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First conceived as a topological construction, Wada basins abound in dynamical systems. Basins
of attraction showing the Wada property possess the particular feature that any small perturbation
of an initial condition lying on the boundary can lead the system to any of its possible outcomes.
The saddle-straddle method, described here, is a new method to identify the Wada property in a
dynamical system based on the computation of its chaotic saddle in the fractalized phase space. It
consists of finding the chaotic saddle embedded in the boundary between the basin of one attractor
and the remaining basins of attraction by using the saddle-straddle algorithm. The simple observa-
tion that the chaotic saddle is the same for all the combinations of basins is sufficient to prove that
the boundary has the Wada property.

I. INTRODUCTION

In 1917, Kunizo Yoneyama published a work on topol-
ogy where he described how to divide a region of the
plane in three or more connected sets sharing a common
boundary [1]. He attributed the authorship of the pro-
cedure to his advisor Takeo Wada, and since then these
regions were called Wada lakes. At first, the intriguing
properties of the Wada lakes were studied within a topo-
logical context [2]. For example, the Polish topologist
Kazimierz Kuratowski showed that if a boundary sepa-
rates at the same time three or more connected regions in
the plane, then the boundary must be an indecomposable
continuum [3, 4]. Years later, Wada lakes were studied
by James Yorke and collaborators under the perspective
of dynamical systems [5, 6]. They studied the set of ini-
tial conditions leading to a particular attractor, called the
basins of attraction, in a forced damped pendulum. They
demonstrated numerically that for a particular set of pa-
rameters, the forced damped pendulum presents three
basins of attraction sharing the same boundary, that is,
they are Wada basins. The Nusse-Yorke condition to
assert the Wada property in [6] was based on the compu-
tation of the unstable manifold of a saddle point, which
intersected all the three basins. This is how an appar-
ently inconceivable geometry arose in such a simple sys-
tem as the forced damped pendulum. The cumbersome
structure of the Wada basins implies a particular kind of
unpredictability, since a small perturbation in the initial
conditions lying on a Wada boundary may lead the sys-
tem to any of the system’s attractors. This is one of the
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reasons that explain why the Wada property has been so
intensively studied in dynamical systems.

Since the pioneering works of Yorke and collabora-
tors [5–8], the Wada property has been found in many
different cases: chaotic scattering [9], Hamiltonian sys-
tems [10], fluid dynamics [11], delayed systems [12], etc.
In most of these works, the authors used the Nusse-
Yorke condition mentioned earlier. However, Daza et
al. [13, 14] have recently proposed two new methods to
test for the Wada property. The first one was the Grid
method [13], which was based on successive refinements
of a grid that permit to check if every boundary point of
the initial grid is a Wada point. This method allows one
to determine the presence of Wada basins in any kind of
dynamical system including systems that show discon-
nected Wada basins and even partially Wada basins [15].
Besides, it provides a parameter 0 ≤W ≤ 1 to character-
ize the Wada property that gives account of the number
of Wada points divided by the total number of bound-
ary points. The second one receives the name of Merging
method [14], and is based on an equivalent definition of
the Wada property: three or more basins have the Wada
property if their boundary remains unaltered when all
but one basin are merged. Given a basin of attraction,
this method can determine whether a basin is Wada in
just a few seconds. However the computation of the
basin of attraction can be a long process depending on
the system and the required resolution of the grid. The
precision of the result is determined by the resolution
of the basin and a fattening-parameter associated to the
merging method.

Here, we propose a new approach to check the Wada
property. The method explained here makes use of the
merging property of the Wada basins described in [14].
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In essence, the new technique verifies whether there is a
unique set, called the chaotic saddle, which is invariant
under the operation of merging several basins of attrac-
tion together. If indeed the chaotic saddle embedded in
the boundary is unique, the basins have the Wada prop-
erty.

Although this method works only for connected Wada
basins and requires detailed knowledge of the dynamics of
the system, it is fast and, furthermore, it is able to search
for the Wada property up to any desired precision.

