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Nomenclature 

• AR: autoregressive 
• CDIAC: Carbon Dioxide Information 

Analysis Center 
• CEQ: Council on Environmental Quality 
• CERCLA: Comprehensive Environmental 

Response, Compensation, and Liability Act 
• CO2: Carbon Dioxin 
• COPs: Conference of the Parties 
• DFA: dynamic factor analysis 
• DFM: dynamic factor model 
• EIA: U.S Energy Information Administration 
• EISA: Energy Independence and Security Act 
• EPA: U:S. Environmental Protection Agency 
• FRED: Federal Reserve Economic Data 
• GFC: Global Financial Crisis 
• GHG: Green House Gas 
• GMM: General Method of Moments 
• HGL hydrocarbon gas liquids  
• KSS: Based on the nonlinear unit root test 

proposed by Kapetanios, Shin and Shell 

• LM: Lagrange Multiplier 
• NAAQS: National Ambient Air Quality 

Standards  
• NBER: National Bureau of Economic 

Research  
• NCD: National Determined Contributions 
• NEPA: US National Environmental Policy 

Act 
• OLS: Ordinary Least Square 
• pc: per capita  
• PPS: Renewable portfolio standards  
• PSD: Prevention of Significant Deterioration  
• RALS-LM: Residual Augmented Least 

Squares-Lagrange Multiplier 
• RGGI: Regional Greenhouse Gas Initiative  
• SEDS: State Energy Data System 
• SO2 Sulfur dioxide 
• SPSM: sequential panel selection method 
• UNFCCC: United Nations Framework 

Convention on Climate Change 
• VAR: vector autoregressive 



1. Introduction 
 

The US national determined contribution (NDC)1 is one of the most ambitious 

commitments in GHGs emissions reduction. Even though the US considered not ratified 

the landmark agreement at COP21, there has been political support surrounding the 

importance of a country´s own climate mitigation commitment. The federal government 

has not been able so far to successfully formulate a national climate change policy that 

includes a mechanism to reduce CO2 emissions, but over the last decades policies, 

regulations, and initiatives have been developed to help improve environmental 

conditions (Table 1). Moreover, some of the US states have launched several 

environmental programs to mitigate CO2 emissions, which the rest are progressively 

joining. One of the main state-level climate actions is the United States Climate Alliance, 

a bipartisan coalition to reduce greenhouse gas emissions consistent with goals of the 

Paris Agreement and in which each state has set its own GHG emissions-reduction 

targets.  

 

In evaluating the possibilities of the US to achieve the mitigation commitment and 

advance in the development of a national climate change policy, it becomes clear that it 

is not only important that national CO2 emissions be reduced significantly but also per 

capita emissions should gradually move toward further convergence across US states. 

The research on energy convergence builds on the literature on economic growth 

convergence. 2 This field has specifically addressed the dynamics of per capita emissions, 

and whether CO2 emissions show evidence of converging trends in the sense that 

economies with lower initial per capita emission level are experiencing higher emission 

growth and hence “catching up” with the more intense economies. This has resulted in a 

rich body of literature examining convergence in energy-related variables. However, 

these studies have implicitly adopted a long-run perspective 3 and no attention has been 

devoted to the short run dynamics of energy convergence. The short-term dynamics 

implies study of the synchronization of the cycles, the cyclical convergence. 

 
1 In the Paris agreement, parties were requested to propose “National Determined Contributions” (NDCs) 
to CO2 emissions mitigation based on country specific circumstances. The US has proposed to mitigate 
economy-wide GHG emissions by 26 percent below 2005 levels by 2025 and to make best efforts to reduce 
emissions by 28 percent by 2025.  
2 A detailed description of the different concepts of economic convergence and various testing methods can 
be found in Islam [1].  
3 See Acar et al., [2] and Payne, [3], for recent literature review. 



Synchronization of emission cycles means similar movements of the countries´ growth 

rates over time. 4 In this analysis, the countries or regions with strong links in their cycles 

should bear a lower cost when they implement common policies than those with less 

synchronized cycles. Synchronization of growth rates clearly can be a factor affecting the 

CO2 mitigation policies adopted. 5  Such a study should be a valuable complement to the 

works on the convergence characteristics in carbon dioxide emissions.  6  

 

The main purpose of this paper is thus to explore cyclical convergence in per-capita CO2 

emissions across US States to show it´s importance in the evaluation of the possibilities 

of a national climate change policy for the US. With this aim, the contribution is twofold. 

First, we assess the carbon emission cycle of the 50 US states (excluding District of 

Columbia). This type of analysis is constrained by the requirement of obtaining an as-

long-as possible series. There is no database so far available that contains emissions 

information for over 50 years. Studies on CO2 emissions by states usually use data from 

the US Energy Information Administration (EIA) or from the Carbon Dioxide 

Information Analysis Center (CDIAC). In order to obtain a database making it possible 

to carry out the objectives of this research, we consider the possibility of splicing both 

data sources and thus extend the series from 1960 to 2017.  

 

Then, by using a dynamic unobserved component approach, we allow the data to reveal 

the states that follow a common cyclical emission pattern, without imposing any 

functional form on the model. The most suitable analysis in this dynamic multivariate 

context is the dynamic factor analysis (DFA), since in the short-run, it allows study of 

similarity of business cycles and their degree of synchronization7. The main advantage of 

these models is that they allow the researcher to characterize the synchronization and co-

 
4 The interest of business cycles synchronization is implied in contributions by Alesina and Barro [4], 
among others. 
5 In this paper we focus on the relevance of synchronization as an important factor in the design of 
mitigation CO2 policies. Differently, there is a vast literature that centers on drivers of CO2 generation 
using different decomposition and panel data techniques. Results show that these factors play different roles 
during different stages of economic development (Andreoni &Galmarini [5], Inglesi-Lotz[6] y Zhang 
&Chiu [7].  
6 So far, most of the papers that study the cyclicality and fluctuations patterns of carbon emission dedicated 
to study the effects of the business cycles on energy variables (Shahiduzzamen and Layton, [8], Khan et 
al., [9], Gozgor et al., [10] and the role of energy markets as a coordinating mechanism for emission 
fluctuations McKitrick and Wood, [11]). 
7 We can find other papers that capture the short-run dynamics of the variables but they have the aim to 
forecasting CO2 emissions (Pao et al., [12] y Wu et al.,[13]). 



movement across economies without making strong a priori assumptions. Next, we 

present a time-varying parameter model proposed in Andrews [14] to test parametrically 

the dynamics of cyclical convergence. The information about the co-movements in state 

CO2 emissions allows us to evaluate the degree and evolution of the cyclical convergence 

over five decades. This parametric approach offers the significant test of correlation 

alongside the sample, which is not usually conducted. Also, we applied the robustness 

check proposed in Cendejas et al., [15], to observe changes in the participation of the 

countries in the synchronized pattern over the time period. Finally, this paper provides an 

analysis of the cyclical characteristics of the US carbon emission cycle in terms of 

duration, amplitude and intensity, using the Harding and Pagan method [16]. 

