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Turbulence-Free FSO Channels: Accurate

Derivations and Practical Approximations
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Abstract—Following the trends of index modulated (IM) tech-
niques applied to optical communications, several new waveform
proposals have been made, aiming at conveying a higher density
of information by driving different signal properties. One of these
proposals mixes multi-pulse pulse-position modulation (MPPM)
and quadrature amplitude modulation (QAM). We present here
a new way to demodulate it, and, for the non-turbulent free space
optical (FSO) channel, we provide accurate analytical expressions
for its error probabilities, both in the case of the traditional
and the new detector. We also provide simplified expressions for
the estimation of the error probabilities. We show that the new
detector offers a gain of some tenths of dB in signal-to-noise
ratio with respect to the previously defined one, and that our
error probability estimations are more accurate than previously
published results. To the best of our knowledge, this work is
the first to provide simulation results validating the study of the
error probability performance of QAM-MPPM.

Index Terms—Index modulation; Hybrid M-ary quadrature
amplitude modulation multi-pulse pulse-position modulation
(hybrid QAM-MPPM); Multi-pulse pulse-position modulation;
Quadrature amplitude modulation.

I. INTRODUCTION

I
N the latest times, we have been witnessing an increasing

interest in new ways to foster the efficiency of digital

modulations, due to the prospective demands behind the 5G

standarization process, and of the complementary wireless

technologies that strive to adapt and survive [1]. As an alter-

native for enhanced designs of the PHY, the concept of index

modulation (IM) is gaining momentum [2]. Very roughly, the

idea behind the IM technique relies in the exploitation of some

of the characteristics of the signals or systems involved in

a communication setup, in a way where extra information

can be carried over, codified in the active communication

infrastructure or through specifically chosen parameters.

The initial developments in this field were focused on

the transmission frontend, and were specifically related to

multiple-input multiple-output (MIMO) setups, where the pat-

tern of active antennas was driven to convey extra information,

alongside the usual modulated signals. This was the origin

of the so-called spatial modulation (SM) [3], space-time-

frequency shift keying (STFS) [4], and other related devel-

opments [5], [6]. These ideas were extended to the multiple
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possible choices of active subcarriers in orthogonal frequency

division multiplexing (OFDM), giving rise to OFDM-IM

alternatives [7]. The IM principles have also been applied

to spread spectrum modulation, and code index modulation-

spread spectrum (CIM-SS) has been proposed as another

index-based modulated system with enhanced capabilities [8].

However, currently envisaged new PHY developments are

not exclusively bound to RF: they are also being addressed for

optical wireless communications (OWC). The idea is that the

usage of light can be a complementary technology apt for the

smallest scale deployments, so as to alleviate the scarcity of RF

spectrum and face the growing interference limitation concern.

The main assets of light are its localized and non-penetrative

characteristics. Therefore, the same scenarios exploited in RF

about IM have been adapted for OWC, where the stress has

been traditionally put on multicarrier applications (OFDM-

based setups) and the usage of multiple transmitters and

receivers (MIMO-based setups) [9], [10], [11].

The idea to design IM systems well suited for OWC is also

encompassing proposals that go beyond MIMO and OFDM.

In single carrier communications there are proposals trying

to exploit other additional features of the transmitter/receiver

setup. For example, a system has been proposed to jointly

use pulse-position modulation (PPM) or frequency shift keying

(FSK), while driving the phase or the polarization of the co-

herent light signal, thus building a compound symbol carrying

information along diverse dimensions [12]. Under the same

perspective, optical space modulation (OSM) systems have

been proposed, namely, optical space shift keying (OSSK)

and spatial pulse position modulation (SPPM) [13]. These two

schemes constitute appealing solutions for pulse-based OSM

systems [14].

Some related proposals rely on using multi-pulse PPM

(MPPM) and other properties of the light pulses, like the

frequency of their intensity fluctuations [15]. If the phase

and amplitude of the waveform during the active slots is

conveniently driven, it is possible to design a quadrature

amplitude modulation (QAM) MPPM system [16]. After its

initial proposal, such QAM-MPPM system has been studied

under different optical channel scenarios and conditions [17],

[18], [19]. In the mentioned works, the QAM-MPPM wave-

form proposed is demodulated using the same metrics for the

MPPM and for the QAM part, while the formulas derived

for the estimation of the error probabilities were not validated

through simulation.

In the present work, we propose another way to demodulate
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the QAM-MPPM signal, where the detection of the MPPM

symbol part relies in an independent metric with respect to

the metrics required for the detection of the QAM symbols.

The analysis and the simulation results will show that this

alternative turns out to be better performing. On the other hand,

we will provide exhaustive derivations of the average symbol

and bit error probabilities for both kind of detectors (the

proposed in the above mentioned works and our alternative), in

the case of the non-turbulent free-space optical channel. These

derivations will lead to practical expressions to estimate the

error probabilities, that will be validated through simulation,

and that will show to be more accurate than the original

formulas in previously published works [14], [16].

To the best of our knowledge, this is the first time that the

QAM-MPPM error probability estimations are verified through

simulations, and that an exhaustive theoretical derivation of

the corresponding expressions is explicitly performed. We are

confident that this will help to develop more accurate analytical

results to characterize the behavior of QAM-MPPM in more

complicated optical channels. According to all this, we can

summarize the main contributions of our paper as follows:

• A new detection method for QAM-MPPM.

• A thorough analysis of the average symbol and bit error

probabilities for both detectors.

• The proposal of useful approximations to actually calcu-

late said probabilities.

• The validation of the analytical results by simulation.

In Section II we review the model for the traditional QAM-

MPPM system, and characterize the detectors. In Section

III, we analyze the performance of QAM-MPPM and derive

almost exact expressions for the symbol and bit error probabil-

ities, explicitly stating all the hypothesis and simplifications,

where required. In Section IV we derive approximations to

render usable the expressions calculated in Section III. In

Section V, we present simulation results, and validate the

tightness of the error probability approximations previously

derived. Section VI is devoted to the conclusions.