II. CHAOTIC SADDLES AND WADA BASINS

Connected Wada basins are separated by a unique con-
nected boundary [5]. In terms of the dynamics, this
means that there is a unique invariant set under forward
iteration, i.e., there is only one stable manifold. The ex-
istence of a unique stable manifold involves the existence
of a unique saddle. This saddle must be an indecompos-
able continuum, as shown by Kuratowski [3]. Therefore,
we can argue that connected Wada basins do happen in
systems with three or more possible outcomes and only
one saddle, which must be a chaotic saddle. The main
goal is to construct a numerical proof showing that there
is a unique chaotic saddle in the phase space, what would
prove the basins to be Wada.

We can relate the previous approach to Wada basins
with the merging property described in [14]. The merg-
ing property basically says that, given NA ≥ 3 basins of
attraction, and being their boundaries ∂Bi defined as the
boundary between a basin Bi and all the other merged
basins

⋃
j 6=i

Bj , they will possess the Wada property if and

only if ∂Bi = ∂Bj , ∀i 6= j, i = 1, . . . , NA.
The merging property of Wada basins and the previous

observation about chaotic saddles and Wada boundaries
can be connected through the saddle-straddle algorithm.
The chaotic saddle is a special case of a limit set on the
boundary named basic set [16, 17], that can be approxi-
mated with the saddle-straddle algorithm [18, 19]. This
is a computational technique that allows to find an arbi-
trarily accurate set of segments belonging to the saddle.
The algorithm starts with two initial conditions, each
one lying on a different basin. The method receives its
name because the segment is straddling the boundary.
Firstly, by using a bisection routine, the saddle-straddle
algorithm refines the original segment up to a given reso-
lution. In our implementation, its size is no longer than
1 · 10−8. Then, the extreme points of the segment are
iterated forward under the dynamics of the system. The
segment expands because of this forward evolution in the
vicinity of a unstable manifold. Thus, the segment must
be refined again to recover the desired accuracy. Then,
the process starts over. The whole procedure can be vi-
sualized in Fig. 1. When the desired number of segments
composing the saddle is reached, the saddle-straddle al-
gorithm stops. Therefore, we end with an arbitrarily ac-
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FIG. 1. Sketch of the saddle-straddle algorithm. Ini-
tially, two points are selected in such a way that each one lies
on a different basin. Then, a bisection method is applied to
reduce the distance between the two points to a desired accu-
racy. After that, the resulting points are iterated and the seg-
ment expands, so that the process must start over again. As a
result, we obtain a set of arbitrarily small segments straddling
the saddle.

curate picture of the saddle.
As explained above, the saddle-straddle algorithm uses

two initial conditions lying on different basins. How-
ever, Wada basins only happen for three or more attrac-
tors, so we have to be careful about how to apply the
saddle-straddle algorithm to Wada basins. Fortunately,
the merging property indicates how to proceed. We can
apply the saddle-straddle algorithm to every basin Bi

and the basin formed by merging the remainder
⋃
j 6=i

Bj .

In the case that the basins have the Wada property, the
chaotic saddles obtained by applying the saddle-straddle
algorithm to the different combinations of merged basins
must coincide. In the next sections, we explain how to
implement all these steps into a single algorithm and we
illustrate it by using the paradigmatic examples of the
damped forced pendulum and the Hénon-Heiles Hamil-
tonian.

III. DESCRIPTION OF THE
SADDLE-STRADDLE METHOD TO TEST FOR

WADA BASINS

The saddle-straddle algorithm has been designed to
get an accurate picture of a chaotic saddle that lies in a
boundary. This boundary separates at least two basins,
so the first step is to correctly identify all the attractors
in the phase space to tag without ambiguity the basins.
Notice that there is no need to compute the basin of at-
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traction on a finite grid, but we just need to find suitable
initial conditions leading to the different attractors. For
each of the NA attractors, we will define a pair of basins
formed by the basin Bi associated to the attractor i, and
another basin Mi =

⋃
j 6=i

Bj , which is the result of merging

the basins of all the remaining attractors. In this way,
we obtain NA different pairs of basins (Bi,Mi).