 

Despite the relevance of all these issues, to the best of our knowledge, the estimation of 

cyclical convergence in carbon dioxide emissions has not received enough attention in 

empirical work. The present study offers valuable information about the short-run 

characteristics in carbon dioxide emissions of interest for the designing of mitigation 

policies.  We intend to characterize the short-run behavior of the CO2 emissions to test 

existence of cross-state links in state fluctuations. Cyclical convergence implies that states 

are not following independent paths in mitigation of CO2 emissions, but are collectively 

moving towards a common behavior of environmental performance so that it would be 

possible to set common goals and implement effective national policies. If the cross-state 

links were weak, it would be better for each state to set its own goals as the effects of 

national policies may not be optimal for all the states concerned. 8  

 

The organization of the paper is as follows. Section 2 provides a brief review of the related 

literature. Section 3 describes the databases employed and the processing involved in 

computing our dataset. In this section we also present the econometric methodology used 

in this paper. Section 4 presents the main results of the analysis, followed by concluding 

remarks in Section 5. 

 
8 There is a wealth of literature dealing with the analysis of cycle-growth synchronization. Convergence 
and synchronization of business and growth cycles are important issues in the efficient formulation of 
policies (Crowley and Schultz, [17]). Its application has been very extensive in the field of fiscal and 
monetary policy. In the environmental context, it would be possible to interpret similar movements in CO2 
emissions as either indicating ex ante, the suitability for adopting the same environmental policy or ex post, 
the fact that the environmental policy has been a major factor in achieving a similar pattern of growth.  



Table 1. Federal environmental policies, regulations, and initiatives 
President Period U.S. Environmental policies, regulations, and initiatives 

Richard Nixon 
(Republican) 

20/01/1969 
09/08/1974 

01/01/1970 National Environmental Policy Act of 1969 (NEPA). that promotes the enhancement of the environment and established the President's Council 
on Environmental Quality (CEQ) 
15/11/1970 Clean Air Act Extension “national approach to air pollution control" 
02/12/1970 Creation US EPA. This is an Agency to protect Human Health and the Environment: Air, Water & Earth  
18/10/1972 Federal Water Pollution Control Act Amendments 

Gerald Ford 
(Republican) 

09/08/1974 
20/01/1977 

16/12/1974 Safe Drinking Water Act. To ensure safe drinking water for the public. 
21/10/1976 Resource Conservation and Recovery Act. primary law governing the disposal of solid and hazardous waste 

Jimmy Carter 
(Democrat) 

20/01/1977 
20/01/1981 

09/03/1977 Clean Air Act Amendments. Prevention of Significant Deterioration (PSD) of air quality. 
 27/12/1977 Clean Water Act 
02/04/1980 Superfund law is officially known as the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). 
EPA is designed to investigate, and clean-up sites contaminated with hazardous substances 

Ronald Reagan 
 (Republican) 

20/01/1981 
20/01/1989 

17/10/1986 Superfund Amendments and Reauthorization Act. 
04/02/1987 Water Quality Act of 1987  

George H. W. 
Bush 

(Republican) 

20/01/1989 
20/01/1993 

15/11/1990 Clean Air Act Amendments: to address the problems of acid rain, ozone depletion, and toxic air pollution, and to establish a national permit 
program for stationary sources, and increased enforcement authority 
24/10/1992 The Energy Policy Act was far reaching in impacting electric power deregulation, building codes and new energy efficient products 

Bill Clinton 
(Democrat) 

20/01/1993 
20/01/2001 

18/07/1997: Approved National Ambient Air Quality Standards (NAAQS), the stronger, more protective air quality standards to further control pollution 
from ozone and particulate matter (smog and soot) and issued a memo to the EPA regarding implementation of those standards. 
12/12/1997 The United States signed the Kyoto Protocol. The Protocol must be ratified before it can take effect. (although he did not submit the treaty to 
the Senate to be ratified) 

George W. 
Bush 

(Republican) 

20/01/2001 
20/01/2009 

March of 2001 President Bush refused to sign the Kyoto Protocol  
04/01/2005 The Energy Policy Act, addresses energy production, including: (1) energy efficiency; (2) renewable energy; (3) oil and gas; (4) coal; (5) Tribal 
energy; (6) nuclear matters and security; (7) vehicles and motor fuels, including ethanol; (8) hydrogen; (9) electricity; (10) energy tax incentives; (11) 
hydropower and geothermal energy; and (12) climate change technology. 
19/12/2007 Energy Independence and Security Act (EISA) aims: (1) greater energy independence and security; (2) increase the production of clean 
renewable fuels; (3)protect consumers; (4) increase the efficiency of products, buildings, and vehicles; (5) promote research on and deploy greenhouse gas 
capture and storage options; (6) improve the energy performance of the Federal Government; and (7)increase energy security, develop renewable fuel 
production, and improve vehicle fuel economy. 
02/11/2011 Clear Skies was to use a market-based system by allowing energy companies to buy and trade pollution credits 

Barack Obama 
(Democrat) 

20/01/2009 
20/01/2017 

13/02/2009 American Recovery and Reinvestment Act (Recovery Act). Providing more than $90 billion in strategic clean energy investments and tax 
incentives 
 23/10/2015 The Clean Power Plan (Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units) 
29/08/2016 The United States signed the Paris Agreement 
 22/06/2016 Toxic Substances Control Act 

Donald Trump 
(Republican) 20/01/2017 01/06/2017 United States President Donald Trump announced that the U.S. would cease all participation in the 2015 Paris Agreement 

Trump administration has sought to increase fossil fuel use and scrap environmental regulations, which it has often referred to as an impediment to business 
Fuente: Own elaboration with webs information of EPA historical topics, Clinton & Obama Whitehouse archives: 
https://www.epa.gov/history/historical-environmental-topics ; https://www.epa.gov/environmental-topics ; https://obamawhitehouse.archives.gov/ ; 
https://clintonwhitehouse4.archives.gov/CEQ/earthday/ch13.html

https://www.epa.gov/history/historical-environmental-topics
https://www.epa.gov/environmental-topics
https://obamawhitehouse.archives.gov/
https://clintonwhitehouse4.archives.gov/CEQ/earthday/ch13.html


2. Background to the U.S. states convergence in energy-related 

variables 
 

Over the last decades a rich empirical literature investigating convergence of carbon 

dioxide emissions among countries has been developed. One important motivation for 

addressing this research topic internationally is that convergence in per capita terms could 

influence the political economy of negotiating multilateral agreements. If carbon dioxide 

emissions do converge across countries and over time, there will be less pollution 

mitigation burden for them, and countries would be more likely to engage in a global 

climate commitment. 

 

Many of these papers include the US in their analysis as it is one of the most polluting 

countries. Although the US has very strongly opposed the per capita emissions approach 

in the international climate negotiations and does not have a national climate change 

policy, results obtained in a good part of these articles show that it is among the countries 

that show convergence (Presno et al., [18], Erdogan and Acaravci, [19], Cai et al., [20]). 