II. SYSTEM MODEL

In our system description, we are going to follow the ideas

of the system proposed in [16], but we fully review all the

details here to avoid any ambiguity that may prevent the

correct understanding of the ensuing developments. Our aim is

that all the results can be reproduced by the interested reader

without any trouble. As the source of information, we consider

an equiprobable binary source of information that produce an

independent and identically distributed (i.i.d.) bit sequence that

feeds the QAM-MPPM modulator. This modulator divides the

signal frame period ) into # equal slots of duration )B = )/# .

In each frame period, only 1 ≤ F ≤ # slots would be active,

following an MPPM pattern [20], [21]. The MPPM symbol is

defined by an #-dimensional vector B, belonging to the set

SMPPM =

{
B ∈ {0, 1}# :

#−1∑
:=0

�: = F

}
. (1)

The component �: is 0 if the slot is not active (non-signal

slot), and 1 if it is active (signal slot). The number of bits

carried over per MPPM symbol will be @MPPM =
⌊
log2

(#
F

)⌋
,

which is maximum for F = ⌊#/2⌋. To send the corresponding

information codified in the MPPM symbol, we only use up

to 2@MPPM ≤
(#
F

)
MPPM symbols from the set SMPPM: we

may denote the expurgated MPPM symbol set containing the

selected patterns as S∗
MPPM

⊂ SMPPM.

As described in [16], during each signal slot a QAM symbol

is inserted, so that the waveform in the electrical domain is

B (C) = �
#−1∑
:=0

�: ?
(
C−:)B
)B

) [
1 + <

·
(
��
:

cos (2c 52 C) + �&

:
sin (2c 52C)

)]
, (2)

where ? (C) is the unit-duration unit-amplitude rectangular

pulse, �: is the :−th component of vector B, � is an amplitude

factor, 0 < < ≤ 1 is a modulation index, 52 = =2/)B is the

carrier frequency (=2 > 1, integer), and

(
��
: , �

&

:

)
=

{
(0, 0) , �: = 0(
B�
8:
, B

&

8:

)
, �: = 1

, (3)

where s8 =

(
B�8 , B

&

8

)
∈ SQAM is a QAM symbol, 8 =

0, · · · , "& − 1, and SQAM is the QAM symbol set, with

"& elements. Defining =& = log2

(
"&

)
, the number of

information bits per QAM-MPPM symbol is

@QAM−MPPM = @MPPM + @QAM =

⌊
log2

(
#

F

)⌋
+ F =& . (4)

We have considered "& ≥ 4, square-QAM constellations for

even =&, and cross-QAM constellations for odd =& (with the

exception of =& = 3, where it is rectangular). We also consider

gray coding and QAM constellations normalized in energy, so

that �QAM = E
[
‖s8 ‖2

2

]
= 1.

The electrical waveform of equation (2) will linearly drive

the light intensity fluctuations of a light source (LED or laser).

To avoid clipping, the value of the modulation index < should

be set so that B (C) ≥ 0. After travelling through a turbulence-

free FSO channel, the light intensity fluctuations produced by

the light source will hit a photodiode (PD), which will produce

a received electrical current waveform

A (C) = �?ℎ
#−1∑
:=0

�: ?
(
C−:)B
)B

) [
1 + <

·
(
��
:

cos (2c 52C) + �&

:
sin (2c 52 C)

)]
+ I (C) , (5)

where �?ℎ is the instantaneous PD photocurrent, and I (C) is an

instance of additive white Gaussian noise with power spectral

density #0/2. Without loss of generality, ignoring the chan-

nel attenuation factor, and the proportional conversion factor

between the electrical amplitude and the intensity fluctuations

of the light source, the current �?ℎ can be written as

�?ℎ = �R�, (6)

where � is the optical channel gain and R is the responsivity

of the PD. The optical channel gain is constant in the case of

the turbulence-free FSO channels, and �?ℎ will be therefore

considered as a constant value from now on. Notice that we do

not consider any dispersive phenomena in the optical channel.
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The average received optical power can be calculated as

%>?C =
���

R =
F

#

�?ℎ

R , (7)

where

��� =
F

#
�?ℎ (8)

is the DC value of the PD photocurrent for the signal part.

The average received symbol energy can be calculated as

�B,QAM−MPPM = F)B �
2
?ℎ

(
1 + <

2

2

)
, (9)

where we have taken into account that the QAM constellation

is normalized in energy. In the signal slots, the average

received QAM symbol energy can be written as

�B,QAM = )B �
2
?ℎ

<2

2
. (10)

For the noise I (C), we choose a standard model [22], [23],

where the unilateral power spectral density of the noise for

the optical receiver can be calculated as

#0 =
4:�)�

'!

+ 2 |@ | ��� + ('�#) �2�� , (11)

where :� is the Bolztmann constant, ) is the reference

absolute temperature, � is the receiver electronics noise factor,

'! is the PD load resistor, @ is the electron charge, and ('�#)
is the relative-intensity noise factor. The first term on the RHS

is the thermal noise, the second the shot noise, and the third,

the relative-intensity noise (RIN).

A. Common metrics detector

As a first alternative for demodulation, we consider the

proposal of [16]. For each time slot, : = 0, · · · , #−1, resorting

to the known principles of the correlator detector for QAM

in the signal space framework, the demodulation process will

calculate I/Q detected values from (5) as

A �
:
=

∫ (:+1))B

:)B

A (C)

√
2

)B
cos (2c 52C) 3C,

A
&

:
=

∫ (:+1))B

:)B

A (C)

√
2

)B
sin (2c 52 C) 3C, (12)

where coherent detection is required in the electrical domain.