The saddle-straddle algorithm computes very short
segments that straddle the basins Bi and Mi with a de-
sired tolerance. In the following we will use the term al-
gorithm to refer to the way of computing the saddles and
the term method for verifying the Wada property. For
each pair of basins the algorithm computes np segments
very close to the saddle corresponding to the boundary
between the basins Bi and Mi. Based on the previous
arguments, we can argue that if the computed saddles
are the same for all the pairs of basins, then this means
that there is a unique boundary and, as a consequence,
the basins have the Wada property.

Even though the chaotic saddle of a dynamical sys-
tem may be unique, its precise numerical construction
depends on the chosen initial conditions of the saddle-
straddle algorithm. For each selected pair of basins, we
may obtain different orbits embedded in the same saddle.
Thus, it is not trivial to compare two orbits correspond-
ing to the same chaotic set with different initial condi-
tions. The chaotic orbits will be very similar and will
share common properties. However, they will never co-
incide exactly in the phase space. To solve this difficulty,
we propose to measure the distance between two sets of
points using the Hausdorff distance [20]. This distance
measures the longest distance that we can possibly travel
to get from one set to another as shown in Fig. 2 (a),
where the largest distances between one set and another
are represented with disks. In other words, it guarantees
that every point in one set is within a distance dH of a
point of the other set. In the Fig. 2 (b) the Hausdorff
distance between the set of crosses and the set of bullets
is represented by a blue disk of radius dH(×, •). We have
drawn this disk around each bullet, and as a consequence
of the definition of the Hausdorff distance, every cross of
the other set fits within one of the disks. If we define the
distance between a single point x and the set X as:

d(x, X) = min
y∈X

(||x− y||), (1)

the Hausdorff distance results:

dH(X,Y ) = max{sup
x∈X

d(x, Y ); sup
y∈Y

d(y, X)}. (2)

Computing this distance involves finding the closest
points from one set to each other. Fortunately, there are
efficient algorithms to find the nearest neighbors between
two large sets of points such as the k-d tree algorithm [21].
The results of the saddle-straddle computation are com-
pared pairwise to the other results of the different basin
combinations (Bi,Mi).

After computing the Hausdorff distance a question
arises: is this a sufficiently small distance to consider
the sets identical? To answer this question, we must first
define the diameter of a set

ds(A) = sup{||x− y|| : x,y ∈ A}. (3)

Simply put, it is the largest Euclidean distance between
two points of an attractor. This allows us to define the
following criterion: if the measured Hausdorff distance
between the sets is small with respect to the diameter ds
of one of the set, we can say that the sets correspond to
the same saddle.

We can summarize the steps of the method as follows:

1. First, we classify the attractors of the dynamical
system and we assign an integer i to each basin.

2. We form the pairs of basins as follow: for each at-
tractor, we define the basin Bi of the attractor and
the basin Mi as the union of the remaining basins.
There are as many pairs of basins as attractors.

3. We compute the saddle for each pair of basins using
the saddle-straddle algorithm.

4. The saddles are compared pairwise using the Haus-
dorff distance dH . We consider that the saddles be-
long to the same set when the distance dH is small
compared to the diameter of the set ds. In case
the sets have different diameters, we will pick the
largest.

5. If all the previous comparisons are successful, then
there is only one boundary and the basins of at-
traction possess the Wada property.

It is possible to discard directly the hypothesis of a
Wada basins if one of the Hausdorff distances is about
the diameter of the set. This generally corresponds to
the case of disjoint sets. Another common negative re-
sult arises when a saddle point is present on a smooth
boundary. Its diameter, very small, is comparable to the
straddle segment size. This is an evidence pointing out
that we are not in the presence of a chaotic saddle em-
bedded in the boundary.

An important control parameter of the method is the
number of points np that the saddle-straddle algorithm
should compute for each pair of basins. If the number
of points is too small, we may not compute correctly
dH since the set of points is not representative of the
attractor. We will give a few examples of the application
of the algorithm with well-known examples of Wada and
partially Wada basins.

