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Abstract We use the Liénard–Wiechert potential to1

show that very violent fluctuations are experienced by2

an electromagnetic charged extended particle when it3

is perturbed from its rest state. The feedback interac-4

tion of Coulombian and radiative fields among dif-5

ferent charged parts of the particle makes uniform6

motion unstable. Then, we show that radiative fields7

and radiation reaction produce dissipative and anti-8

damping effects, triggering a self-oscillation. Finally,9

we compute the self-potential, which in addition to rest10

and kinetic energy, gives rise to a new contribution that11

shares features with the quantum potential. We suggest12

that this contribution to self-energy produces a symme-13

try breaking of the Lorentz group, bridging classical14

electromagnetism and quantum mechanics.15

Keywords Nonlinear dynamics · Self-oscillation ·16

Quantum fluctuations · Electrodynamics · Relativity17

1 Introduction18

It was shown in the mid-sixties that a dynamical the-19

ory of quantum mechanics can be provided based on20

a process of conservative diffusion [1]. The theory of21

stochastic mechanics is a monumental mathematical22
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achievement that has been carefully and slowly car- 23

ried out along two decades with the best of the rigors 24

and mathematical intuition [2]. However, as far as the 25

authors are concerned, the grandeur of this theoreti- 26

cal effort is that it proposes a kinematic description of 27

the dynamics of quantum particles, based on the theory 28

of stochastic processes [3]. Just as Bohmian mechan- 29

ics [4,5], it tries to offer a geometrical picture of the 30

trajectory of a quantum particle, which would be so 31

very welcomed by many physicists. In the end, estab- 32

lishing a link between dynamical forces and kinematics 33

is at the core of Newton’s revolutionary work [6]. 34

Perhaps, the absence of geometrical intuition in this 35

traditional sense, during the development of the quan- 36

tum mechanical formalism, has hindered the under- 37

standing of the underlying physical mechanism that 38

leads to quantum fluctuations. In turn, it has condemned 39

the physicist to a systematic titanic effort of mathe- 40

matical engineering, designing ever-increasing com- 41

plicated theoretical frameworks. Despite providing a 42

very refined explanation of many experimental data, 43

which is the main purpose of any physical theory, need- 44

less to say, these frameworks entail a certain degree of 45

obscurantism and a lack of understanding. Concerning 46

comprehension only, quantum mechanics constitutes a 47

paradigm of these kinds of paradoxical theories, which 48

imply that the more time that it is dedicated to their 49

study, the less clear that the physical picture of nature 50

becomes. As it has been pointed out by Bohm, this 51

might be a consequence of renouncing to models in 52
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which all physical objects are unambiguously related53