As a result, we have

A �: =

√
)B

2
�?ℎ�:<�

�
: + =�: ; A

&

:
=

√
)B

2
�?ℎ�:<�

&

:
+ =&

:
, (13)

where =�
:

and =
&

:
are independent zero-mean Gaussian random

variables (RVs) with variance f2
= = #0/2. As done in [16], the

MPPM symbol part is detected using the metric

-: = |A �: |
2 + |A&

:
|2, (14)

which is a measurement of the detected power of the QAM

symbol received in each signal slot. According to the maxi-

mum likelihood (ML) rule of [20], the values of 0 ≤ -: can

be sorted from highest to lowest, and the first F values will

serve to identify the F hypothetical signal slots. As normally

log2

(#
F

)
is not an integer, we have to consider two cases. If the

resulting MPPM pattern belongs to said set, the corresponding

@MPPM bits can be directly demodulated, according to the

mapping chosen. Otherwise, we select the closest MPPM

symbol in S∗
MPPM

as appropriate candidate; i.e. if the detected

symbol is B ∉ S∗
MPPM

, we choose B
′ ∈ S∗

MPPM
, so that

B
′
= arg min

B
∗∈S∗

MPPM

{
‖B − B

∗‖2
2

}
. (15)

In the case we have a draw among a number of MPPM

symbols, the candidate is chosen randomly among them, in

order not to introduce any bias. Finally, the information bits

mapped in the QAM symbols are demodulated by applying

the standard ML demodulator to the I/Q metrics (13) of the

F hypothetical signal slots identified in the previous step.

Notice that the detection of the MPPM symbol and of the

QAM symbols involves using the same statistics (13), hence

the denomination of common metrics detector (CMD).

It can be shown that -: follows a scaled chi-square distribu-

tion with two degrees of freedom, which is noncentral for the

signal slots, and central for the non-signal slots. If the QAM

symbol is s8 in a given signal slot, we can define

Ω (s8) = )B �2?ℎ
<2

2
‖s8 ‖2, (16)

and the corresponding conditional probability density function

(pdf) of -: can be defined as

5B; (G; 2,Ω (s8)) =
1

2f2
=

e
− G+Ω(s8 )

2f2
= I0

(√
GΩ (s8)
f2
=

)
, (17)

where IE (G) is the E-th order modified Bessel function of the

first kind. The pdf of -: for the non-signal slots is

5=B; (G; 2) = 1

2f2
=

e
− G

2f2
= . (18)

The cumulative distribution functions (cdf’s) are, respectively,

�B; (G; 2,Ω (s8)) = 1 −&1

(√
Ω (s8)
f=

,

√
G

f=

)
, (19)

where &1 (·, ·) is the first order Marcum-Q function [24], and

�=B; (G; 2) = 1 − e
− G

2f2
= . (20)

B. Independent metrics detector

In this second alternative, the MPPM symbol will be de-

tected by resorting to a metric independent from (13). In a

first stage, we apply the receiver based on the matched filter

detector for the rectangular pulse shape, namely

A: =

∫ (:+1))B

:)B

AI−T (C) ℎA (C − :)B) 3C, (21)

where ℎA (C) = 1√
)B
?

(
C
)B

)
is the normalized rectangular pulse

receiver filter. Under these conditions, it is easy to verify that

A: =
√
)B �?ℎ�: + =: , (22)

where =: is a zero-mean Gaussian RV with variance f2
= =

#0/2. Now we define the metric -: = A: (whose support is
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−∞ < -: < ∞), and detect the signal slots by sorting these

values from highest to lowest, according to the already men-

tioned ML rule of [20]: the F highest values will determine the

hypothetical signal slots. If the detected MPPM pattern does

not belong to S∗
MPPM

, we apply the same criterion as detailed

in the previous type of demodulator. Just as before, once the

hypothetical F signal slots have been identified, the standard

QAM ML detection process is applied to the I/Q metrics of

(13). Notice that we have two different correlation stages here:

one to obtain metrics (22), and one to obtain metrics (13).

However, this does not suppose a much more complex detector

than the previous one.

In this situation, the pdf’s of the new RV -: for the signal

and non-signal slots are

5B; (G) =
1

√
2cf=

e
− (G−

√
)B �?ℎ)2

2f2
= , (23)

and

5=B; (G) =
1

√
2cf=

e
− G2

2f2
= , (24)

respectively. Their corresponding conditional cdf’s are

�B; (G) = 1 − 1

2
erfc

(
G −

√
)B �?ℎ√

2f2
=

)
, (25)

and

�=B; (G) = 1 − 1

2
erfc

(
G√
2f2

=

)
, (26)

respectively; erfc (·) is the complementary error function.

Notice that MPPM and QAM are demodulated based on un-

related statistics, given that the QAM symbol part is cancelled

out in (21): the MPPM part is detected using the DC value of

each slot, while the QAM part is detected using the I/Q coher-

ent demodulator. In particular, metrics (13) and (22) are inde-

pendent under the hypothesis that a particular QAM-MPPM

symbol has been sent, hence the denomination independent

metrics detector (IMD). It is worth stressing the fact that the

channel models determined by the receiver statistics in any

of the cases (CMD and IMD) constitute instances of discrete-

input continuous-output memoryless channels (DCMC).

III. ERROR PROBABILITY ANALYSIS

A. Average symbol error probability for the CMD

A QAM-MPPM symbol is defined by the specific set of F

QAM symbols from the set SQAM, and by the specific MPPM

pattern B ∈ S∗
MPPM

. We define as P"&

F the set of all the

permutations with repetition I = {80, · · · , 8F−1} of F different

indexes 8 9 taking values in 0, · · · , "@ − 1. Given an element

I ∈ P"&

F , we may denote the corresponding F QAM symbols

in a specific QAM-MPPM symbol as
{
s8 9

}
I
∈

(
SQAM

)F
. It

is clear that the number of elements in P"&

F is
(
"&

)F
=

2F ·=& = 2@QAM .