IV. APPLICATION OF THE
SADDLE-STRADDLE METHOD TO THE

FORCED DAMPED PENDULUM WITH WADA
BASINS

The forced pendulum is an appropriate example to try
the algorithm. Depending on the parameters of the sys-
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FIG. 2. Interpretation of the Hausdorff distance. In (a), a blue disk represents the longest distance that one would have
to travel to go from the set of the crosses to the set of dots, while the red disk is the largest distance from the set of dots to the
set of crosses. In (b) we represent an example of a set of dots covered with disks with the radius dH , the Hausdorff distance
between the sets of crosses and dots. The two sets fit in the surface defined by the union of the disks.

tem, its basins of attraction may have the Wada or the
partially Wada property. Partially Wada basins refer to
a situation with boundaries composed of both Wada and
non-Wada points [15, 22].

For the Wada case in Fig. 3 (a), we have three attrac-
tors whose basins share the same boundary. Panels (b),
(c) and (d) of Fig. 3 show the chaotic saddles in the phase
space (black dots) over the merged basins. The basin cor-
responding to the attractor is filled with the original color
of Fig. 3 (a) and the merged basins are displayed in white.
A visual inspection suggests that the computed chaotic
saddles are the same. To confirm this first impression, we
compute the Hausdorff distances between each set. For
simplicity, we refer to the sets of points representing the
saddles with the letters r, g, b for the colors red, green or
blue corresponding to the basins of the Fig. 3 (b) (c)
and (d) respectively. The results of the comparisons for
40000 points are: dH(r, g) = 0.04686, dH(r, b) = 0.04689
and dH(b, g) = 0.04650. The distances dH are very small
compared to the diameter of the saddle under study mea-
sured as ds(r) ' 2π, which confirms our first impression
that all sets of points belong to the same saddle.

To contrast with this successful example, we expose a
case of a partially Wada basin with four attractors pre-
senting smooth and fractal boundaries. Figure 4 shows
the result of the saddle-straddle algorithm applied to the
combination of basins described earlier for the system
with four attractors. It appears clearly that two sets of
points are very similar (Fig. 4 (c) and (d)) whereas the
other two are reduced to a single point marked with an
arrow for clarity.

We will refer to the sets of points with the indices
r, g, b and c that correspond to the color red, green,

blue and cyan associated to the attractors defined in the
basins of the Fig. 4 (b), (c), (d) and (e). We need
to perform six pairwise comparisons between the sets.
The Hausdorff distances computed between each pair of
sets for 40000 points show clearly that there is not a
unique boundary: dH(r, g) = 5.604, dH(r, b) = 5.604,
dH(g, c) = 5.604, dH(b, c) = 5.604, dH(r, c) = 5.02 · 10−9

and dH(g, b) = 0.064. The very small distance dH(r, c)
shows that the saddles computed from the merged basin
represented in Figs. 4 (b) and (e) are identical. The
values of the diameters ds(r) and ds(c) fall bellow the
precision of the algorithm 1 · 10−8 meaning that we are
in presence of a saddle point with a smooth boundary
in phase space. With this observation in hand, we can
conclude that the basin cannot have the Wada property.
The algorithm also finds a small distance between the
saddles of the merged basin g and basin b. This is the
fractal structure depicted in Figs. 4 (c) and (d) with
a diameter ds(b) = ds(g) = 2π. We can conclude that
there are two different saddles coexisting in phase space
that correspond to different boundaries. When this kind
of situation occurs, we can only affirm that the basin has
at best the partially Wada property.

V. APPLICATION OF THE
SADDLE-STRADDLE METHOD TO THE

HÉNON-HEILES HAMILTONIAN

Our last example deals with a different system where
the phase space does not contain attractors but the tra-
jectories eventually diverge through a certain escape re-
gion. This is the Hénon-Heiles Hamiltonian given by
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FIG. 3. Saddle-straddle trajectories for ẍ + 0.2ẋ + sinx = 1.666 cos t This is a typical example of a fractal Wada basin.
(a) Original basin of attraction. (b) Saddle computed with the pair of basins formed by the red basin and the green and blue
merged together. The merged basins are displayed in white. (c) Green basin against the red and blue merged together. (d) Blue
basin against the red and green merged together. The points of the computed saddle-straddle trajectories are superimposed
over the basin with black dots.

