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We report unexpected classical and quantum dynamics of a
wave propagating in a periodic potential in high Brillouin zones.
Branched flow appears at wavelengths shorter than the typical
length scale of the ordered periodic structure and for energies
above the potential barrier. The strongest branches remain stable
indefinitely and may create linear dynamical channels, wherein
waves are not confined directly by potential walls as electrons in
ordinary wires but rather, indirectly and more subtly by dynamical
stability. We term these superwires since they are associated with
a superlattice.

branched flow | superlattices | chaos | wave dynamics

Branched flow is a common phenomenon of wave dynam-
ics; when a wave impinges a weakly refractive medium, it

can create an intensity pattern akin to the shadow of a tree
(1). Unlike normal diffusion, some of the (temporarily and
accidentally) stable branches can carry a high density of flux
across long distances. Branched flow is important on hugely
disparate scales, from electron waves in two-dimensional (2D)
electron gas (2) to acoustic waves spanning thousands of kilo-
meters in the oceans (3) or the beautiful patterns of light going
through soap bubbles (4). All these phenomena in both classical
and quantum systems arise from wave propagation in random
potentials.

As a general rule, branched flow for waves appears when
the wavelength λF is shorter than the typical length scale a
of the potential given small angle deflections per “feature” in
the potential. In most materials, the lattice constants are of
the order of angstroms, whereas the electron wavelengths are
in the nanometer scale (i.e., λF > a), so we may expect that
branched flow cannot exist in crystals. However, in recent years,
much attention has been given to superlattices, where the com-
bined periodic structures may create a larger-scale periodic
structure. A perfect example is twisted bilayer graphene that
exhibits a large-scale moiré pattern (5) and exotic properties
such as superconductivity (6–10). As the condition λF < a in
these superlattices is generally satisfied, the branched flow can
provide important understanding on the physical properties of
“designer materials,” including layered structures (11–13), arti-
ficial lattices (14–17), and photonic systems (18). We remark
that in perfect superlattices, the branched flow is “lurking” in
Bloch waves, which can be made from branched flow waves and
vice versa.

In this work, we extend the concept of branched flow
to periodic potentials. Thus, we demonstrate the ubiquity
of branched flow from classical and quantum scales and
from random disorder to periodic systems. However, perhaps
even more important than these irregular patterns are the
indefinitely stable branches that can arise in periodic poten-
tials. Within these controlled branches, propagating waves are
dynamically confined, creating superwires. Unlike wires based
on energetic barriers, these superwires arise because of the
dynamics. In this regime, waves could surmount the poten-

tial barrier, but their dynamics keep them in a narrow spatial
region.

The paper is organized as follows. In Methods, we outline
the computational methods employed in the study of branched
flow in both classical and quantum regimes, which share many
features in the semiclassical limit. In Branched Flow in Peri-
odic Systems, we demonstrate the appearance and properties
of branched flow in periodic systems compared with the con-
ventional branched flow and the Bloch wave representation.
Further, in Dynamics of Branched Flow, we examine the clas-
sical picture that provides insight about the origin of branched
flow and its relation to chaos. Channeling effects in terms of
long-lived stable branches are studied in detail in Stability and
Superwires. Finally, the possible implications of our findings and
the future directions are discussed in Discussion.

Methods
Branched flow is typically examined by classical trajectories and by time-
dependent wave packet calculations under the influence of random
potentials (19). For periodic superlattices, we also use both classical and
wave packet analyses, finding both branched and superwire flow. The 2D
results are supplemented by the simpler one-dimensional (1D) “kick and
drift” map, aiding understanding of branching and superwire dynamical
channeling.