to mathematical concepts [4].54

On the contrary, hydrodynamical experimental mod-55

els that serve as analogies to quantum mechanical sys-56

tems have been developed recently, which allow us57

to clearly visualize how the dynamics of a possible58

quantum particle might be [7,8]. These experimen-59

tal contemporary models share many features with the60

mechanics of quantum particles [9,10] and, fortunately,61

they are based on firmly established and understandable62

principles of nonlinear dynamical oscillatory systems63

and chaos theory [11,12]. As it is well accepted, these64

conceptual frameworks have shaken the grounds of the65

physical consciousness of many scientists by showing66

the tremendous complexity of the dynamical motion67

of rather simple classical mechanical systems, and not68

so simple as well [12]. Doubtlessly, the development of69

computation has proven to be a fundamental tool in this70

regard, serving as a microscope to the modern physicist,71

which allows him to unveil the complex patterns and72

fractal structures that explain the hidden regularities of73

chaotic motion [13,14]. Thus, even if we can not exper-74

imentally trace a particle’s path because we perturb its75

dynamics by the mere act of looking at it, we can always76

use our powerful computers to simulate their dynamics.77

In the final pages of Nelson’s work, it is seduc-78

tively suggested that a theory of quantum mechanics79

based on classical fields should not be disregarded,80

as was originally the purpose of Albert Einstein [2].81

This aim of providing quantum mechanics with a kine-82

matic description, together with the desire of show-83

ing the unjustified belief of electrodynamic fields as a84

merely dissipative force on sources of charge, and not85

as an exciting self-force as well, are the two core rea-86

sons that have spurred the authors to pursue the present87

goal. By using a toy model and rather simple mathe-88

matics, we show as a main result in what follows that89

a finite-sized charged accelerated body always carries90

a vibrating field with it, what can convert this parti-91

cle into a stable limit cycle [15] oscillator by virtue of92

self-interactions. This implies that the rest state of this93

charged particle can be unstable, and that stillness (or94

uniform motion) might not the default state of matter,95

but also accelerated oscillatory dynamics. We close this96

work by deriving an analytical expression of the self-97

potential. For this purpose, we only need to assume98

that inertia is of purely electromagnetic origin. As it99

will be demonstrated, the first-order terms of this self-100

potential contain the relativistic energy (the rest and101

the kinetic energy) of the electrodynamic body, while 102

terms of higher order can be related to a new function, 103

that can be correlated to the quantum potential. In this 104

manner, we hope to provide a better understanding of 105

quantum motion or, at least, to pave the way towards 106

such an understanding. 107

2 The self-force 108

We begin with the Liénard–Wiechert potential [16,17] 109

for a body formed by two charged point particles 110

attached to a neutral rod that move transversally along 111

the x-axis. From a mathematical point of view, we can 112

disregard the rod and simply assume a rigid density of 113

charge. In general, any motion with a transversal field 114

component suffices to derive the main conclusions of 115

this work. However, to avoid dealing with the rotation 116

of the dumbbell, we restrict to a one-dimensional trans- 117

lational motion. This allows to keep mathematics as 118

simple as possible, since the Liénard–Wiechert poten- 119

tial is retarded in time, and this non-conservative char- 120

acter of electrodynamics makes the computations very 121

entangled. This elementary model was wisely designed 122

in previous works to derive from first principles the 123

Lorentz–Abraham force [18,19] and also to study a 124

possible electromagnetic origin of inertia [20,21]. It is 125

a toy model of an electron, represented as an extended 126

electrodynamic body with an approximate size d, as 127

shown in Fig. 1. Among the aforementioned virtues, we 128

also find that some properties resulting from consider- 129

ing more complex geometries (spherical, for example) 130

of a particle, can be derived by superposition [21]. We 131

shall use this elementary model all along our expo- 132

sition, which is more than sufficient to illustrate the 133

fundamental mechanism that leads to electrodynamic 134

fluctuations. 135

As we can see in Fig. 1, the first particle can emit a 136

perturbation at the retarded time tr , which affects the 137

other particle at a later time t , after advancing some 138

distance l. In other words, an extended body can affect 139

itself at different times, since the field perturbations 140

have to travel from some parts of the body to the oth- 141

ers. This sort of interaction is traditionally known as 142

a self-interaction in the literature [20] and, as can be 143

seen ahead, for any charged particle, it produces an 144

excitatory force, together with a recoil force and an 145

elastic restoring force as well. The complete Liénard– 146

Wiechert potential permits to write the electric field 147

created by the first particle at the point of the second as 148
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On an electrodynamic origin of quantum fluctuations

Fig. 1 A model for an electrodynamic body. An extended elec-
tron, modeled as a rod joining two point charged particles (black
dots) at a fixed distance d. The particle is shown at the retarded
time tr and at a some later time t . During this time interval, the
corpuscle accelerates in the x-axis (green vector) acquiring cer-
tain speed (blue vector) and advancing some distance l in such
direction. As we can see, the particle in the upper part emits a
field perturbation at the retarded time (red photon), and this per-
turbation reaches the second particle at the opposite part of the
dumbbell at a later time (and vice versa)

E1 =
q

8πǫ0

r

(r · u)3

(

u(1 − β2) +
1

c2 r × (u × a)

)