H = 1
2 (ẋ2 + ẏ2) + 1

2 (x2 + y2) + x2y − 1
3y

3. This is a
system with a four dimensional phase space that can be
studied in the plane by means of a suitable Poincaré sec-
tion. If we take energy values above the critical energy
Ec = 1/6 ' 0.166, the Hamiltonian system opens up
presenting three different exits depending on the initial
conditions. The escape basins are obtained from the com-
putation of the trajectories on a regular grid of initial
conditions. The three basins share the same boundary
and show the Wada property [10], as can be guessed by
Fig. 5 (a) for the energy value E = 0.25. When an ini-
tial condition violates the energy requirement E = 0.25
it belongs to the forbidden region painted in black.

We first proceed to the computation of the three pos-
sible saddles with the saddle-straddle algorithm. Again
we shall name the chaotic sets with indices r, g, and b
associated to the escape basins in Fig. 5 (b), (c) and (d),

respectively.

Our procedure for the computation of the Hausdorff
distance between the saddles gives the following results
from the comparison of np = 10000 points in each
set: dH(r, g) = 0.087, dH(r, b) = 0.058 and dH(b, g) =
0.085. The Hénon-Heiles Hamiltonian lacks any attrac-
tors. Nevertheless, we can observe that the Hausdorff dis-
tances are small compared to the diameter of the chaotic
set r measured as ds(r) = 1.5. In this case, we can
also conclude that the escape basins of the Hénon-Heiles
Hamiltonian have the Wada property since every point
in one chaotic saddle is within a small distance of the
other computed chaotic saddles in phase space.
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ẋ

(a) (b)

−2.5 0.0 2.5
x

−2

0

2

4

ẋ
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FIG. 4. Saddle-straddle trajectories for ẍ + 0.2ẋ + sinx = 1.71 cos t. The basins of the forced pendulum with these
parameters have the partial Wada property. (a) Original basins of attraction. (b) Saddle computed with the pair of basins
formed by the red basin and the other three basins merged together. The merged basins are displayed in white. (c) Green basin
against the other three basins merged together. (d) Blue basin against the other three basins merged together. (d) Cyan basin
against the other three basins merged together. The points of the computed saddle-straddle trajectories are superimposed over
the basin with black dots.
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FIG. 5. Saddle-straddle trajectories for the Hénon-Heiles Hamiltonian H = 1
2
(ẋ2 + ẏ2) + 1

2
(x2 + y2) + x2y − 1

3
y3.

(a) Escape basins for the energy E = 0.25. (b) Saddle-straddle trajectory for the red basin and the merged green and blue
basins. (c) Saddle-straddle trajectory for the green basin and (d) for the blue basin with other basins merged together.

VI. COMPARISON OF AVAILABLE METHODS
TO ASSERT THE WADA PROPERTY

As we have already mentioned, several new methods
have been established for the detection of the Wada prop-
erty in dynamical systems. We summarize their proper-
ties in Tab. I in order to compare their characteristics.

Each method has its own benefits and drawbacks in
different categories. Depending on the problem we are
dealing with, we might choose one method or another.
If the basins can be computed easily, we might decide to
use the Merging method or the Grid method. The first
one is much faster, while the latter is more precise though
slower. The computation times appearing in Tab. I are
adimensional time magnitudes relative to the execution
of the saddle-straddle method for the forced pendulum,
which takes around one hour on a desktop PC. These
are approximate values that will depend strongly on the
problem as well as of the architecture of the computation.
Also, part of the computation time cannot be evaluated
directly, as for example the effort needed to compute a
basin of attraction to apply the merging algorithm. The

Nusse-Yorke method can be used for systems possessing
an accessible unstable periodic orbit embedded in the
basin boundary. It is a reliable method, but it requires
a detailed study of the dynamical system to detect the
basin cells plus the computation of the unstable manifold
associated to this orbit, which can be cumbersome in
some cases, as discussed for example in [12, 23].

The saddle-straddle method is limited to connected
Wada basins in two dimensions. In the case of discon-
nected Wada basins, we have two or more distinct dis-
connected fractal boundaries each one separating three or
more basins. The algorithm can detect different chaotic
saddles but it will fail to recognize them as Wada. It
is however a powerful technique since we can test the
Wada property only with the dynamics of the system.
The basins of attraction are not needed and the accu-
racy of the test is only dependent on the length of the
computed time series. Therefore, it is an excellent option
to investigate the Wada property accurately and fast in
two dimensional basins.