The evolution of the wave packet is computed using the split-operator
technique (20). This iterative method comprises several steps. 1) The ini-
tial state evolves under the action of the potential in the coordinate
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representation Ψ→ e−iV(q)τ/~Ψ, 2) the resulting state is Fourier trans-
formed into momentum representation Ψ→ Ψ̂, 3) the state evolves in the

momentum representation Ψ̂→ e−ip2τ/2m~Ψ̂, and 4) an inverse Fourier
transform gives back the resulting state to the coordinate representation
Ψ̂(t + τ )→Ψ(t + τ ). This procedure provides a fast and reliable method to
study the wave dynamics, as long as the time step τ is small. In fact, most of
the pictures depicted here were computed within a few minutes in a regular
workstation.

If the quantum wavelength is short enough, the semiclassical approach
will be valid, making a classical analysis very informative even though the
goal is to understand quantum systems. We study the density of a large
ensemble (typically thousands) of classical trajectories using initial distribu-
tions analogous to the quantum ones. Given the Hamiltonian nature of the
problem, integration is carried out with a symplectic scheme (21, 22) pre-
serving the phase-space volume and the energy in all cases. We employ
a computational cluster to perform the classical simulations in reasonable
times.

Branched Flow in Periodic Systems
Fig. 1A shows conventional branched flow in a 2D potential char-
acterized by randomly positioned wells (gray dots). The initial
state corresponds to a narrow Gaussian wave packet localized at
the center. The wells are modeled by soft Fermi-type potentials
(ref. 23 and below) with an amplitude that corresponds to half of
the energy of the wave packet. The characteristics of the branch-
ing produced by this random potential are similar to the previous
findings (1).

In Fig. 1 B–D, the potential is similar to Fig. 1A, but the wells
are arranged in a periodic triangular lattice. Intuitively, we may
expect the system to be characterized by Bloch waves—Fig. 1B
has an example. However, the propagation of the wave packet

under the periodic potential leads to branched flow that is aston-
ishingly similar to conventional branched flow; Fig. 1 C and D
is discussed in detail below. Fig. 1, Insets show the momentum
Fourier transform of the corresponding panels. This represen-
tation does not correspond exactly to the reciprocal space (we
would need to make Bloch wave Fourier transformation), but it
helps to understand the different regimes.

First, Fig. 1C shows a snapshot of the full wave packet
during the evolution. The components with short wavelengths
propagate faster, whereas the components with longer wave-
lengths lag behind and remain closer to the origin. As the wave
evolves, its Fourier transform ΨE =

∫∞
−∞ e−iEt/~dt for some

particular energy E can be accumulated. For sufficiently large
lattices, waves exiting the observation window never return.
This means that the integral over infinite time can be reduced
to the observation time that each component of the wave
packet takes to leave the picture. By using an absorbing poten-
tial around the observation window, the filtered state ΨE is
an eigenfunction by construction, but its morphology can be
very complicated without spatial periodicity as in the Bloch
wave.

Fig. 1D shows an eigenfunction constructed by Fourier trans-
form of the wave packet in Fig. 1C. Chaotic branching similar
to conventional branched flow in Fig. 1A is clearly visible. Some
branches are localized on top of the bumps, whereas others are
avoiding them. This can be a hint for the presence of quantum
scars (24–26). Classically, these regions correspond to unsta-
ble periodic orbits of chaotic systems. Such unstable trajectories
belong to a set of measure zero in the classical picture, but

Fig. 1. The real part of different quantum waves (red for the positive and blue for the negative). White dots show the underlying potential. (A) Branched
flow in a potential made out of randomly spaced wells. (B) Bloch wave (~k =~0) for a triangular potential. (C) Snapshot of a Gaussian wave packet evolving
in a triangular superlattice. The fast components lead the evolution of the wave on the periphery, while the slower components lag near the center. (D)
Eigenfunction of the wave packet of C made using an energy Fourier transform. Insets show the momentum representation of the corresponding panels.
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surprisingly, the probability of the quantum wave is enhanced in
these regions.