,149

(1)150

where we have now defined the vector u = r̂ −β, with151

the relative position between particles r(tr ), their veloc-152

ity β(tr ) = v(tr )/c and their acceleration a(tr ) depend-153

ing on the retarded time tr = t −r/c. The retarded time154

appears due to the limited speed at which electromag-155

netic field perturbations travel in spacetime, according156

to Maxwell’s equations [22]. This restriction imposes157

the constraint158

r = c(t − tr ), (2)159

which assigns a particular time in the past from which160

the signals coming from one particle of the dumbbell161

affect the remaining particle. As we shall see, the fact162

that dynamical systems under electrodynamic interac-163

tions are time-delayed (i.e. the non-Markovian char-164

acter of electrodynamics), is at the basis of the whole165

mechanism. Now we follow the picture in Fig. 1 and166

write the position, the velocity and the acceleration vec-167

tors as r = l x̂ + d ŷ,β = v/cx̂ and a = a x̂, respec-168

tively, where the distance l = x(t)− x(tr ) between the169

present position of the particle and the position at the170

retarded time has been introduced. Using these rela-171

tions, the vector u can be computed immediately as172

u =
(l − rβ)x̂ + d ŷ

r
, (3)173

which, in turn, allows to write the inner product r · 174

u = r − lβ, by virtue of the Pythagoras’ theorem 175

r2 = (x(t) − x(tr ))
2 + d2. Concerning the radia- 176

tive fields, we can express the triple cross-product as 177

r × (r u × a) = −d2a x̂ + dal ŷ. We now compute the 178

net self-force on the particle’s centre of mass as 179

Fself =
q

2
(E1 + E2) = q E1x x̂, (4) 180

where E2 is the force of the second particle on the first. 181

Note that we have assumed that all the forces on the y- 182

axis cancel, because we have simplified the model by 183

using a rigid charge density to keep the distance of the 184

charges fixed. This includes repulsive electric forces 185

and also magnetic attractive forces as well. Therefore, 186

in the present section, we do not cover the much more 187

complicated problem of the particle’s stability, which 188

is discussed in the last section of the present work. 189

Such a problem is of the greatest importance, led to 190

the introduction of Poincaré’s stresses in the past [23] 191

and, among other reasons (e.g. atomic collapse), to the 192

rejection of classical electrodynamics as a fundamen- 193

tal theory [24]. If preferred, from a theoretical point of 194

view, the reader can consider that the two point particles 195

of our model are kept at a fixed distance by means of 196

some balancing external electromagnetic field oriented 197

along the y-axis. 198

Now, we replace the value of the charge with the 199

charge of the electron q = −e to finally arrive at the 200

mathematical expression describing the self-force of 201

the particle, which is written as 202

Fself =
e2

8πǫ0

1

(r − lβ)3 203

×
(

(l − rβ)(1 − β2) −
d2

c2 a

)

x̂. (5) 204

3 The equation of motion 205

We are now committed to writing down Newton’s sec- 206

ond law in the non-relativistic limit Fself = ma and 207

redefine the mass of the particle since, as we show 208

right ahead, the electrostatic internal interactions add 209

a term to the inertial content of the particle. The main 210

purpose of the following lines is to expand in series 211

the self-force to show its different contributions to the 212

equation of motion. The two most resounding terms 213

are the Lorentz–Abraham force and the force of inertia. 214

However, we draw attention to other relevant nonlin- 215

ear terms, which are of fundamental importance. These 216
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expansions will enable a discussion about the electro-217

magnetic origin of mass and, based on such a line of218

reasoning, we shall derive the appropriate and precise219

equation of motion.220

As it has been shown in previous works [20,21], it221

is possible to express l as a function of r by means of222

the series expansion223

l = x
(

tr +
r

c

)

− x (tr )224

= βr +
a

2c2 r2 +
ȧ

6c3 r3 +
ä

24c4 r4 + · · · (6)225

This trick of approximating magnitudes presenting226

delay differences employing a Taylor series has been227

used sometimes in the study of delayed systems along228

history [25]. We recall that this simplification is not a229

minor issue, since by truncating this expansion we are230

replacing a system with memory by a Markovian one.231

Nevertheless, the reader must be aware that delayed232

systems are infinite-dimensional. As we show below,233

any truncation of the previous equation is mistaken234

since, even though the time-delay r/c is small, the terms235

in the acceleration, the jerk, and so on, are not of order236

zero in such factor.237

As shown in the Appendix, together with Eq. (2), the238

previous expansion allows to express the corpuscle’s239

size in terms of the time-delay by means of the series240

d = r −
a

2c2
βr2 −

(

a2

8c4
+ β

ȧ

6c3

)

r3 + · · · (7)241

This Taylor series can be inverted to compute the expan-242

sion of r in terms of d, which can be written to first order243

in β as244

r = d +
a

2c2 βd2 +
(

a2

8c4 + β
ȧ

6c3

)

d3 + · · · (8)245

Finally, by inserting Eq. (8) in the previous Eq. (6) and246

then both equations in Eq. (5), with the aid of Newton’s247

second law, we compute, to first order in β, the identity248

(

m +
e2

16πǫ0

1

c2d

)

a =
e2

8πǫ0

(

1

2c5
a2v249

+
5d

16c6 a2a +
1

6c3 ȧ +
d

24c4 ä + · · ·
)