This type of result would support the participation of the US in international agreements, 

but undoubtedly to understand national behavior of the US emissions, it is also necessary 

to study convergence across their states. When considering the implementation of a 

national emission abatement strategy to reduce emissions, the existence of convergence 

across states would reduce the adjustment costs and redistribution effects that can 

adversely impact the underlying economic structure of the states.  

 

The convergence characteristics of energy related variables have also attracted attention 

in studies at subnational level, but still not enough papers have investigated convergence 

across the US states.9 Table 3 provides a summary of the recently published articles. In 

these empirical research different energy related variables mainly from the databases EIA 

and CDIAC have been employed. Among them, CO2 emissions have attracted great 

interest in convergence analysis. Aldy [21] examines cross-section and stochastic 

convergence using estimates of per capita CO2 emissions from consumption and 

production over the period 1960-1999 based on EIA database. The results indicate 

 
9 Unlike in the US, there is a great number of works undertaken on energy-variables at the subnational level 
dedicated to the Chinese provinces, cities and households (Li et al.,[22]. Wu et al. [23] and Hao et al., [24]).  



divergence with respect to CO2 emissions from production whereas CO2 emissions 

associated with consumption reveal some cross-sectional divergence. Burnett [25] uses 

data of CO2 emissions per capita from 1960 to 2010 for the 48 contiguous US states 

applying the Phillips-Sul club convergence approach. The results reveal the emergence 

of one convergence club to a unique steady state in the case of 26 states. Apergis and 

Payne [26] examine per capita CO2 emissions for the 50 states in the US and the District 

of Colombia at the aggregate level, by sector and by fossil fuel source using the Phillips-

Sul club convergence approach over the period 1980-2013. Their findings reveal multiple 

convergence clubs at the aggregate level of per capita CO2 emissions, by sector and two 

of the three fossil fuel sources. Meanwhile Li et al, [27], employing unit-root tests with a 

Fourier function to test convergence of CO2 emissions over the period 1990-2010, find 

that only 12 of the 50 US states exhibit stochastic convergence.  

 

There are also quite a few studies that focus on CO2 consumption of the US states. Apergis 

et al., [28] evaluate energy intensity convergence across the 50 states in the US and the 

District of Colombia from 1997 to 2013 based on cross-sectional test on beta and sigma 

convergence and find support for overall convergence. However, panel unit root tests 

with allowance for cross-sectional dependence and structural breaks do not yield support 

for stochastic convergence. Burnett and Madariaga [29] extends a neoclassical growth 

model to examine the implications for convergence in economic growth and energy 

intensity. Using a dynamic panel model estimated with GMM framework they evaluate 

energy intensity convergence over the period 1970-2013. Their results find support 

regarding convergence across US states. In the case of Payne et al. [30], they examine the 

stochastic convergence of per capita fossil fuel consumption across the 50 US states 

(including the District of Columbia) utilizing LM and RALS-LM unit root tests for the 

period 1970-2013. They offered sufficient evidence to conclude that concerning per 

capital fossil fuel consumption, 49 US states and the District of Columbia exhibit 

convergence. Mohammadi and Ram [31], used data of per capita energy consumption 

from 1970 to 2013 for the 48 contiguous US states and studied five different concepts of, 

or approaches to convergence. The overall scenario seems to be that of the lack of 

convergence in per-capita energy consumption across the US states during the period 

studied, suggesting a certain degree of stability in the state-level distribution of per-capita 

consumption and the low likelihood of a significant change in the distribution.  

 



Finally, we find the works from Bulte et al, [32] and Payne et al, [33], which have 

investigated pollution variables relative to the US states, in this case from EPA. Bulte et 

al, [32] explore pollution convergence on two important pollutants – nitrogen oxides and 

sulfur oxides - using data from 1929 to 1999 for the 48 contiguous US states. They find 

stronger evidence of converging emission rates during the federal pollution control years 

(1970-1999) than during the local control years (1929-1969). Meanwhile, Payne et al., 

[30], examine the stochastic conditional convergence of sulphur dioxide emissions using 

the residual augmented least squares-lagrange multiplier (RALS-LM) unit root test with 

structural breaks. The study finds that per capita Sulphur dioxide emissions exhibits 

stochastic conditional convergence across the 50 US states and the District of Colombia 

from 1900 to 1998. 

 

Many of these papers focus on understanding whether per capita CO2 emissions exhibit 

the properties of stationarity for the analysis of convergence which enforce environmental 

protection policies in long-run (Apergis et al, [28], Bulte et al. [32] ). If per capita CO2 

emissions present the I (1) process, then the policies affecting the emissions will have 

permanent effects. If per capita CO2 emission series exhibit an I (0) process, then the 

effects of the policies are merely transitory. Unlike the above-mentioned papers, the 

dynamic factor model (DFM) 10 employed in this research allows us to analyze the 

relationships of the CO2 emissions in the short-run. We propose study of the common 

behavior of the state emission cycles, and should these be synchronized, it would imply 

that national climate change policies could influence the states that follow the common 

pattern.  

 
10 It is also possible to use DFM in the long-run, Stock and Watson [34], Peña and Poncela, [35] and 
González and Nave, [36] made some proposals regarding its use in this context.  
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Table 2. Overview of empirical papers on convergence in energy related variables across the U.S. states 

 Author Convergence and Econometric Approach Sample Target 
Variables Data  Empirical findings 

C
O

2 e
m

is
si

on
s 

Aldy [21] Cross-sectional test of σ convergence, kernel 
density and stochastic convergence tests. 

1960-
1999 

CO2 emissions 
pc  EIA  Divergence with respect to production CO2 emissions pc and no 

evidence of convergence for consumption CO2 emissions pc. 

Li et al., [27] Panel KSS unit root test with a Fourier function 
through the SPSM procedure 

1990-
2010 CO2 emissions EIA CO2 emissions only converge in 12 out of the 50 U.S. states. 

Burnett, [25] Phillips and Sul club convergence tests approach 
and conditional β -convergence. 

1960 
2010 

CO2 emissions 
pc CDIAC 

Convergence for a group of 26 states. The β -convergence tests 
for the 26 states club is slightly higher than for the entire 
sample. 

Apergis & 
Payne, [26] Phillips and Sul club convergence tests approach 1980- 

2013 
CO2 emissions 

pc EIA The results indicate multiple convergence clubs in the 
aggregate, by sector, and for natural gas and coal fuel sources. 

C
O

2 c
on

su
m

pt
io

n 

Burnett & M., 
[29] 

Augmented Solow growth model estimated using a 
GMM framework to test conditional convergence. 

1970-
2013 Energy intensity  EIA Results indicate convergence in energy intensity across the 

entire sample. 
Apergis et al., 

[28] 
Cross-sectional test of β and σ convergence and 
stochastic convergence using panel unit root tests. 