From these definitions, and taking into account that the input

information binary sequence is i.i.d., we may calculate the

average symbol error probability of QAM-MPPM as

%4 = E
[
%4

({
s8 9

}
I
,B

)]
(27)

=
1

2@QAM

1

2@MPPM

∑
I∈P

"&
F

∑
B∈S∗

MPPM

%4

({
s8 9

}
I
,B

)
,

where %4

({
s8 9

}
I
,B

)
is the conditional symbol error probabil-

ity under the hypothesis of having sent a specific QAM-MPPM

symbol. This probability could be calculated as one minus the

probability of correct detection, which can be factorized as

%2

({
s8 9

}
I
,B

)
= %2,MPPM

({
s8 9

}
I
,B

)
· %2,QAM

({
s8 9

}
I
,B

)
,

(28)

where %2,MPPM

({
s8 9

}
I
,B

)
is the probability of correctly de-

tecting the MPPM symbol based on the metrics -: of equation

(14), and %2,QAM

({
s8 9

}
I
,B

)
is the conditional probability of

correctly demodulating the F QAM symbols using the ML

criterion over the I/Q detected values of equations (13), when

the MPPM symbol has been correctly detected.

The QAM part, under the hypothesis that the signal slots

have been correctly identified, will be independent from the

MPPM pattern B, and can be more properly denoted as

%2,QAM

({
s8 9

}
I

)
. This probability can be calculated as

%2,QAM

({
s8 9

}
I

)
=

F−1∏
9=0

(
1 − %4,QAM

(
s8 9

))
, (29)

where %4,QAM

(
s8 9

)
is the symbol error probability of QAM

symbol s8 9 under the hypothesis of ML detection. An approx-

imation for its value will be detailed in Section IV.

On the other hand, the derivation of %2,MPPM

({
s8 9

}
I
,B

)
is

more involved. Resorting to the ideas of [20] for the case of

MPPM in the DCMC, we can calculate it as

%2,MPPM

({
s8 9

}
I
,B

)
=

∫ ∞

0

?B; (G) %=B; (G) 3G, (30)

where G represents the minimum value attained by -: for

the signal slots, ?B; (G) is its pdf, and %=B; (G) is the cdf of

the # − F non-signal slots, representing the probability that

their -: values are lower or equal than G. As the RVs -: are

independent from each other, given the hypothesis detailed in

the previous section, it is straightforward to see that

%=B; (G) = �=B; (G; 2)#−F , (31)

where �=B; (G; 2) is given by (20). The pdf ?B; (G) can be

calculated from its cdf %B; (G), which, according to [20], is

%B; (G) = 1 −
F−1∏
9=0

(
1 − �B;

(
G; 2,Ω

(
s8 9

)))
, (32)

where �B;

(
G; 2,Ω

(
s8 9

))
is given by (19). Therefore,

?B; (G) =
F−1∑
9=0

5B;

(
G; 2,Ω

(
s8 9

)) F−1∏
;=0,;≠ 9

(
1 − �B;

(
G; 2,Ω

(
s8;

) ) )
,

(33)
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%2,MPPM

({
s8;

}
I

)
=

F−1∑
9=0

∫ ∞

0

5B;

(
G; 2,Ω

(
s8 9

)) F−1∏
;=0,;≠ 9

(
1 − �B;

(
G; 2,Ω

(
s8;

) ) )
�=B; (G; 2)#−F 3G. (34)

where 5B;

(
G; 2,Ω

(
s8 9

))
is given by (17). Notice that the result-

ing probability does not depend on the specific MPPM pattern

B, and accordingly could be denoted as %2,MPPM

({
s8 9

}
I

)
. The

final expression for the probability of MPPM correct detection

can be seen in equation (34).

Taking all this into account, we can simplify equation (27)

by cancelling out the dependence on B. On the other hand,

we can see from the derived expressions that the particu-

lar ordering of the QAM symbols within the QAM-MPPM

symbol is irrelevant. Therefore, the probability values will

only depend on the specific set of QAM symbols involved:

this is represented by the combinations with repetition of F

indexes taking values in 0, · · · , "& − 1. If we denote the set

of such combinations as C"&

F , and taking into account that its

cardinality is
(
"&+F−1

F

)
, we may finally rewrite (27) as

%4 = 1 − 1("&+F−1
F

) ∑
I∈C

"&
F

%2,MPPM

({
s8 9

}
I

)
%2,QAM

({
s8 9

}
I

)
.

(35)

Given the expressions (34) and (29), this probability can only

be calculated numerically, and may pose stability issues due

to the presence of I0 (·) in some of the terms. In the last

Subsection, we will address practical methods to calculate %4

for the CMD.

B. Average symbol error probability for the IMD

As in the case of the CMD, we can calculate the average

symbol error probability %4 as the average of equation (27),

and the conditional symbol error probability %4

({
s8 9

}
I
,B

)
as one minus the conditional probability of correct detection,

as factorized in equation (28). Since the QAM symbols are

detected using the same metrics as before, and under the

hypothesis of having correctly identified the MPPM symbol,

the conditional probability %2,QAM

({
s8 9

}
I

)
is again given by

equation (29).

The derivation of %2,MPPM

({
s8 9

}
I
,B

)
is slightly more in-

volved, and has to take into account the new metrics of (22).

