtain the average

received optical power, first we compute the value of IDC for a

given noise density N0 solving the quadratic equation Eq. (80).

The value is then plugged in Eq. (8) to get the corresponding

optical power.

Fig. 6. Average SER and approximated Pe for I-TFH and QAM-MPPM,
with MF = MQ = 16, N = 8, w = 4, m = 0.9, and for SPPM with
MS = 4, N = 8, Lm = 0.5. In all the cases, Rb = 27.5 Mbps. MPPM
results for the same N , w and Rb are also depicted.

In Figs. 6 and 7, we can see the average symbol error

rate (SER) and bit error rate (BER), respectively, along the

corresponding error probability approximations for I-TFH and

QAM-MPPM, when we have 16 bits per modulated symbol,

N = 8, w = 4, and m = 0.9. The number of bits per symbol
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is p1 + p2 = 22 in both cases, and we have chosen Ts so that

Rb = 27.5 Mbps. We have represented the SER and BER,

and the corresponding error probability approximations, for

SPPM, with MS = 4, N = 8, Lm = 0.5, for the same bit

rate. The SER and BER of MPPM with N = 8, w = 4 and

same Rb are also depicted. First of all, it may be seen that the

approximations to the error probabilities are very close for I-

TFH and QAM-MPPM to the true error rates. There is a small

divergence for low signal-to-noise ratio (low average received

optical power), but it is in the order of 10−3 and cannot be

visualized in the plots. In the case of SPPM, the divergence

of the UB in the low signal-to-noise ratio is more evident. In

this zone, the value of the error probability approximation for

PPM diverges in a greater extent than the error probability

approximation for MPPM. In the case of pure MPPM, only

the experimental results are shown, since the tightness of the

error probability approximations has already been verified in

the previous section.

As has been already pointed out, the I-TFH system shows

an advantage in error performance against QAM-MPPM,

SPPM and MPPM, for comparable sets of parameters and

the same binary rate. For very low signal-to-noise ratio, I-

TFH results are above the ones from SPPM and MPPM, but

the error rate there is out of the zone of interest, and for

target values below 10−4, I-TFH is already better. The price

to pay is a lower spectral efficiency, with a penalty around

ρI−TFH/ρQAM−MPPM ≈ 0.12 in this case with respect to

QAM-MPPM, around ρI−TFH/ρSPPM ≈ 0.52 with respect to

SPPM, and around ρI−TFH/ρMPPM ≈ 0.43 with respect to

MPPM. In fact, in this situation, the required bandwidth in

each case is 71.8 MHz for MPPM, 88 MHz for SPPM, 20
MHz for QAM-MPPM, and 170 MHz for I-TFH.

Fig. 7. Average BER and approximated Pb for I-TFH and QAM-MPPM,
with MF = MQ = 16, N = 8, w = 4, m = 0.9, and for SPPM with
MS = 4, N = 8, Lm = 0.5. In all the cases, Rb = 27.5 Mbps. MPPM
results for the same N , w and Rb are also depicted.

In Fig. 8, we can see the results for different values of the

modulation index m, for I-TFH and QAM-MPPM with the

Fig. 8. Average BER and approximated Pb for I-TFH (continuous lines)
and QAM-MPPM (dashed lines), with MF = MQ = 8, N = 8, w = 2,
Rb = 50 Mbps, and m = 0.5, 0.7, 0.9. Dotted lines with ’◦’: Pb calculated
with the UB approximation. Dotted lines with ’×’: Pb calculated with the
approximated Bessel function.

same parameters, and Rb = 50 Mbps. As could be expected,

error rates improve as m increases, since more power is

injected into the additional modulation symbols with respect

to the total average power. It can be seen that I-TFH is

better than QAM-MPPM: to get similar performance as I-

TFH for m = 0.7, QAM-MPPM requires m = 0.9. This

represents an improvement in power efficiency for I-TFH of

ηI−TFH/ηQAM−MPPM ≈ 2.05 (around 3 dB). It is also to be

noted that the bit error probability approximations, represented

along the corresponding BER values, are again tight for all the

ranges of interest.

In Fig. 9, we depict for I-TFH and QAM-MPPM the

results for different values of the cardinality of the additonal

modulation symbol set, MF and MQ, for increasing binary

rates Rb = 100, 200, 300, 400 Mbps. The rest of parameters

are the same for all the setups under comparison. First of all,

again we can see how the bit error probability approximations

are very good, though the UB-based ones diverge for low

average optical received power, due to the fact that, for these

MPPM parameters N and w, Pe,MPPM diverges in a great

extent for low signal-to-noise ratio. On the other hand, the

case with 2 bits per symbol in the additional modulation

(MQ = MF = 4) exhibits an advantage for QAM-MPPM,

but its performance degrades a lot comparatively as MQ and

Rb increase with respect to the equivalent I-TFH cases, which

degrade in a much lower extent. We can thus verify that the

time-frequency hopping scheme can be more robust in AWGN,

while the flexibility of the compound modulaton scheme can

help in choosing an appropriate set of parameters for a given

application.