1997-
2013 Energy intensity CDIAC Results lend support for overall β and σ convergence but 

absence of stochastic convergence. 
Payne et al., 

[30] 
Stochastic convergence using LM and RALS-LM 
unit root test 

1970-
2013 

Fossil fuel 
consumption pc EIA Results indicate the presence of stochastic convergence in 

relative per capita fossil fuel consumption in 49 states. 

Mohammadi 
&R. [31] 

Beta, sigma, Kernel density function, gamma 
convergence and stochastic convergence 

1970–
2013 

Energy 
consumption pc  EIA The predominant finding is that of lack of convergence in per-

capita energy consumption across the US states.  

Po
llu

tio
n Bulte et al., 

[32] 
Stochastic Convergence & Time Series Test for β-
Convergence 

1929-
1999 SO2 & NOx pc EPA 

Strong evidence of convergence during the federal pollution 
control years (1970–1999) than during the local control years 
(1929–1969).  

Payne et al., 
[33] 

Stochastic conditional convergence using the 
RALS–LM unit root test with structural breaks 

1900–
1998 SO2 pc EPA Evidence of conditional convergence across US states. 

 
Source: Own elaboration. 
Notes: RALS-LM (Residual Augmented Least Squares-Lagrange Multiplier); KSS (Based on the nonlinear unit root test proposed by Kapetanios, Shin and Shell); LM 
(Lagrange Multiplier); CDIAC (Carbon Dioxide Information Analysis Center); EIA (U.S. Energy Information Administration); EPA (US. Environmental Protection Agency); 
SO2 (sulphur dioxide); CO2 (carbon dioxide); SPSM (sequential panel selection method) pc (per capita); GMM (General Method of Moments). 
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3. Data sources and processing 
 

One of our purposes in this paper is to extend convergence analysis as much as possible 

over time to expand the evidence and to offer viable solutions to the methodological 

problem derived from having a large sample of states (50). No database containing 

emissions information for over 50 years is available. Studies on CO2 emissions by states 

usually use the EIA database from 1980 to 2017 or CDIAC from 1960 to 2010. Both 

databases are based on estimates of CO2 emissions. This type of measure for emissions is 

one of the most commonly used in the literature as it is difficult to obtain atmospheric 

emissions of carbon dioxide. To obtain a dataset covering the period 1960-2017, we 

consider the possibility of splicing the two databases and extending the sample, 

incorporating a sufficient timespan to study cyclical convergence. In order to do so, first 

we need to homogenize the data. 

 

The Carbon Dioxide Information Analysis Center (CDIAC) within the U.S. Department 

of Energy, estimates annual data emissions from oxidation of natural gas, coal, and 

petroleum products (Blasing, Broniak, & Marland [37]), by multiplying state-level 

consumption by their respective thermal conversion factors. The estimates are offered in 

units of Tera-grams of Carbon for the 50 contiguous states excluding the District of 

Columbia (http://cdiac.ornl.gov/CO2, Emission/timeseries, accessed 07/06/201711). 

There are annual data available of aggregate U.S. by States Carbon emissions for the 

period 1960–2010. The year 2010 is the most recent year regarding CDIAC data available 

and the disaggregated in Carbon emissions by gas, liquid and solid in carbon units.  

 

More up-to-date data can be accessed from the U.S. Energy information Administration 

(EIA [38]) that has annual data of total CO2 emissions at the state level from 1980 to 

2017, which is measured in millions of metric tons for each US state 

(https://www.eia.gov/environment/emissions/state/, accessed 03-01-2020). The 

emissions estimate at the state level for energy-related CO2 are based on data in the State 

Energy Data System (SEDS). The state-level emissions estimates are based on energy 

 
11 In March 2018 the website had changed, so the CDIAC data files that we have used for the article are 
no longer available on the website, therefore, we have included this data as annex of this article. 

http://cdiac.ornl.gov/CO2
https://www.eia.gov/environment/emissions/state/
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consumption data for fuel types: coal (four categories of coal12), natural gas and 

petroleum (eighteen petroleum products13). The information available for each state 

reveals that emissions of CO2 are disaggregated in 5 sectors (residential, commercial, 

industrial, transportation and electric power), and in each sector there are three 

disaggregated sources (coal, petroleum products and natural gas). Of course, there is an 

aggregate CO2 for each state and for the USA (for more details see: [39] 

https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf, accessed 03-01-

2020). 

 

Then, we find that as to the EIA basis the data for CO2 emissions are expressed in million 

metric tons of CO2. On the other hand, we have the CDIAC data expressed in Tera-grams 

of Carbon. To convert from carbon to carbon dioxide, multiply by 44/12 (=3.667). At this 

point we have both databases expressed in the same units. 

 
Fig. 1: Estimates of state CO2 emissions over the period 1960-2017 

Source: own elaboration from EIA and CDIAC databases. 
  

We can check discrepancy between both databases by comparing the first and the last 

year of coincidence of both data bases and analyzing their state data totals. Those years 

 
12 1.- residential/commercial sector, 2.- industrial sector coking, 3.- industrial sector & 4.- electric power 
sector 
13 1.- asphalt and road oil, 2.-aviation gasoline, 3.-distillate fuel, 4.-jet fuel, 5.-kerosene, 6.-hydrocarbon gas 
liquids (HGL), 7.-lubricants, 8.- motor gasoline, 9.-petrochemical feedstocks, 10.- petroleum coke, 11.- 
residual fuel oil, 12.- waxes, 13.-special naphtha, 14.- still gas, 15.- unfinished oils, 16.- miscellaneous 
products, 17.- natural gasoline, & 18.- other petroleum products. 

https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf
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are 1980 and 2010. Using the expression ,

,

2 _
1 100

2 _
i t

i t

CO IEA
CO CDIAC

− ⋅
 
 
 

 we calculate the % of 

discrepancy between both databases and years. 14 

 

As the discrepancy between the series is minimal, we use a deterministic splicing 

procedure as proposed in de la Fuente [40]. A simple retropolation works by extending 

the new series backward from time T, the link point in our case is T=1980, and using a 

constant growth rate ,1980

,1980

2 _
2 _

i

i

CO IEA
CO CDIAC

, the idea is to "raise" the older series by a 

constant proportion, respecting its time profile, until it matches the new series at the 

linking point in order to attenuate the discrepancy. 

 

Annual state population data were obtained from the Federal Reserve Economic Data 

(FRED). The data available are for the first day of the year ([41] 

https://fred.stlouisfed.org/release/tables?rid=118&eid=259194, accessed: 04-06-2020) 

 

4. Methodology 
 

4.1. Carbon emission cycles. 

Our proposal is rooted in the application of business cycle analysis methods and we resort 

to the synchronization concept to define cyclical convergence. Cyclical convergence 

implies the increase in the level of similarity between the states CO2 emissions cycles. To 

do this, it is necessary to first obtain the cyclical component of the state CO2 emissions. 