As in the previous detection mode, the non-signal slots share

equal statistics, but, as a difference, this also happens to the

signal slots, as the corresponding values of -: do not depend

on the QAM symbols. In this case, it can be seen that the

probability of correctly detecting the MPPM symbol part does

not depend on
{
s8 9

}
I
, or on the specific MPPM pattern B, and

can be more properly written as %2,MPPM. By applying the

same criterion of [20] as before, we can write

%2,MPPM =

∫ ∞

−∞
?B; (G) %=B; (G) 3G, (36)

where ?B; (G) and %=B; (G) share the same meaning as in the

previous developments, and G is the minimum value attained

by the new metrics -: in the case of the signal slots. Notice

that now the integral limit has to be extended from −∞ to ∞.

It is straightforward to verify that %=B; (G) can be given as

%=B; (G) = �=B; (G)#−F , (37)

where �=B; (G) is the cdf given in (26). On the other hand, the

cdf %B; (G) would be

%B; (G) = 1 − (1 − �B; (G))F , (38)

where �B; (G) is the cdf given in (25). Therefore, the proba-

bility of correct detection for the MPPM symbol part is

%2,MPPM = F

∫ ∞

−∞
5B; (G) (1 − �B; (G))F−1 �=B; (G)#−F 3G. (39)

Using (29), and as the conditional probabilities of correct

detection do not depend on B, and the probability %2,MPPM

does not depend on the QAM symbols, we may finally write

%4 = 1 − %2,MPPM("&+F−1
F

) ∑
I∈C

"&
F

%2,QAM

({
s8 9

}
I

)

= 1 − %2,MPPM · E


F−1∏
9=0

(
1 − %4,QAM

(
s8 9

))
= 1 − %2,MPPM

(
1 − %4,QAM

)F
, (40)

where %4,QAM is the average symbol error probability of QAM

[24], calculated using �B,QAM as defined in (10).

C. Average bit error probability for the CMD

To calculate the average bit error probability, we can average

over the conditional bit error probability, so that

%1 = E
[
%1

({
s8 9

}
I
,B

)]
(41)

=
1

2@QAM

1

2@MPPM

∑
I∈P

"&
F

∑
B∈S∗

MPPM

%1

({
s8 9

}
I
,B

)
.

The probability %1

({
s8 9

}
I
,B

)
can be factorized under the

mutually exclusive hypothesis of correct and erroneous de-

modulation of MPPM, so that

%1

({
s8 9

}
I
,B

)
(42)

= ?1

({
s8 9

}
I
,B

��2,MPPM
)
%2,MPPM

({
s8 9

}
I

)
+?1

({
s8 9

}
I
,B

��4,MPPM
) (

1 − %2,MPPM

({
s8 9

}
I

))
,

where the probability %2,MPPM

({
s8 9

}
I

)
is given in equation

(34), and ?1 (·, ·|·) is the proportion of erroneous bits under

the given hypothesis. The value ?1

({
s8 9

}
I
,B

��2,MPPM
)

is the

proportion of bits in error in the demodulation of the QAM-

MPPM symbol when the MPPM demodulation has correctly

identified the signal slots, and only the errors in demodulating

the QAM symbols have to be taken into account. The specific
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%1 =
1

@QAM−MPPM


1(

"&+F−1
F

) ∑
I∈C

"&
F

%2,MPPM

({
s8 9

}
I

)F−1∑
9=0

%4,QAM

(
s8 9

)
+ 2@MPPM−1

2@MPPM − 1

@MPPM(
"&+F−1

F

) ∑
I∈C

"&
F

(
1 − %2,MPPM

({
s8 9

}
I

))

+ 1("&+F−1
F

) ∑
I∈C

"&
F

(
1 − %2,MPPM

({
s8 9

}
I

)) ©
«

min(F,#−F)∑
;=1

 ;
©
«
(F − ;) 1

F

F−1∑
9=0

%4,QAM

(
s8 9

)
+
=&

2
;
ª®
¬
ª®
¬


(50)

value of B is irrelevant, and only
{
s8 9

}
I

matters. We can

calculate it as

?1

({
s8 9

}
I
,B

��2,MPPM
)
=

=4QAM

@QAM−MPPM

, (43)

where =4QAM is the average number of erroneous bits de-

termined by the QAM symbols. As the mapping from bits

to symbols is gray, we can approximate the bit error proba-

bility associated to symbol s8 9 as %4,QAM

(
s8 9

)
/=&. This is

the proportion of erroneous bits in the QAM symbol, and

=& · %4,QAM

(
s8 9

)
/=& will be its contribution to the total. As

we have a set of F QAM symbols,

=4QAM =

F−1∑
9=0

%4,QAM

(
s8 9

)
. (44)

For the complementary hypothesis, we have

?1

({
s8 9

}
I
,B

��4,MPPM
)
=
=4MPPM + =4B;

QAM
+ =4=B;

QAM

@QAM−MPPM

, (45)

where =4MPPM is the average number of erroneous bits in

the demodulation of MPPM, =4B;
QAM

is the average num-

ber of erroneous bits in the demodulation of QAM for the

proportion of correctly identified signal slots, and =4=B;
QAM

is

the average number of erroneous bits when applying QAM

demodulation to the non-signal slots erroneously identified as

signal slots. The estimated proportion of bits affected by an

MPPM detection error is 2@MPPM−1/(2@MPPM − 1) [25], so that

the corresponding average number of erroneous bits will be

=4MPPM = @MPPM
2@MPPM−1

2@MPPM − 1
. (46)

As previously seen, for =4B;
QAM

we have an average number of

erroneous bits per QAM symbol of %4,QAM

(
s8 9

)
, and now we

have to take into account the average number of signal slots

correctly identified. This can be calculated as [26]

min(F,#−F)∑
;=1

(
F
;

) (
#−F

;

)
(F − ;)

(#
F

)
− 1

=

min(F,#−F)∑
;=1

 ; (F − ;) , (47)

where the index ; is the number of signal slots missed

in the detection of MPPM, and we have defined  ; =(
F
;

) (
#−F

;