As another feature in Fig. 1, several wavelengths can fit in
between consecutive bumps. This indicates that these branched
eigenfunctions live far beyond the first Brillouin zone. Of course,
everything can be folded into the first Brillouin zone, but we
might lose some intuition by such an operation. Nevertheless,
the requirement λF < a discussed above is clearly fulfilled, and
it has direct relevance for, for example, twisted bilayer graphene
and other moiré superlattices (5–10).

Next, we focus on the role of the periodic potential in branch-
ing and on the complementarity between branched eigenfunc-
tions and Bloch waves. Fig. 2 shows a comparison between the
evolution of a wave in a periodic triangular potential (gray scale)
and in free space without the potential (color scale). The black
circle in the middle corresponds to an absorbing potential. In
Fig. 2A, the initial state is a wave packet with downward momen-
tum, whereas in Fig. 2B, the initial state is a Bloch wave, which
is also descending. In both cases, the free wave casts a relatively
hard shadow, devoid of color, as it passes beyond the absorbing
hole. Instead, the periodic potential injects clear branches (gray
scale) behind the disk. This is not diffraction but rather, a con-
sequence of motion that would also be present classically. In the
case of Fig. 2B, it is seen that the Bloch wave hides the underly-
ing branched flow “fabric.” This illustrates the complementarity
of Bloch waves and branched eigenfunctions displayed along this
work. Indeed, we can think of Bloch waves as the analog of plane
waves in periodic structures; it is noticeable that many interesting
and useful linear combinations of plane waves are constructed,
but this approach has been much less exploited in the context of
Bloch waves.

Fig. 2A shows more surprising effects. For example, the peri-
odic potential eventually leads to backward propagation, which
is prominent in the upper right corner. In the same region, we
can also clearly see the periodic structure resulting from the tri-
angular potential. Such regular patterns may emerge depending
on boundary conditions, here quantum point contact injection.
Finally, on the right side of the colored region, we find a relatively
straight branch in light gray that has a transverse node running
longitudinally in between. This region is a dynamical channeling
effect analyzed in detail in Stability and Superwires.

Dynamics of Branched Flow
Integrable and Nonintegrable Potentials. Even though the results
above show that branched flow can be found in both randomized
and periodic potentials, the effect applies only for sufficiently

high energies compared with the underlying potential (19). Oth-
erwise, the flow is trapped in the troughs of the potential, and
the dynamics is characterized by different types of classical dif-
fusion (sub, normal, super, anomalous) and Lévy flight behavior
depending on the system parameters (23, 27, 28). Furthermore,
branched flow also requires the wavelength to be sufficiently
small compared with the scale of the potential. As discussed
above, branched flow can happen in superlattices where the typi-
cal electron wavelength λF is much smaller than the superlattice
spacing a , λF � a . If the wavelength is comparable with or even
larger than the lattice spacing, the wave ignores the potential
just as light becomes transparent through window glass. How-
ever, other than these requirements, there is another important
ingredient that has not been explicitly studied before (i.e., the
integrability of the potential).

In Fig. 3, we compare the dynamics of the wave packet in both
classical (Fig. 3 A and B) and quantum (Fig. 3 C and D) simu-
lations using both integrable (Fig. 3 A and C) and nonintegrable
(Fig. 3 B and D) potentials. The integrable potential is defined as
V =−A(cos x + cos y), which corresponds to a square lattice that
is revealed by the darker regions of the picture. For this potential,
the motion can be separated into x and y in terms of Jacobi ellip-
tic functions. The density of classical trajectories in Fig. 3A shows
focusing of the beam along the four main channels, but the pat-
tern is repetitive and predictable. After a trajectory enters one of
these channels, it remains confined within its narrow boundaries
as long as the potential remains periodic. This kind of behavior
has been previously studied for waves propagating through media
with sinusoidal variations of the refractive index (29).