Accordingly, the annual series on carbon dioxide emissions per capita at the state level 

have been log-transformed and differentiated ( 1∆ = − L , being L  the lag operator) to 

obtain the state carbon emission cycles.15  

 

4.2. Dynamic factor model (DFM). 

 
14 Only 3 States have ±3% of difference in both years: Louisiana, North Dakota and Washington. 
15 This is the “growth” definition and the one that is most frequently employed in the empirical literature 
on business cycles. In this case, a recession is usually defined as a period of at least two consecutive years 
of negative growth. For a discussion of alternative definitions see Prescott and Kydland [42]. Originally, 
one of the most used approaches was to apply the Hodrick Prescott filter proposed by Hodrick and Prescott 
[43]. However, this filter has several shortcomings, see Hamilton [44].  

https://fred.stlouisfed.org/release/tables?rid=118&eid=259194
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The estimation proposed is based on the measurement of the cyclical common factor 

using a dynamic unobserved component approach. To that end, we model the degree of 

co-movements in CO2 emissions using a dynamic factor model in the tradition of Forni 

and Reichlin [45], Stock and Watson [46] and Forni et al. [47]. According to Stock and 

Watson [48] the unobserved components model is based on the notion that co-movements 

in macroeconomic variables have a common element that represents the general state of 

the economy and can be captured by a single underlying variable. 

 

DFM is based on the assumption that a small number of unobserved latent factors, tf , 

generate the observed time series through a stochastically perturbed linear structure. 

Formally, it is assumed that the pattern of observed co-movements of a high-dimensional 

vector of time-series states, .ln 2t i tX CO= ∆ 16, can be represented by few unobserved 

latent common dynamic factors. The latent factors follow time series processes, which 

are commonly taken to be a vector autoregressive model (VAR). DFM can be 

summarized as: 

 

1( )
t t t

t t t

X f e
f L fψ η−

= Λ +
= +

     (1) 

 

where there are N states, so tX  and te  are N×1; there are m dynamic factors, so tf  and 

tη  are m×1, 1 2( , , , )Λ = K mβ β β  is N×m, L  is the lag operator, and the lag polynomial 

matrix ( )Lψ  is m×m. The i-th iβ  are called factor loadings for the i-th countries, that 

offer the level of participation of each state regarding co-movements captured by the 

common factor or factors. The idiosyncratic disturbances, 1, 2, ,( , , , ) 't t t N te e e e= K , are the 

specific elements of each series contained in a vector. These elements are serially 

correlated and slightly cross-sectionally correlated with other variables in the model and 

mutually uncorrelated at all leads and lags, that is, 0it jsEe e =  for all s if i s≠ . They are 

assumed to be uncorrelated with the factor innovations at all leads and lags, that is, 

 
16 These series are stationary (log-transformed and differentiated) and are assumed to be non-cointegrated. 
The series are non-cointegrated if the common factor follows an invertible process ( )∞MA . Otherwise, the 
estimate proposed by Peña and Poncela [35] can be used. 
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' 0
t ktEeη
−
=  for all k . The pth order autoregressive polynomial, ( )i Lψ , is assumed to have 

stationary roots. As we do here, it is common to reduce the number of parameters by 

estimating the signal-to-noise ratios 
2
,

, 2
,

i
i m

e i

q ησ
σ

=  (Harvey and Trimbur, [49]).  

 

For that purpose, in this paper we use the GROCER’s Econometric Toolbox (Dubois and 

Michaux, [50]). The standard estimation method is maximizing the likelihood of the 

corresponding model and estimation accuracy via the Kalman filter17 after a suitable 

reparameterization of the model in state-space form, assuming that all the processes in 

(1) are stationary and not cointegrated. 

 

We can confirm the existence of common factors, 2,ĈO tf , by employing the statistical 

criterion proposed by Bai and Ng [51])18. If we obtain only one common factor, this factor 

can represent the US cyclical performance of CO2 emissions. For a better identification 

of this fluctuation pattern, we also employ the Harding and Pagan [16] dating method. 

This method enables us to examine the turning points of the US cyclical performance of 

CO2 emissions and to estimate their characteristics of duration, amplitude and intensity. 

 

4.3. A time-varying parameter model. 

The study of the dynamics in the cyclical behavior of the national CO2 emissions enables 

assessment of the trajectory of the cyclical convergence of the states. In line with this 

objective, we propose the use of a time-varying parameter model presented in Andrews 

[14] to test parametrically the degree of cyclical convergence of the US states with respect 

 
17 A detailed description of the Kalman filter can be found in Clark [52], and Stock and Watson [46]. 
18 The number of dynamic factors, p , following Bai and Ng [51] is p r≤ , being r  the number of static 

Factors determined by Bai and Ng [53], where 1p =  since 1r =  according to the following criteria: 

( )
( ) log(det( )) log

( )
( ) log(det( )) log(min( , ))

log(min( , ))
( ) log(det( ))

(min( , ))

N T nT
IC q qpl nT N T

N T
IC q q n Tpl nT

n T
IC q qpl n T

+
= ∑ + +

+
+

= ∑ + +

= ∑ +

 
 
 

 

Where t= variance matrix of  residual e∑ . 
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to the cyclical common factor throughout the time period. Accordingly, we recursively 

estimate: 

 

     ˆ
j,t j j,tCO2,tx = β (τ)f +v (τ)     (2) 

 

where xj,t is the j-th observed series –stationary transformed and standardized- and ĈO2,tf  

the estimated common factor at t. ( )jβ τ  corresponds with the factor loadings or 

correlations between each of the j series and the common factor. 19 The error term ,j tv  

may include non-significant dependence on discarded factors or maybe specific variation 

of xj,t. In both cases, ,j tv  must be uncorrelated with the regressors –retained factors- for 

consistent OLS estimation of (1) and (2), so previous factor estimation must be subject to 

the appropriate orthogonality conditions. Nevertheless, it is assumed that the error term 

in (1) can generally show both heteroskedasticity and autocorrelation, thus consistent 

OLS standard error estimates of ( )jβ τ  must be robust to both assumptions.  

 

This procedure allows us to extract information about the recursive correlations along the 

time period studied and offer graphic information on their evolution as a continuum of 

results and their t-statistics. From said results it is possible to analyze how the states are 

synchronizing their emissions cycles over the years studied (as it is standard in literature, 

we consider that the correlation is high if β j  takes on values >0.5). Additionally, we 

strive to solve part of the possible limitations of our results, confirming the stability of 

the parameters and verifying the non-existence of structural breaks. To this end, we 

applied the robustness check proposed in Cendejas et al., [15], to observe changes in the 

participation of the countries in the synchronized pattern over the time period. 

 

5. Empirical results. 
 

5.1. Results of the synchronization of US States cycles. 

 
19 The degree of synchronization will be measured by the number of leading or lagging periods at which 
the maximum correlation is obtained so that, state emissions i will be synchronized with the US fluctuation 
pattern if the maximum correlation is obtained contemporaneously. 
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As a first step in our analysis, we measured the carbon emission cycle of the states. The 

results are presented in Figure A1 of Annex. From this information, DFM specified in (1) 

is estimated for the entire sample period from 1961 to 2017. The parameters of the 

estimated model are reported in Table 3. The AR idiosyncratic parameter and noise ratio 

confirm the suitability and dynamics of the model. 