)
/
( (

#
F

)
− 1

)
. Consequently,

=4B;QAM =

min(F,#−F)∑
;=1

 ; (F − ;) 1

F

F−1∑
9=0

%4,QAM

(
s8 9

)
. (48)

In the case of =4=B;
QAM

, we can make the reasonable assumption

that on average half of the bits involved in the demodulation

of QAM over a non-signal slot will be in error, so that

=4=B;QAM =
=&

2

min(F,#−F)∑
;=1

 ; ;. (49)

Notice that we are implicitly assuming that all the possible

MPPM patterns in SMPPM excepting the hypothetical B ∈
S∗

MPPM
can be chosen in the demodulation. Therefore, these

expressions for =4MPPM, =4B;
QAM

and =4=B;
QAM

will only be exact

if log2

(
#
F

)
is integer. As normally this is not the case, the

results should be then interpreted as approximations, but, given

that the difference between log2

(
#
F

)
and

⌊
log2

(
#
F

) ⌋
is in

practice small, the resulting penalty will not be high.

As none of the terms involved depend on the specific MPPM

symbol B, or on the specific location of the QAM symbols,

the average in (41) can be finally written as shown in (50).

This expression is very similar to the one developed in [26],

where the modulation used was BPSK.

D. Average bit error probability for the IMD

Now equation (50) is still valid, but it admits some sim-

plifications. We know that the probability of correctly de-

tecting MPPM does not depend on the QAM symbols, and

%2,MPPM

({
s8 9

}
I

)
= %2,MPPM as seen in (39). Therefore, in the

corresponding terms of equation (50) we will have just the

averaging of the QAM symbol probabilities. For example, in

the first term in the RHS of (50), we arrive at

1("&+F−1
F

) ∑
I∈C

"&
F

F−1∑
9=0

%4,QAM

(
s8 9

)
= F%4,QAM. (51)

According to this, the bit error probability simplifies to

%1 =
1

@QAM−MPPM

[
%2,MPPMF%4,QAM (52)

+ 2@MPPM−1

2@MPPM − 1
@MPPM

(
1 − %2,MPPM

)

+
(
1 − %2,MPPM

) (min(F,#−F)∑
;=1

 ;

(
(F − ;) %4,QAM +

=&

2
;
)) ]

.

Notice that, in general, we cannot simplify equation (50) in the

same way for the CMD, since each subset of QAM symbols

will lead to a different probability of successful demodulating

the MPPM symbol part %2,MPPM

({
s8 9

}
I

)
(see (34)). Moreover,

the individual QAM symbol error probability is in general not
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the same for all of them. Nevertheless, some approximations

may be made to address in practice the calculations of (35),

(40), (50) and (52), as shown in the next Section.

IV. PRACTICAL APPROXIMATIONS

A. Common metrics detector

We have two possibilities to perform the calculations.

1) Numerical integration approach with joint averages:

The numerical calculation of the integral in (34) faces the

problem of the instability of I0 (G). However, in the typical

mathematical software packages, it is possible to resort to the

scaled E-th order modified Bessel function of the first kind

I(E (G) = IE (G) e−G . (53)

Using this, and with a little algebra, the pdf of the signal slots

(17) can be rewritten as

5B; (G; 2,Ω (s8)) =
1

2f2
=

e
− (

√
G+
√
Ω(s8 ))2

2f2
= I(0

(√
GΩ (s8)
f2
=

)
, (54)

for real values of G. Using this expression, the resulting integral

for equation (34) can be now numerically integrated without

stability issues.

In order to perform the required averages over the combi-

nations of F QAM symbols, we need an estimation of the

individual symbol error probability. In this case, we can use

the union bound (UB) approximation, so that

%4,QAM (s8) ≤
1

2

"&−1∑
9=0, 9≠8

erfc
©
«
√√
)B �

2
?ℎ
<2‖s8 − s 9 ‖2

16f2
=

ª®¬
. (55)

With these definitions, now we can calculate an approxi-

mation to the joint averages in (35) and (50), and thus to

the average symbol and bit error probabilities. Notice that

we are not making approximations other than the mentioned

ones (ignoring the difference between S∗
MPPM

and SMPPM,

and applying the union bound technique for the symbol error

probability of QAM). Due to this, it is expected that the

main difference with respect to the true error rates calculated

through simulation will not be significant. We will denote this

scenario as CMD/JA.

2) Numerical integration approach with separate averages:

The previous calculations can take a lot of time, and require

intensive memory resources. One possibility to reduce these

demands consists in approximating the expectation of the

product of functions of %2,MPPM

({
s8 9

}
I

)
and %2,QAM (s8) (or

%4,QAM (s8)) by the product of the corresponding expectations.

For example, in the case of the average symbol error proba-

bility for QAM-MPPM,

%4 = 1 − E
[
%2,MPPM

({
s8 9

}
I

)
%2,QAM

({
s8 9

}
I

)]
≈ 1 − E

[
%2,MPPM

({
s8 9

}
I

)]
E

[
%2,QAM

({
s8 9

}
I

)]
. (56)

This finally leads to the same expression as in the IMD case

(40), with the appropriate definitions for each expectation. This

strategy can be applied to each of the terms of the bit error

probability of equation (50) where an average of a product of

functions of the conditional probabilities for QAM and MPPM

exists. The difference between both approaches (the joint and

the separate ones) will be shown to be numerically negligible,

but the second alternative will be far less time consuming.