In comparison, Fig. 3B shows the density of classical trajecto-
ries in a nonintegrable Fermi-type potential defined as V (~r) =∑N

j=1 A/ [1 + exp(|~r − ~r0j |/σ)], which is also used above within
Figs. 1 and 2. Now, ~r0j provides the location of each of the
N bumps of a square lattice (gray dots). In this case, a more
intricate pattern emerges, including branches showing up at non-
trivial locations and carrying a high density of flow along variable
lengths. The drastic difference from an integrable case in Fig.
3A shows that the nonintegrability—corresponding to a chaotic
system—is the key ingredient behind branched flow. This is
demonstrated also by the phase-space pictures given as Fig. 3
A, Inset and B, Inset; foci arise as a consequence of cusp catas-
trophes, which can occur in integrable and chaotic dynamics, but
the distribution and stability of these foci are much richer when
the phase space is scrambled, corresponding to a branched flow.

In Fig. 3 C and D, we show that the corresponding densities of
quantum wave functions evolved under the same integrable and

Fig. 2. Illustration of the Bloch wave–branched eigenfunction duality. (A) Wave packet propagation with downward initial momentum in a triangular
potential (gray scale) exposed to an absorbing disk at the center of the figure. The colors correspond to the same propagation but in free space without the
triangular lattice. B is the same as in A, but now, the initial state is a Bloch wave. The absorbing disk casts a shadow for the free wave (no color after the
disk), but this space is filled by branches when the triangular potential is present (gray tendrils).
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Fig. 3. The role of chaos in branched flow. (A) Density of classical trajectories in a square lattice defined by an integrable potential. (B) The same as in A
but in a nonintegrable potential. The Insets of A and B show the respective Poincaré sections, displaying periodic orbits in the integrable potential and a
mixed phase space (chaotic sea with periodic islands) for the nonintegrable case. (C) Density of a quantum wave function in an integrable potential. (D) The
same as in C but in a nonintegrable potential.

nonintegrable potentials, respectively. The agreement between
the classical and quantum simulations is evident, as well as the
differences between the integrable and nonintegrable potentials.
Among other details, we can observe that the Pearcey diffraction
pattern (30) arises in the integrable case of Fig. 3C (although it
is hard to see because of the asymmetrical launching), while the
pattern is completely obscured in the nonintegrable case in Fig.
3D. Despite being common for individual cusps (31), Pearcey
patterns are not expected to be visible in branched flow in gen-
eral, where many features (including other cusps) coexist in the
vicinity of the cusps.

Hence, these results demonstrate that the main ingredients
required for the phenomenon of branched flow are similar both
classically and quantum mechanically. In particular, the nonin-
tegrability of the potential is a necessary condition—and also,
the default condition from an experimental perspective. Further-
more, the characteristics of the main and secondary branches in
classical and quantum cases are very much alike, as clearly seen
in Fig. 3.

Kick and Drift Map. To analyze the branched flow in a periodic
system further, let us consider the classical kick and drift map (1).
It is an area-preserving time-discrete map based on Hamilton’s
equation of motion defined by

pn+1 = pn −
∂V

∂x

∣∣∣
x=xn

,

xn+1 = xn + pn+1,

[1]

where x and p correspond to the trajectory’s position and trans-
verse momentum, respectively; n is a natural number playing the
role of discrete time; and V is a potential depending on the posi-
tion. The kick and drift map receives its name because of its two
stages; first, the momentum changes according to the potential,
and then, the trajectory drifts until the next kick. This simple
picture provides useful insights about the phase-space transfor-
mations that give rise to branched flow, including the creation of
foci through cusps and the stability of the long-lived branches,
among other interesting effects.