 

Table 3 offers the information of the states ranked according to their factor loadings. The 

significance of the factor loadings indicates that state emissions are co-moving and 

confirm the existence of cross-state links in the fluctuation of the state O2 emissions. We 

find that the factor loadings are significant and statistically similar for 47 out of the 50 

states. For Alaska, Rodhe Island and Vermont, factor loadings were not significant and 

then these states were excluded from the model, which is why they do not appear in the 

table. Said states follow independent emission fluctuation patterns.  

 

The factor loading obtained parametrically in the estimation are the weights (in 

correlation) with respect to the cyclical common factor. They offer a measure of the 

importance of the common fluctuation pattern to explain the state emissions cycles. Based 

on our results, we can differentiate between states that strongly share the US common 

fluctuation pattern (in this group we find Pennsylvania, Minnesota, Ohio and Indiana, 

among others, with factor loadings jβ  ≥0.5). In this analysis, we also find states with 

emissions that show weaker linkages ( jβ ˂ 0.5). Such is the case of states like Idaho, 

South Dakota and Nevada. For these states, national policies to control climate change 

would have less impact on the cyclical behavior of its fluctuations. Furthermore, we 

applied the robustness check proposed in Cendejas et al., [15]. The results of the test for 

structural breaks allow us not to reject the null hypothesis of parameter stability according 

to the simulated critical values for the period 1961-2017, with the exception of New 

Mexico. It is also important to note that the stationarity of the factor, confirmed by the 

invertible MA parameter, implies that the effects of national environmental initiatives on 

the state emissions could only have transitory effects. 

 

These results show that changes in emissions are more symmetrical in amplitude than 

duration, reflecting the difficulties for national environmental initiatives to achieve a 

sustained impact on emissions.  



17 
 

Table 3. Estimation results from model (1). Sample period: 1961-2017 
 

Rank Countries Standardized factor loadings AR parameters Residual variance 
1 Pennsylvania 0.64 (7.96)*** 0.02 (0.13) 0.27 (4.96)*** 
2 Minnesota 0.61 (7.48)*** -0.13 (-0.95) 0.34 (5.08)*** 
3 Ohio 0.6 (7.84)*** -0.21 (-1.49) 0.28 (5.03)*** 
4 Indiana 0.6 (7.61)*** -0.15 (-1.12) 0.31 (5.06)*** 
5 Virginia 0.58 (7.17)*** -0.13 (-0.94) 0.37 (5.12)*** 
6 Alabama 0.57 (6.92)*** -0.14 (-1.04) 0.41 (5.15)*** 
7 New York 0.56 (6.73)*** -0.06 (-0.43) 0.45 (5.17)*** 
8 North Carolina 0.56 (6.58)*** 0 (-0.02) 0.44 (5.16)*** 
9 Michigan 0.56 (6.56)*** -0.19 (-1.44) 0.45 (5.17)*** 

10 Florida 0.56 (6.56)*** -0.17 (-1.29) 0.48 (5.18)*** 
11 South Carolina 0.54 (6.72)*** -0.01 (-0.04) 0.48 (5.19)*** 
12 Maryland 0.54 (6.51)*** -0.28 (-2.09)** 0.45 (5.18)*** 
13 Wisconsin 0.54 (6.24)*** -0.17 (-1.22) 0.45 (5.18)*** 
14 Kentucky 0.53 (6.18)*** -0.17 (-1.24) 0.52 (5.21)*** 
15 Illinois 0.53 (6.13)*** -0.05 (-0.34) 0.5 (5.2)*** 
16 Georgia 0.51 (6.07)*** 0.31 (2.35)** 0.43 (5.17)*** 
17 Iowa 0.51 (6.03)*** -0.13 (-0.95) 0.5 (5.22)*** 
18 Texas 0.5 (5.95)*** 0.35 (2.71)*** 0.43 (5.17)*** 
19 West Virginia 0.49 (6.16)*** -0.17 (-1.27) 0.52 (5.23)*** 
20 Tennessee 0.49 (5.9)*** -0.29 (-2.19)** 0.49 (5.22)*** 
21 Colorado 0.48 (5.75)*** -0.25 (-1.87)* 0.58 (5.24)*** 
22 Kansas 0.48 (5.27)*** -0.14 (-1.03) 0.58 (5.25)*** 
23 Missouri 0.47 (5.49)*** 0.12 (0.88) 0.57 (5.24)*** 
24 Montana 0.46 (5.65)*** 0.01 (0.05) 0.62 (5.25)*** 
25 California 0.46 (5.34)*** -0.34 (-2.65)** 0.6 (5.25)*** 
26 Connecticut 0.46 (5.11)*** -0.19 (-1.44) 0.62 (5.25)*** 
27 Washington 0.45 (5.41)*** -0.26 (-1.99)** 0.6 (5.25)*** 
28 New Jersey 0.43 (5.43)*** -0.29 (-2.23)** 0.55 (5.25)*** 
29 Mississippi 0.43 (5.13)*** -0.32 (-2.49)** 0.66 (5.27)*** 
30 Hawaii 0.41 (4.72)*** -0.27 (-2.12)** 0.76 (5.28)*** 
31 New Hampshire 0.41 (4.67)*** 0.18 (1.35) 0.63 (5.27)*** 
32 Louisiana 0.41 (4.54)*** -0.11 (-0.85) 0.71 (5.28)*** 
33 Nebraska 0.41 (4.5)*** -0.19 (-1.4) 0.67 (5.28)*** 
34 Massachusetts 0.4 (4.79)*** -0.29 (-2.26)*** 0.67 (5.28)*** 
35 Wyoming 0.39 (4.61)*** -0.28 (-2.19)** 0.69 (5.28)*** 
36 Oregon 0.36 (4.1)*** -0.16 (-1.23) 0.74 (5.29)*** 
37 Utah 0.36 (3.86)*** 0.16 (1.2) 0.71 (5.29)*** 
38 Arizona 0.35 (3.7)*** -0.03 (-0.23) 0.78 (5.3)*** 
39 Delaware 0.34 (3.58)*** 0 (0.02) 0.79 (5.3)*** 
40 Oklahoma 0.34 (3.56)*** 0.14 (1.06) 0.77 (5.3)*** 
41 Arkansas 0.3 (3.3)*** -0.18 (-1.35) 0.81 (5.31)*** 
42 Nevada 0.29 (2.94)*** 0.13 (0.96) 0.83 (5.31)*** 
43 Idaho 0.27 (2.82)*** 0 (0) 0.87 (5.32)*** 
44 Maine 0.26 (3.13)*** -0.3 (-2.31)*** 0.81 (5.32)*** 
45 North Dakota 0.26 (2.64)*** 0.21 (1.63) 0.84 (5.32)*** 
46 South Dakota 0.21 (2.22)*** -0.11 (-0.79) 0.91 (5.33)*** 
47 New Mexico 0.21 (2.17)** -0.14 (-1.05) 0.94 (5.33)*** 

In () t-statistics, * significant parameter at 90%, ** at 95% and *** 99%. 
Note: Using the test proposed in Cendejas et al., [15], we have not detected dates of structural breaks, 
confirming the stability of parameters’ model (1), with the exception of New Mexico with a structural 
break in 1977. 