The averages over the expressions containing conditional

symbol error probabilities for QAM will lead to the usage

of the known expressions for the QAM average symbol

error probabilities [24], as previously seen. The average for

%2,MPPM

({
s8 9

}
I

)
can be readily calculated as

E
[
%2,MPPM

({
s8 9

}
I

)]
(57)

= F

∫ ∞

0

5B; (G; 2) (1 − �B; (G; 2))F−1 �=B; (G; 2)#−F 3G,

where �=B; (G; 2) is given by (20) and

5B; (G; 2) = 1

"&

"&−1∑
8=0

5B; (G; 2,Ω (s8)) , (58)

�B; (G; 2) = 1

"&

"&−1∑
8=0

�B; (G; 2,Ω (s8)) , (59)

are the unconditional pdf and cdf of the signal slots, re-

spectively. This result takes into account the linearity of the

expectation operator, and the independence in the occurrence

of the different QAM symbols at each of the signal slots. By

using (54), we may again define integrals that can be calcu-

lated numerically without trouble using standard mathematical

software. We will denote this scenario as CMD/SA.

B. Independent metrics detector

We have again two different approaches for the calculations.

1) Numerical integration approach: If we focus on equa-

tion (39), we can see that

%2,MPPM = F

#−F∑
<=0

(
# − F
<

)
(−1)<
√

2cf=

∫ ∞

−∞
e
− (G−

√
)B �?ℎ)2

2f2
=

·
(
1

2
erfc

(
G −

√
)B �?ℎ√

2f2
=

))F−1 (
1

2
erfc

(
G√
2f2

=

))<
3G, (60)

where we have replaced the corresponding probability density

and cumulative distribution functions, and developed the bi-

nomial corresponding to �=B; (G)#−F . The resulting integrals

can be numerically calculated without stability issues. We will

denote this scenario as IMD/NI.

2) Union bound approach: On the other hand, as seen in

[13], the demodulation method chosen for MPPM is equivalent

to finding the MPPM vector B closest (in the Euclidean

distance sense) to (A0, · · · , A#−1), where A: are the received

values of equation (22). In this case, %2,MPPM can be calculated

as one minus the average symbol error probability of MPPM

(%4,MPPM), approximated as the UB

%4,MPPM ≤ 1

2@MPPM+1

∑
B∈S∗

MPPM

∑
B
′≠B

B
′∈S∗

MPPM

erfc
©
«
√√
)B �

2
?ℎ

‖B − B′‖2
2

8f2
=

ª®
¬
,

(61)
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where we have only taken into account the valid MPPM

patterns in the expurgated set S∗
MPPM

. We will denote this

scenario as IMD/UB.

V. SIMULATION RESULTS AND DISCUSSION

Apart from using simulation results to validate our ap-

proaches, we resort to previously published formulas in [16]

(reused in [17]) for QAM-MPPM, in order to assess their

relative accuracy. To the best of our knowledge, we are

the first to provide this analysis for QAM-MPPM. We will

show that our results will be in general tighter. To render

usable expression (7) in [16] for the CMD, we require density

functions corresponding to the signal slots that do not depend

on the QAM symbols. The pdf and cdf of the signal slots

are denoted there as ?1 (·) and %1 (·), respectively. As the

formulas in [16] implicitly assume separate averages (even

when originally dealing with the CMD), ?1 (·) should be given

by (58), and %1 (·) by (59). For the IMD case, ?1 (·) and %1 (·)
should be given by (23) and (25), respectively. The respective

scenarios are labeled as CMD/[16], and IMD/[16].

8 10 12 14 16 18 20 22 24 26 28

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 1. SER and %4 results for the CMD, when # = 12, F = 6, "& = 16,
< = 0.5.

In Fig. 1, we can see, for the CMD, the symbol error

rate (SER) and the average symbol error probability (%4),

calculated with different approximations, as a function of

�1/#0, when # = 12, F = 6, "& = 16, and < = 0.5. We can

also see the SER of the MPPM part and of the QAM part. It

is to be noticed that the average symbol error probabilities

given through approximations CMD/JA and CMD/SA are

very tight, and their difference is negligible. This means that

assumption (56) is really reasonable for the overall symbol

error probability. The curve labeled “%4 using (34) and (54)”

has been calculated averaging over %2,MPPM

({
s8 9

}
I

)
in (34),

resorting to (54) for the numerical calculations task. We can

see that it fits the experimental value of MPPM SER very

tightly, as well as the average of (57). This is no surprise,

since both views are formally correct and should lead to

the same result, excepting numerical issues. On the other

0 5 10 15 20
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-4

10
-3

10
-2

10
-1

10
0

Fig. 2. SER and %4 results for the IMD, when # = 12, F = 6, "& = 16,
< = 0.5.

hand, the already published approximation CMD/[16] greatly

overestimates %4 for QAM-MPPM, due to the fact that the

MPPM average symbol error part calculated through (7) in

[16] is also overestimated.

Notice that the theoretical value of the average symbol

error probability for QAM (%4,QAM from [24]) does not fit

the experimental value of the QAM SER. This last value

is the counting of all the demodulation QAM symbol errors

for the correctly identified signal slots, irrespective whether

the whole MPPM symbol is correctly detected or not. The

difference between the simulation and the theoretical %4,QAM

is due to the fact that there exists a bias in the QAM symbols

that actually enter the QAM demodulator stage: the signal

slots corresponding to QAM symbols with higher energy are

correctly identified as such with higher probability during the

MPPM detection stage than the ones corresponding to QAM

symbols with lower energy. The actual difference is small,

but this is a proof that the dependence between the MPPM

decision stage and the QAM decision stage should be taken

into account if we want to make exact calculations. Though not

shown, in the case CMD/JA, %4 does not converge to the actual

SER value for the lowest signal-to-noise ratio: this is due to

the fact that we are using the union bound approximation (55)

to account for the individual QAM symbol error probability.