Concerning the meaning of term accuracy in the con-
text of the saddle-straddle method, our experiments show
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Name Type of system Dim. Computation What we need
time

Nusse-Yorke method [6] ODEs Hamiltonians
Maps

2D 1 It requires a detailed knowledge of the
basin and the boundaries (accessible un-
stable periodic orbit embedded in the basin
boundary).

Grid method [13] Any dynamical
system

N-D 100 It requires the basins and the dynamical
system to compute parts of the basin at a
higher resolution.

Merging method [14] Any dynamical
system

N-D 0.01 It needs to know the basins, but not the
dynamical system.

Saddle-straddle method ODEs Hamiltonians
Maps

2D 1 It needs to know the dynamical system,
but not the basins.

TABLE I. Comparison of the principal procedures to test if a basin of attraction has the Wada property.

that for two time series corresponding to the same chaotic
attractor, the Hausdorff distance decreases as a power of
the number of points. As such, we can identify a unique
boundary up to some fixed tolerance. This fact may be
used to identify identical sets without the comparison
with the diameter of a set. A quick sketch of the method
would be to compare the Hausdorff distance of two sets,
lets say r and g, with the Hausdorff distance of a sam-
ple of these two sets strictly smaller, r1 and g1. If the
distance dH(r, c) is systematically lower than dH(r1, g1)
then we are in presence of a chaotic saddle. Nonetheless,
the distance may hit an inferior limit due to spurious
points in the time series or due to the numerical preci-
sion of the variables.

It must also be noticed that the Hausdorff distance
is not the only way to compare sets of points. There
are computational techniques based on the correlation
dimension between time series [24], or even standard sta-
tistical techniques to compare two distributions such as
the chi-squared test [25]. Another simpler approach is
just to find the closest points between the two sets. If
these two points belong to a saddle and they are very
close, it is likely that they belong to the same set. How-
ever, there could be a situation with two close saddles and
an attractor between them. In this respect, the Hausdorff
distance provides more information and a more reliable
test, but it is important to remind that we are always
constrained by the numerical precision of our algorithms.

Finally, we would like to draw some attention on the
similarities between the Merging method and the saddle-
straddle method to test for the Wada property in dy-
namical systems. As presented here, the saddle-straddle
method relies on the Hausdorff distance to match differ-
ent sets of points. This technique can be related to the
fattening of a set. Imagine that we draw a small circle
around each point of a saddle with radius dH . The part
covered with these circles is the fattened set of the saddle.
If another set of points, such as a different saddle trajec-
tory, can fit in this fattened set, then we claim that the
two sets of points belong to the same chaotic saddle, up
to a resolution defined by the fattening parameter. This

fattening technique has been used successfuly to match
fractal boundaries on a finite grid in [14, 23]. The Haus-
dorff distance measures the smallest fattening radius of a
set that we need such that two sets of points can fit into
this fattened region. In this context, the two methods
share a common idea on how to compare different sets.
However, this article focuses on the invariant subset of
the boundary that has been obtained with a very accu-
rate method while [14] takes its data from a computed
basin of attraction with finite precision, the accuracy of
the answer that gives the merging method is limited by
the resolution of the basin of attraction.

VII. CONCLUSIONS

Proving the Wada property in dynamical systems may
require different approaches adapted to the particulari-
ties of the problem under study. This article is based
on the idea involving the invariance of the chaotic sad-
dle through the merging of several basins for the Wada
property to occur. The saddle-straddle algorithm com-
putes n points of the saddles between the merged basins.
These sets of points are compared and if they coincide
with some accuracy, we conclude that the chaotic saddle
is unique and the basins have the Wada property. The
precision of the algorithm depends directly on the length
of the time-series obtained from the saddle-straddle al-
gorithm. Therefore, the main contribution of the current
work is to present a new method for the detection of
Wada basins using a purely dynamical approach.
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