 
Once the relationship of the cross-states cycle correlation is summarized in the cyclical 

common factor, we are able to provide an analysis of its properties based on the dating 

10.73(2.87***)η η −= +t t tf
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methodology from NBER.20 Figure 2 shows the evolution of the US cyclical performance 

from 1961 to 2017. We can observe that fluctuations of emissions are longer and steeper 

in the period 1961-1990 (before the United Nations Framework Convention on Climate 

Change (UNFCCC) 1992, and the subsequent Kyoto Protocol 1997 took place) than in 

the second period 1991-2017. During the first three decades studied, we identify a phase 

from peak to trough (1970-1982) where a decline in the growth emissions occurs from 

the time the Clean Air Act of 1970 was introduced in the US to enhance energy 

conservation, improve energy efficiency, and promote the use of renewable energy. The 

economic expansion of the 80s gives rise to the start of another phase of increase in 

emission growth during the years 1982-1988 (from trough to peak). The start of the 

UNFCC and the Conference of Parties (COPs) negotiations marks the beginning of the 

next period characterized by a greater control over emissions fluctuations and of more 

stable growth rates. The approval of the Energy Policy Act in 1992, extended in 2005, 

and the Energy Independence and Security Act in 2007 are also some of the federal 

initiatives launched in this period. However, the financial crisis, gives rise to a new phase 

of increasing in the rate of growth of the emissions from 2009. 

 

Upon comparing the cyclical characteristics in the different phases, we observe that the 

average duration of the period of increase in emissions (6 years) are shorter than that of 

decline in emissions (17.5 years), with an average amplitude of the increase (4.16) similar 

to the decline (-3.73). This difference in durations implies a greater average intensity21 of 

emissions in decline (0.7) than in increase (0.21), as can be observed in 1974, 1980, 1989, 

2008 and 2011 troughs, versus 1982, 1988 and 2010 peaks. These results show that 

changes in emissions are more symmetrical in amplitude than duration, reflecting the 

difficulties for national environmental initiatives to achieve a sustained impact on 

emissions. 

  

 
20 Available at https://www.nber.org/cycles.html 

21 Intensity is a concept that jointly analyzes the amplitude and duration of a phase, 
amplitude

duration
, providing 

an additional interpretation of expansions and recessions. 
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Fig. 2: Dating the USA common cyclical environmental performance 

Source: Own compilation using Harding and Pagan [16]. 
Note: Shaded areas correspond to the declining phases in USA CO2 emissions fluctuations. Dashed lines 
marked with horizontal arrows correspond to the business cycle recession phases according to the NBER 
chronology. 

 

5.2. Results of the dynamics of cyclical convergence. 

The time-varying parameter model proposed in the methodological section is employed 

to investigate how the dynamics of state cyclical convergence has evolved over the period 

1970-2017. In the analysis presented in the previous section, it has been found that the 

synchronization across US states can be considered weak for around half of the states and 

we detect heterogeneities in the importance of national fluctuations to explain the 

behavior at the state level. However, we must also take into account in this analysis what 

the trajectory of the synchronization has been and check if at least it has increased over 

time. The continuum of results obtained in the estimation of the time-varying parameter 

model and their t-statistics are shown in Figures 3-6. The 50 US states are separated into 

4 groups for reporting purposes in terms of their cyclical evolution.  

 

Figure 3 show the results for the states that are considered the closest to the US fluctuation 

pattern, since the common factor has a high explanatory capacity and they have 

maintained the higher correlation values in terms of cyclical convergence (showing 

correlation greater than 0.65 at the end of the period). They are 13 states which in the 

1970s had uneven trajectories, but since the 1980s, they have maintained a favorable 

evolution regarding their cyclical convergence, with significant increases in the degrees 

of convergence with the cyclical factor. Nevertheless, a decrease is observed in their 
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cyclical convergence since the US refused to sign the Kyoto protocol in 2001, which 

increases again after the financial crisis. In this group we can differentiate the states that 

have reached correlation greater than 0.7, but they are the ones that experienced the 

greatest drop in their correlation in the 2000s, although they manage to recover at the end 

of the period (such is the case of Pennsylvania, Ohio, Michigan, Minnesota and Florida). 

While others, such as Tennessee and North Carolina, remain with high and stable 

correlations (around 0.65) throughout the years studied. Finally, states like Virginia and 

Georgina, despite maintaining correlations less than 0.65 during most of the period, 

experienced an increased in their cyclical correlation until reaching values higher than 

0.65 after the financial crisis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Cyclical convergence of USA States – Group 1. States with ( )jβ τ  ≥0.65  
Note: Initial trimming to estimation of model (2) is at 20% and the bands of t-stat is at 5% significance. 

 
 

Figure 4 shows the results for the second group that also includes states with high 

correlation (between 0.5-0.65) over the period and show similar trajectories of their 

cyclical correlation to the group 1, but, unlike them, fail to recover and achieve an 

increase in their cyclical convergence at the end of the period. This group includes the 

states such as those of Nebraska, California and Texas, which until the financial crisis 

maintain a correlation greater than 0.65, but the financial crisis negatively affect the path 

of cyclical convergence that they had experienced and reduce their correlation below 
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0.65. In this group we can find states such as those of New York, Illinois, Wisconsin and 

Kansas, which have maintained a stable cyclical convergence that ranges from 0.5 to 0.65 

since the 80s and during most of the years studied. 

 

 

 

 

 
 

 

 

 

 

 
 
 
 
 

Fig. 4: Cyclical convergence of USA States –Group 2. States with ( )jβ τ  ≥0.5  
Note: Initial trimming to estimation of model (2) is at 20% and the bands of t-stat is at 5% significance. 

 

Results of the third group are shown in Figure 5. This group includes states experiencing 

a reduction in their convergence pattern almost during the whole period, and specially 

with the financial crisis. In this group, there are states like Louisiana and Nevada that had 

a strong correlation with the national fluctuation pattern until the 2000s, but since then 

they have undergone a reduction of their cyclical convergence which, at the end of the 

period studied, results in their correlation being below 0.5. There are also states like North 

Dakota and South Dakota that maintain a weak cyclical correlation throughout most of 

the period, and which also show an unfavorable trajectory as to their cyclical convergence 

after the financial crisis. 
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Fig. 5: Cyclical convergence of USA States- Group 3. States with ( )jβ τ ˂ 0.5 
Note: Using the test proposed in Cendejas et al., [15], we have detected a structural break in New Mexico 
in 1977. 