, (9)250

after a great deal of algebra. These computations are251

enormously simplified by means of modern software252

for symbolic computation [26].253

We notice that the Lorentz–Abraham force has254

appeared in the third term of the right-hand side of255

this last equation, together with a few other linear and256

nonlinear terms. Interestingly, we recall that the term 257

of inertia dominates all other terms for small speeds 258

and accelerations. We can truncate this equation up to 259

the jerk term ȧ, disregarding its nonlinearity and also 260

derivatives of a higher order. We can also define the 261

renormalized mass of the electron as 262

me = m +
e2

16πǫ0

1

c2d
, (10) 263

and recall the relation between the electron’s charge 264

and Planck’s constant by means of the fine structure 265

constant 266

h̄αc =
e2

4πǫ0
, (11) 267

according to Sommerfeld’s equation [27]. Then, we get 268

the approximated solution 269

β̈ −
12mec2

h̄α
β̇

(

1 −
5h̄αd

32mec3 β̇
2
)

270

+
3a2

c2 β + · · · = 0, (12) 271

which reminds of the equation of a nonlinear oscillator. 272

Thus, we see that the term of inertia, which is the lin- 273

ear term in the acceleration and which dominates when 274

the particle is perturbed from rest, acts as an antidamp- 275

ing. This term is due to radiation fields and is responsi- 276

ble for the amplification of fluctuations. This fact does 277

not contradict Newton’s third law, since it is the addi- 278

tion of matter and radiation momentum that must be 279

conserved as a whole. In other words, the particle can 280

propel itself for a finite time by taking energy from 281

its “own” field. However, the nonlinear cubic term in 282

β̇ in Eq. (12), which has the opposite sign, limits the 283

growth of the fluctuations. When the acceleration sur- 284

passes a certain critical value, the radiation reaction 285

and the radiative fields do not act in phase anymore, 286

and the fluctuations are damped away. Therefore, the 287

pathological attributes that have been predicated of this 288

marvelous recoil force [21] are unjustified and arise as a 289

consequence of disregarding nonlinearities, which are 290

responsible for the system’s stabilization and, as we 291

shall demonstrate, its self-oscillatory dynamics. 292

Importantly, at this point we notice that, if we assume 293

that the inertia of the electron has an exclusive electro- 294

magnetic origin and recall that the dumbbell is neutral 295

(m = 0) or absent, all the mass must come from the 296

charged points. Then, using Eqs. (10) and (11) we can 297

write the mass as 298

me =
h̄α

4dc
, (13) 299
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On an electrodynamic origin of quantum fluctuations

which was obtained in previous works [20] and gives300

an approximate radius of the particle re = d/2 =301

3.52 × 10−16m. Except for a factor of eight due to302

the dumbbell’s geometry, this value corresponds to the303

classical radius of the electron. In this manner, we304

do not need to introduce spurious elements (artificial305

mechanical inertia) in the theory of electromagnetism,306

and simply use the D’Alembert’s principle instead of307

Newton’s second law [28]. If desired, and to extol New-308

ton’s intuition, the second law of classical mechanics309

would be a conclusion of electromagnetism, which is310

the most fundamental of classical theories. What is311

amazing is that Newton was capable of figuring it out312

without any knowledge of electrodynamics. However,313

this wonderment partly fades out if we bear in mind314

the unavoidable corollary. For if mass is of electromag-315

netic origin, the gravitational field must be a residual316

electromagnetic field. If we are willing to accept these317

two inextricable facts, inertia would just be an internal318

resistance or self-induction force produced by the field319

perturbations to the motion of the charged body, when320

an external field is applied. We tackle more deeply this321

issue in the colophon of this work.322

In summary, we believe that it is more appropri-323

ate to simply consider Newton’s second law as a static324

problem Fext + Fself = 0. In our case, we simply325

have Fself = 0. This way of posing the problem can be326

regarded as computing the geodesic equation of motion327

of the particle, as it occurs, for example, in the theory328

of general relativity. The resulting equation of motion329

reads330

(

1 −
v2(tr )

c2

)

(

x(t) − x(tr ) −
r

c
v(tr )

)