Previously (1), the “kick” used randomly chosen parameters,
but here, we repeatedly use the same spatially periodic potential,
writing

pn+1 = pn +K sin xn ,

xn+1 = xn + pn+1,
[2]

where K accounts for the height of the potential. Eq. 2 defines
the celebrated standard map, studied by Boris Chirikov in the
context of Hamiltonian chaos and the Kolmogorov–Arnold–
Moser theory (32, 33). For low values of the perturbation
strength K , periodic motion dominates, whereas for higher val-
ues, the phase space increasingly fills with chaotic trajectories.
This kind of map can be connected to quantum mechanics
through Wigner transformation (34), where phase space is coarse
grained by Planck’s constant smoothing out of fine details but
keeping much of its rich structure. Stable islands in the standard
map concentrate the density of trajectories in particular regions
of phase space. Indeed, it has been proven that strong branches
typically match areas with low rarefaction exponent (35). In
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GFig. 4. (Left) The stability diagram for the potential of Eq. 4. The color code shows the percentage of trajectories that remain within the initial channel
from an initial wedge spanning 60◦. The magenta lines are for the stability of Eq. 3, while the red dashed lines are for q = (1− a)/2 and q = (a− 1)/2 to
help identify the different regions in terms of energy. (A) Classical simulation of a superwire, where trajectories remain confined due to the dynamics. For
parameters in B, the horizontal channel is not populated. (C) Energetically confining channel. Trajectories cannot surmount the barriers. (D) Trajectories can
escape in between the bumps but cannot override them. The dynamical confinement is not as strong as the one in A. (E) Trajectories explore the potential
chaotically.

random potentials, these stable regions exist just for a finite
period of time, but in periodic potentials, they remain indef-
initely stable, corresponding to channels or superwires. This
mechanism complements the caustic formation as main justifica-
tions of branch formation. Therefore, we can classify branches as
R branches, if low rarefaction creates the accumulation of flow,
or C branches, if it is caustics that generate the higher intensity.
Nevertheless, both mechanisms are typically at play at the same
time, and it is hard to uniquely label them.

Stability and Superwires
According to our results above, branched flow appears when a
classical or quantum wave with sufficient energy impinges on
potential landscape (periodic or not)—as long as the potential
is not integrable. By examining Fig. 3, we can see that the four
arms of the cross both in the integrable and in the noninte-
grable cases remain stable for long times. Here, we will refer to
these regions where the flow remains bounded for long times as
channels or superwires, because of their relation to superlattices.
Recent developments in optical lattices have also arrived at sev-
eral ways to produce nondiffractive beams in periodic systems
(36), even under more general conditions such as accelerating
beams (37–39). Thus, there is an interesting analogy between
different fields of physics. Here, however, we study particles
with mass using the time-dependent Schrödinger equation and
consider a smooth perturbative potential. This is conceptually
different from considering light beams in photonic crystals using
Maxwell’s equations.

The stability of the channels can be understood in terms of
motion normal to the superwire paths, which can be approxi-
mated by Mathieu functions (40, 41). Consider a classical tra-
jectory starting in the center of a square lattice of repulsive soft
pillars, heading to the right between the rows of bumps (Fig. 4
shows an example). As the trajectory progresses, its motion can
be linearized around the exact, straight line path down the bumpy
rows. By symmetry, the path has no transverse force on it, and it

remains straight. A stability analysis is needed to determine the
fate of nearby trajectories. If they are stable, there are super-
wire paths oscillating down the row. Expanding the potential to
second-order normal to the path, the effective potential is a har-
monic oscillator with a force constant that is varying (nearly)
periodically. If that variation is approximately sinusoidal, the
stability can be assessed with the Mathieu equation:

d2x

dt2
+ (a − 2q cos 2t)x = 0. [3]

The stability of the solutions of this equation has been thor-
oughly studied (41). If the time variation has strong harmonics,
the analysis and the results are similar, so we are content with the
Mathieu analysis for now.

The key to the stability is the period π of the oscillation of
2q cos 2t relative to the time-averaged frequency

√
a . A chan-

nel trajectory is equivalently parameterized by a fixed a , given
by the shape of the potential normal to the path. Thus, we can
write Eq. 3 as d2x/dt2 + (a − 2q cos 2ωt)x = 0, where ω= 2π/τ
and τ =A/v is the time to traverse a unit cell of width A at
velocity v . The velocity of the flow down the superwire relative
to the superlattice parameters becomes crucial. At high velocity,
the method of averaging suggests that the trajectory will always
become stable. The Mathieu stability diagram confirms this with
ever-narrowing resonances and larger regions of stability with
increasing speed (increasing ω).