 
Finally, Figure 6 comprises the rest of the states. In this group we find states that have 

shown not synchronization in the analysis accomplished in the previous section and with 

the results obtained about the dynamics of their cyclical convergence we confirm that 

they follow independent patterns. These are the states of Alaska, Rodhe Island and 

Vermont. We also find in this group small states from the East coast and Hawaii. For 

these states, results indicate a reduction of their cyclical convergence over the period. 

States such as Massachusetts show an increase in cyclical convergence in the 2000s, but 

nevertheless, its correlation remains below 0.5. In the case of the state of Delaware, this 

state maintains a stable cyclical convergence with a correlation close to 0.5, with a 

significant increase in convergence in the mid-2000s, but this trajectory is reversed with 

the financial crisis. 
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Fig. 6: Cyclical convergence of USA States – Group 4. Rest of the states 
Note: Initial trimming to estimation of model (2) is at 20% and the bands of t-stat is at 5% significance. 

 
 
In order to more intuitively follow the dynamics of the cyclical convergence in the US 

states, maps of state-level correlation for 1970, 1995 and 2017 are provided in Figures 7-

9. The first one depicts cyclical convergence correlations at the starting point of our data 

set for the analysis of recursive correlation across the US states, 1970, and the second and 

third ones show this information for 1995 and for the last year we use, 2017. For this last 

year, we add the information about the states that signed the US Climate Alliance. The 

darker the shading of map areas, the higher the cyclical convergence correlation. It is 

straightforward to perceive that the states on the East Coast are the ones that have 

maintained correlations above 0.65 throughout the period. On the East Coast we also find 

most of the member states of the US Climate Alliance, many of which are small states. 

In the case of states pertaining to the West Coast, we find that California, Oregon and 

Washington increase their cyclical correlation during the first period, but in the following 

decades they experience a decrease in their correlation. They are also signatory states of 

the US Climate Alliance. For the rest of states, more heterogeneous trajectories are 

observed, which generally show stagnation in their cyclical convergence dynamics since 

the 2000s. 
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Fig. 7. State level correlation for 197022 

 

Fig. 8. State level correlation for 1995  

 
22 Figs. 7, 8 and 9 we made with a Map of USA by States was edited by www.showeet.com. 

http://www.showeet.com/
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Fig. 9.- State level correlation for 2017 and State signatories US Climate Alliance 

 
5.3. Results and discussion. 

In this paper, we based our analysis on a database which is compiled from information at 

the state level between 1960 and 2017. This evidence is the first for the application of  

DFM to investigate cross-state links, in the form of co-fluctuations patterns of per capita 

carbon dioxide emissions across the US states. This unobserved component model 

allowed us to measure the degree of synchronization and the capacity of the factor to 

explain state fluctuations.  We ranked the states according to the level of cross-state links 

in the fluctuations of CO2 emissions and the trajectories of their cyclical convergence. 

We observed that 47 out of the 50 US states show significant factor loadings and the 

analysis of their recursive correlations favor the existence of cyclical convergence over 

the years studied. However, while we provide support for short-run synchronization, the 

results for 28 states are below 0.5, which can be considered to mean that they are weakly 

synchronized. Following these results, establishing national policies to control climate 

change for these states would have less impact on the cyclical behavior of its fluctuations 

and then on mitigation CO2 emissions.   
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 In the analysis of the cyclical properties of the US fluctuations we also observed that 

changes in emissions are more symmetrical in amplitude than duration, which convinces 

us of the difficulties for national environmental initiatives to achieve a sustained impact 

on emissions. We also find that the financial crisis gives rise to a new phase of increasing 

in the rate of growth of the emissions from 2009, which indicates that business cycles are 

related to the consequences of the global financial crisis of 2007-08 and do not 

significantly affect the level of CO2 emissions.  These findings are in line with the results 

of ( Shahiduzzaman & Layton [8], Khan et al., [9] and Gozgor el al., [10] ). 

 

We also found strong evidence in favor of increasing differences in the level and 

trajectories of the states using a time-varying parameter model. According to their level 

of cyclical correlation (above or below 0.5), but there are also significant differences in 

the evolution across the states. The refusal of the US to sign the Kyoto protocol and the 

financial crisis are events that have dissimilar effects in their trajectories. After the 

financial crisis only 13 states show statistically significant increases in the degrees of 

convergence, while the rest of states show more unfavorable trajectories and their cyclical 

correlation are reduced. This result is in line with recent literature that show that most of 

the US states do not converge (Li et al., [22]). Therefore, policymaker should not support 

the implementation of national mitigation policies unless the states intensify their cross-

state links.  There might not be much scope for further cyclical convergence in the future, 

thus rendering it more difficult for national policies to fight climate change.  

 

Our results also reveals the stationarity of the factor which implies that the effects of 

national environmental initiatives on the emissions states could only have transitory 

effects. According to it, differences in cyclical behavior across states would persist, which 

implies that policymakers should be concerned with the design of mitigation strategies 

that allow for differences in emission cycles. These findings have contributed to 

understanding that the difficulties in increasing the synchronization of the US CO2 

emissions highlight the importance of the states to lead the climate change mitigation 

actions. State initiatives such as the Climate Leadership across the Alliance are committed 

to implementing policies to reduce carbon pollution and promote clean energy 

deployment that advance the goals of the Paris Agreement, aimed to reduce GHE by at 

least 26-28 percent below 2005 levels by 2025. 
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6. Conclusions 
In this paper, we investigated the relevance of synchronization as an important factor in 

the design of mitigation CO2 policies. This empirical study extends the literature on 

convergence of carbon dioxide emissions, in serving as the first paper to test cyclical 

convergence to investigate short run characteristics of CO2 emissions across the US states. 

Understanding cyclical convergence helps in assessing whether national climate change 

policies can be effective and should thus be reinforced. To this end, we use of a dynamic 

unobserved component approach and a time-varying parameter model which makes 

possible to estimate the short run dynamics of energy convergence across US states over 

the extended period 1960-2017. This type of analysis has not received enough attention 

in the literature so far. The empirical findings reveal the existence of cross-state links in 

the fluctuations of CO2 emissions, although the degree to which a good part of the states 

are co-moving is weak. We also find that cyclical convergence patterns differ 

considerably in both the level and trajectories across the US states. The difficulties in 

increasing synchronization of the US CO2 emissions and the transitory effects of national 

policies highlight the importance of the states to lead climate change mitigation actions.  

 

Overall, our paper demonstrates that further studies should consider the synchronization 

of the emission cycles in their energy analysis to increase understanding of the short-run 

properties and shape the effective energy policy to reduce CO2 emissions. Future papers 

on the subject can focus on the comparison of the emissions fluctuations patterns of the 

US with the rest of signatory countries of the Kyoto protocol. This could be done with a 

methodology similar to the one applied in this paper. Such a study would potentially 

provide insight on the likelihood of reaching the proposed global targets. 
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Fig. A1: The cycle of CO2 emissions in USA by States  
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Fig. A1: The cycle of CO2 emissions in USA by States (continued) 
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