331

−
d2

c2 a(tr ) = 0, (14)332

where we recall that for v = c the first term vanishes,333

not allowing the particle to overcome the speed of light.334

We now derive two relations that shall prove of great335

assistance in forthcoming sections to compute exact336

results. For this purpose, we use again the Pythagoras’337

theorem r2 = (x(t) − x(tr ))
2 + d2 and the equality338

appearing in Eq. (14). By combining these two equa-

tions it is straightforward to derive a second-order poly- 339

nomial in r , which is solved yielding 340

r = γ d

√

1 + γ 6β̇2

(

d

c

)2

+ γ 4cββ̇

(

d

c

)2

, (15) 341

where the Lorentz factor γ = (1 − β2)−1/2 has been 342

introduced and the kinematic variables are evaluated at 343

the retarded time. Note that, contrary to the previous 344

Eq. (8), this expression is exact and has the virtue of 345

suggesting that any consistent power series expansion 346

of r should be carried out in terms of the factor d/c. 347

We also notice that, by virtue of this equation, the delay 348

becomes dependent on the speed and the acceleration of 349

the particle. As the corpuscle speeds up, the self-signals 350

come from earlier times in the past. In other words, the 351

light cone of the corpuscle is dynamically evolving, and 352

this evolution selects different signals coming from the 353

past. 354

Finally, the insertion of this relation into the equation 355

r2 = l2 + d2 leads to the obtainment of l as a function 356

of β and β̇ in a closed form. Again, this avoids the use 357

of an infinite number of derivatives. The final result can 358

be written as 359

l =

√

√

√

√

γ 2c2β2

(

d

c

)2

+ γ 8c2β̇2(1 + β2)

(

d

c

)4

+ 2c2γ 5ββ̇

(

d

c

)3
√

1 + γ 6β̇2

(

d

c

)2

. (16) 360

These two Eqs. (15) and (16) will allow us to derive 361

exact analytical results in a fully relativistic manner, 362

specially concerning the self-potential. 363

4 The instability of rest 364

Even though we shall prove a more general statement in 365

Sect. 5, we believe that the fact that oscillatory dynam- 366

ics can be the default state of matter, instead of a station- 367

ary state, is of paramount importance. In turn, this study 368

provides a double-check of the results presented in such 369

a section. Therefore, we independently study the stabil- 370

ity of the rest state of the particle in the following lines. 371

Our goal is to show that the rest state is unstable and to 372

identify the magnitude that leads to the amplification of 373

fluctuations. For this purpose, we begin with the expan- 374

sion appearing in Eqs. (6) and (8), and replace them in 375

Eq. (14), neglecting all the nonlinear terms. Such terms 376

can be disregarded since the rest state is represented by 377
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v and all its higher derivatives are equal to zero. Thus,378

when slightly perturbing the rest state of the charged379

particle, we only need to retain linear contributions. The380

resulting infinite-dimensional differential equation is381

−
1

2c2d
a +

1

6c3 ȧ +
d

24c4 ä +
d2

120c5

...
a + · · · = 0.382

(17)383

This equation can be more clearly written as a Lau-384

rent series in the factor d/c, as previously suggested.385

We obtain the result386

−
1

2

c

d
a +

1

6
ȧ +

1

24

d

c
ä +

1

120

d2

c2

...
a + · · · = 0, (18)387

which can be generally expressed as388

−
1

2
a +

∞
∑

n=1

1

(n + 2)!
dn a

dtn

(

d

c

)n

= 0. (19)389

The characteristic polynomial of this equation is390

obtained by considering as solution a(t) = a0eλt . We391

compute the relation392

−
1

2
+

∞
∑

n=1

1

(n + 2)!

(

λd

c

)n

= 0, (20)393

which can be more elegantly written by using the394

Maclaurin series of the exponential function. If we395

redefine it by means of the variable µ = λd/c, we get396

−
1

2
+

1

µ2

∞
∑

n=1

µn+2

(n + 2)!
397

= −
1

2
+

1

µ2

(

eµ −
µ2

2
− µ − 1

)