Even if the velocity v is not adjustable, as is the case for elec-
trons in twisted bilayer graphene away from the flat band region,
the frequency ratio can be controlled by the twist angle, thus
adjusting A in

√
a/ω=

√
a/(2πv/A). Or, in artificial superlat-

tices, it can be controlled by fabrication geometry. The stability
and time dependence of a quantum version of the Mathieu
problem are exactly the same as the classical because it is a har-
monic oscillator, a linear dynamical system. Thus, the classical
stability analysis is directly related to the quantum evolution,
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as confirmed for example in Fig. 3. We can test these ideas by
constructing a 2D potential with analogous properties to the 1D
standard map. The potential is given by

V =−(2q cos 2x − a) sin y2. [4]

Here, we have sinusoidal wells instead of harmonic, but by Tay-
lor expansion, they are well approximated as harmonic at y =nπ,
n ∈Z. By computing the evolution of a classical manifold, we can
see how many trajectories remain within the boundaries of their
initial channels after a long time. This is represented in Fig. 4.
The magenta lines show the stability lines for Eq. 3 in agreement
with the simulations. The red dashed lines help us to understand
the relation between the kinetic and potential energy. Fig. 4 A
and B is on the only part of the (a, q) stability region where
trajectories can override the bumps. However, the dynamics of
trajectories in Fig. 4A keeps them within the channel, thus cre-
ating a classical superwire. The periodicity of the focusing of the
trajectories is incommensurate with respect to the periodicity of
the potential. This is precisely what makes the channel stable;
otherwise, the trajectories would be resonant and leave it.

The superwires should not be confused with channels that
are trapped energetically (i.e., confined by the bumpy potential).
This regime occurs for parameters (a, q) in the region between
q > (T − a)/2 and q < (a −T )/2, where T is the initial kinetic
energy (in Fig. 4, we have chosen the kinetic energy T = 1, and
this energetically trapping region corresponds to the big blue tri-
angle on the right side of the stability plot). As shown in Fig. 4C,
trajectories in such regime cannot surmount the potential bar-
rier, and consequently, they are restricted to a nearly 1D space.
Considering a many-body problem, this situation could lead to
a Luttinger liquid with correlated electrons, but our present
study is restricted to the one-body problem of a particle in a
superlattice.

Fig. 4 D and E shows an intermediate regime, where trajecto-
ries can escape in between the bumps but cannot ride over the
top of them. Some trajectories in these dynamical channels leak
out, unlike superwires as the one shown in Fig. 4A. For such val-
ues of the energy, other diffusive mechanisms are at play (23, 27,
28), hampering controlled transport of the flow.

Different potentials could be built where superwires would be
the dominant regime in the parameter space. The potential of
Eq. 4 is specifically designed to mimic the stability of the Mathieu
equation, but for example, variations on the Fermi potential dis-
cussed above would also be ruled by the Mathieu equation in the
vicinity of the minimum (maximum) between the bumps (wells).

Finally, we demonstrate the formation of superwires in a quan-
tum mechanical calculation. Fig. 5 shows an example of a wave

Fig. 5. Example of a stable superwire. A quantum wave packet is injected
from the left into the square lattice. A Fourier transform at a chosen energy
reveals dynamical stability along the channel for the chosen parameters.
Notice the difference between the periodicity of the propagating wave and
the periodicity of the potential.

packet propagation from the left into a square lattice. The wave
packet is Fourier transformed from time to energy at a cho-
sen energy, which reveals a dynamically stable superwire along
the channel between the bumps. However, if the lattice was
extended farther to the right, tunneling to the neighboring par-
allel channels would eventually occur. This dynamical tunneling
(42) would correspond to the existence of a flat electronic band
along the ~k direction normal to the channel. It is easy to imag-
ine ways to prevent this dynamical tunneling from happening,
like creating uneven channels. Different injections could also be
used to control the population of the branches (43).