In Fig. 2, we can see the results for the IMD in a setup

with the same parameters as in Fig. 1. First of all, we may

appreciate that there is a gain of around 0.7 dB when using

the IMD with respect to using the CMD. Respecting the

three possible approximations for the average symbol error

probability %4, we see that they all are very tight. The reason

is that the average symbol error probability of QAM, %4,QAM,

dominates over the MPPM part, and it is not so important how

%4,MPPM is adjusted. In fact, as it may be seen, the average

symbol error probability for MPPM is again overestimated

through (7) in [16], but

%4 ≈ 1 −
(
1 − %4,QAM

)F
, (62)
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for �1/#0 > 10 dB in all the cases, when %4 starts to fall from

100. The IMD/NI and the IMD/UB scenarios adjust %4,MPPM

even better, but the result in %4 is indistinguishable due to

the reasons given. It is to be noted that, in systems where

the MPPM SER is not far from the QAM SER, IMD/[16]

will yield overestimated results for the overall %4 with respect

to the actual SER, as it will be made evident in the last

figure. On the other hand, considering IMD/UB, the usual

divergence of the union bound for low signal-to-noise ratio can

be appreciated, while getting a tight result for �1/#0 > 2 dB.

We can also see how %4,QAM fits very well to the experimental

QAM SER, excepting in the range of low �1/#0, where the

theoretical approximations of [24] slightly diverge. As the

detection of the signal slots is made using a metric independent

of the specific QAM symbols, now the QAM SER curve does

not exhibit the previous bias, as all the possible QAM symbols

are equally represented in the QAM detection stage.

10 12 14 16 18 20 22 24 26 28
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Fig. 3. BER and %1 results for the CMD, when # = 12, F = 6, "& = 16,
< = 0.5.

In Fig. 3 we see the average bit error probability and the

bit error rate (BER), for the same setup of Fig. 1. As in the

case of the %4, the cases CMD/JA and CMD/SA approximate

the final BER with great and equal accuracy, whereas the case

CMD/[16] results in a very loose upper bound. We also show

the different contributions to the %1: the errors associated

to the bits in the MPPM part (labeled MPPM cont., and

representing the second term on the RHS of (50)), and the

errors associated to the bits in the QAM symbols (labeled

QAM cont., and representing the first and third term on the

RHS of (50)). Again, CMD/JA and CMD/SA methods yield

very tight results, whereas such contributions in the CMD/[16]

case are largely overestimated. There is a small mismatch

between the MPPM bit error probability computation for

CMD/JA and for CMD/SA, because factor (46) leads to an

upper bound approximation [25].

In Fig. 4 we represent the average bit error probability

and the BER, for the same setup as in Fig. 2. The MPPM

contribution takes into account the second term on the RHS
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Fig. 4. BER and %1 results for the IMD, when # = 12, F = 6, "& = 16,
< = 0.5.

of (52), and the QAM contribution the first and third terms

thereon. For high �1/#0, the different approximations yield

similar results, though IMD/[16] starts diverging. This is

due to the already known fact that the MPPM error rate

is overestimated: its effect becomes rapidly negligible and

%4,QAM, which is estimated in the same way for all the

approximations, dominates the %1. In fact, the QAM BER

contribution collapses very fast to the QAM-MPPM BER, and

so do the approximations. There are only differences in the

MPPM contribution, which is slightly different for IMD/NI

and IMD/UB: this is due to the inaccuracies of (46) and of

the union bound. Notice also that there is a gain of some tenths

of dB in �1/#0 with respect to the CMD case in Fig. 3.

-36 -34 -32 -30 -28 -26 -24 -22 -20 -18
10
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10
-4

10
-3

10
-2

10
-1

Fig. 5. BER and %1 results for the IMD and CMD for several cases of
interest. The parameters have been chosen to represent a good performing
case (red plots) with # = 32, F = 2, "& = 4, < = 0.9, an average case
(green plots) with # = 32, F = 6, "& = 16, < = 0.5, and a poor performing
case (blue plots) with # = 12, F = 6, "& = 16, < = 0.5.

In Fig, 5, we represent some results spanning a variety of

cases. This time, they are plotted as a function of the received
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optical power %>?C , using (11) and typical parameter values

[17]: ) = 290 K, '! = 50 Ω, #� = 10 log10 (�) = 10 dB,

('�#) = −155 dB/Hz, and R = 0.5 A/W. The slot duration )B
has been chosen such that the binary rate is '1 = 50 Mbps.

Apart from the cases CMD/[16] and IMD/[16], we have only

depicted the approximations corresponding to CMD/SA and

IMD/NI, because they give results practically identical to the

ones obtained with CMD/JA and IMD/UB, respectively, while

being faster in their computations. We can see that the trends

identified in the previous figures are kept here: IMD offers a

gain with respect to CMD, and the proposed approximations

for CMD are far tighter than the ones presented in [16]. Notice

that for the case # = 32, F = 2, "& = 4 and < = 0.9, the

bound IMD/[16] is far less tight than what has been seen in

the previous figures because the QAM error part is no longer

dominant, and the mismatch in the calculation of the MPPM

symbol error probability is made evident.

VI. CONCLUSIONS

In this work we have presented a new method to demodulate

an already proposed index modulated waveform intended for

the optical channel, called QAM-MPPM. We have derived

analytical expressions to calculate the average symbol and

bit error probabilities in the AWGN channel, both for the

new detector and for the previously published one [16]. We

have also proposed approximations and practical methods to

calculate the analytical values for the average symbol and bit

error probabilities, and we have shown through simulation

that our proposals are a very good fit for both detectors. We

have also verified that there is a gain of some tenths of dB

in �1/#0 when applying the new demodulation method, at

practically no additional cost. This is a clear advantage, since

the transmitter is the same, and the receiver only has to include

a filter matched to the MPPM waveform. The complexity and

resources required to detect the MPPM and the QAM bits are

basically the same in both scenarios. We are confident that the

principles and methods developed here will help to provide

tools to better set and analyze QAM-MPPM in a variety of

scenarios, and, as a consequence, to contribute to its practical

implementation.
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