In Fig. 10 we show comparative cases for I-TFH and SPPM,

with different parameters and different bit rates. Taking the

cases with N = 4 and MF = MS = 4, we can see that, when
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Fig. 9. Average BER and approximated Pb for I-TFH (continuous lines)
and QAM-MPPM (dashed lines), with N = 32, w = 4, m = 0.5, and
MF = MQ = 4, 8, 16 and 32, with Rb = 100, 200, 300 and 400 Mbps,
respectively. Dotted lines with ’◦’: Pb calculated with the UB approximation.
Dotted lines with ’×’: Pb calculated with the approximated Bessel function.

Fig. 10. Average BER and approximated Pb for I-TFH (continuous lines)
and SPPM (dashed lines). I-TFH: N = 4, MF = 4, w = 2, Rb = 50 Mbps;
N = 8, MF = 8, w = 2, Rb = 100 Mbps; N = 16, MF = 16, w = 4,
Rb = 100 Mbps. All cases are for m = 0.9. SPPM: N = 4, MS = 4,
Rb = 50 Mbps; N = 8, MS = 8, Rb = 100 Mbps; N = 16, MS = 4,
Rb = 100 Mbps. All cases are for Lm = 0.7. Dotted lines with ’◦’: Pb for
I-TFH calculated with the UB approximation. Dotted lines with ’×’: Pb for
I-TFH calculated with the approximated Bessel function. Dotted lines with
’+’: Pb for SPPM calculated with the UB approximation.

we switch to N = 8 and MF = MS = 8, while duplicating

Rb, there is an improvement in the BER of I-TFH, while

SPPM degrades: for a BER of 10−5, there is a difference of

circa 1 dB when comparing the cases with N = 4 in favour of

I-TFH, which increases to almost 5 dB when comparing the

cases with N = 8. This is due to the fact that the margin to

distinguish different transmitters is narrower as MS increases.

If we keep Rb = 100 Mbps and switch to I-TFH with N = 16,

MF = 16 and w = 4, against SPPM with N = 16, MS = 4,

there is a drastic improvement in BER for SPPM because

the error rate of the spatial modulation is far better, but the

trend of the curve is not so steep as in the case of I-TFH. In

fact, I-TFH becomes better for a BER of 10−4 and below. As

seen before, the price to pay is a lower comparative spectral

efficiency, which attains ρI−TFH/ρSPPM ≈ 0.60 in the cases

with N = 4, ρI−TFH/ρSPPM ≈ 0.37 in the cases with N = 8,

and ρI−TFH/ρSPPM ≈ 0.51 in the cases with N = 16.

Notice again that the error probability approximations show

the corresponding tightness and trends already identified for

I-TFH and SPPM.

V. CONCLUSIONS

This article has been devoted to the proposal and analysis

of a joint time/frequency index modulation (I-TFH) system

suitable for optical communications, where IM/DD is required

for transmission and reception. In fact, I-TFH is a combina-

tion of MPPM and non-coherent FSK, and its demodulation

requires very low complexity. The system has been detailed

and analyzed from the point of view of its energy and spectral

efficiency, and from the point of view of its error probability

in AWGN. This encompasses the FSO channel without turbu-

lences, but also other kinds of optical setups where there is no

variation in the channel response. The efficiency comparison

with the time/amplitude alternative (QAM-MPPM), and with

the time/space alternative (SPPM) has shown that it can drive

the zone where spectral efficiency is not a key factor, but where

high power efficiency is mandatory. This reflects the good

properties of the underlying FSK modulation, in contrast with

the comparative QAM-based or space-based cases. Moreover,

QAM-MPPM requires coherent demodulation, and thus higher

receiver complexity and more strict requirements, while SPPM

requires the replication of the transmitting frontends, which is

less efficient economically.

The analysis of the error probability has led to approxima-

tions for both the average symbol and the average bit error

probabilities, since the square-law demodulation of MPPM

does not allow for a closed-form expression or tractable

numerical calculations. In any case, the simulations have

shown that the approximations are tight enough for the range

of signal-to-noise ratios and parameters of interest. Moreover,

I-TFH has shown to outperform QAM-MPPM and SPPM in

SER and BER for a variety of scenarios. We have therefore

provided very useful tools for analysis and design, and this

adds the I-TFH system as an attractive and useful alternative

for a variety of optical communication contexts, because it can

be the natural base for a time and frequency hopping scheme

with controlled interference in multiuser FSO environments.
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