Discussion
The results of this work connect and complete different areas
in nonlinear dynamics. Varying the energy of classical trajecto-
ries and quantum mechanical wave packets in periodic potentials
gives rise to multiple dynamical regimes. Different kinds of
classical diffusion have been reported for values of the energy
comparable with or below the potential barriers (23, 27, 28). At
higher energies, typically several times larger than the height of
the potential, we find the branched flow regime as demonstrated
here for a periodic potential. In branched flow, individual tra-
jectories fly over the potential and are barely affected by it, but
successive interactions force the manifolds to fold onto them-
selves, creating cusps and stable regions in phase space that
give rise to the branches. Moreover, by using periodic poten-
tials, the connection between classical chaos and branched flow
has become evident. However, there is a crucial difference of
perspective compared with most of the standard map chaos liter-
ature; we focus on the early and medium time development, or
temporal evolution, of the phase-space structure, as in the study
of branched flow.

The ideas presented here also lead to important questions in
condensed matter physics. Branched flow is a transient regime
in time and space, so electrons will eventually resemble Bloch
waves. However, it may well be the case that this transient behav-
ior dominates for very long distances and lives for very long
times. In particular, superwires demonstrated here can remain
stable almost forever, except possibly for tunneling. Electrons
traveling through these dynamical channels of the superlattices
would have zero resistivity. Although the persistence of the chan-
nels under perturbations still needs to be studied, it is hard
to imagine how phonons could interact with electrons in these
superwires.

The connections of the present ideas to other areas of physics,
such as photonics or experiments with cold atoms, open ques-
tions too. For example, manufactured waveguides allow bending
light in photonic crystals (44). It would be interesting to investi-
gate if superwires can curve too by slow variation of the lattice
parameters. A quantum wave in a channel is not confined there
forever; tunneling will occur, providing flux to adjacent chan-
nels. This is required of a periodic potential, but the band energy
is nearly flat in the direction perpendicular to the propagation.
Tunneling will be slow, and since the classical motion is stable,
with no potential barrier, this is “dynamical tunneling.” The role
of dynamical tunneling and chaos-assisted tunneling (45) in the
superwire regime should also be studied in future works.

Data Availability. All study data are included in the article and/or supporting
information.
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40. É. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme
elliptique. J. Math. Pures Appl. 13, 137–203 (1868).

41. N. W. McLachlan, Theory and Application of Mathieu Functions (Oxford University
Press, 1951).

42. M. J. Davis, E. J. Heller, Quantum dynamical tunneling in bound states. J. Chem. Phys.
75, 246–254 (1981).

43. A. Brandstötter, A. Girschik, P. Ambichl, S. Rotter, Shaping the branched flow of light
through disordered media. Proc. Natl. Acad. Sci. U.S.A. 116, 13260–13265 (2019).

44. J. D. Joannopoulos, P. R. Villeneuve, S. Fan, Photonic crystals. Solid State Commun.
102, 165–173 (1997).

45. M. Arnal et al., Chaos-assisted tunneling resonances in a synthetic Floquet
superlattice. Sci. Adv. 6, eabc4886 (2020).

Daza et al.
Propagation of waves in high Brillouin zones: Chaotic branched flow and stable superwires

PNAS | 7 of 7
https://doi.org/10.1073/pnas.2110285118

D
ow

nl
oa

de
d 

at
 H

ar
va

rd
 L

ib
ra

ry
 o

n 
S

ep
te

m
be

r 
27

, 2
02

1 

https://arxiv.org/abs/1910.07086
https://doi.org/10.1073/pnas.2110285118