= 0. (21)398

The solutions to this equation can be obtained399

numerically. Apart from zero, the only purely real solu-400

tion can be nicely approximated as401

λ =
9

5

c

d
, (22)402

which is a positive value. In summary, the rest state403

is not stable in the Lyapunov sense [29], and this404

implies that the particle can not be found at rest. In405

Fig. 2, a domain coloring representation of the func-406

tion f (z) = z2 + z +1−ez is shown. The roots and the407

poles can be localized where all colors meet. The color408

represents the phase of the complex function. The shiny409

level curves represent the values for which | f (z)| is an410

integer, while the dark stripes are the curves Re f (z)411

and Im f (z) equal to a constant integer. The complex412

function f (z) has an infinite set of zeros in the com-413

plex plane. All of them have a positive real part, while414

all except two of them are complex conjugate numbers 415

with a nonzero imaginary part. It can be analytically 416

shown that, for zeros with a negative real part to exist, 417

they have to be confined in a small region close to the 418

origin. Consequently, numerical simulation is enough 419

to confirm both the instability of rest and the existence 420

of self-oscillations in the system. 421

As more generally stated below, everything is jig- 422

gling because electromagnetic fluctuations are ampli- 423

fied. Consequently, motion would be the essence of 424

being and not rest, as could be inferred from the princi- 425

ple of inertia in Newtonian mechanics. More precisely, 426

and as we are about to show, it is uniform motion that it 427

is unstable. This notion is precisely a strong suggestion 428

in order to assume that inertia has an electromagnetic 429

origin. But we shall give a more compelling one below. 430

Be that as it may, the instability of stillness can be con- 431

sidered, by far, the most fundamental finding of the 432

present analysis. 433

5 Self-oscillations 434

We now proceed to show the existence of limit cycle 435

oscillations of the particle. Since the rest state is unsta- 436

ble and the speed of light can not be surpassed accord- 437

ing to Eq. (14), the only possibilities left are uniform 438

motion or some sort of oscillatory dynamics, weather 439

regular or chaotic. In the first place, we rewrite Eq. (14) 440

to a more amenable and familiar form. We have 441

d2

c2 a(tr ) +
r

c

(

1 −
v2(tr )

c2

)

442

v(tr ) +
(

1 −
v2(tr )

c2

)

(x(tr ) − x(t)) = 0. (23) 443

The main handicap of this equation is that it is 444

expressed in terms of the retarded time tr = t − r/c, 445

which is the customary expression of the Liénard– 446

Wiechert potentials. To obtain the same equation in 447

terms of the present time t , we simply perform a time 448

translation to the advanced time ta = t + r/c. This 449

allows to write 450

a(t) +
r

d

c

d

(

1 −
v2(t)

c2

)

v(t) +
( c

d

)2
451

(

1 −
v2(t)

c2

)

(

x(t) − x
(

t +
r

c

))

= 0. (24) 452

But now the problem is that this equation depends 453

on the advanced time. In other words, Eq. (24) allows to 454
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On an electrodynamic origin of quantum fluctuations

Fig. 2 The roots of the polynomial f (z) = z2 + z +1−ez (a) A
domain coloring representation of the function f (z). The roots
and poles can be localized where all colors meet. In the present
case, we clearly identify the roots z = 0 and z = 9/5. (b) Here

a zoom out of the function is shown (the coloring scheme has
been simplified), with the distribution of zeros (black dots). As
can be seen, all of them are distributed on the positive real part
of the complex plane

derive the position and velocity at some time from the455

knowledge of such position and velocity in the past, by456

using the position in the future. This equation reminds457

of the equation of a self-oscillator [30]. Apart from the458

term of inertia and the linear oscillating term represent-459

ing the electromagnetic origin of Hooke’s law [31,32],460

we have two nonlinear contributions. On the one hand,461

the second contribution on the left-hand side acts here462

as a damping term and it is responsible for the sys-463

tem’s dissipation. This term is identical to other terms464

appearing in traditional self-oscillating systems, as for465

example the oscillator introduced by Lord Rayleigh’s466

to describe the motion of a clarinet reed [33] and, to467

some extent, also to the Van der Pol’s oscillator [34].468

On the other hand, the antidamping comes from the469

advanced potential. At first sight, in the limit of small470

velocities, the frequency of oscillation is ω0 = c/d,471

which allows to approximate the period as472

T = 4π
re

c
, (25)473

where re = d/2 is the radius of the electron. This474

equation gives a value of the period of approximately475

T = 1.18 × 10−22 s for the classical radius of the elec-476

tron. Therefore, the particle would oscillate very vio-477

lently, giving rise to an apparently stochastic kind of478

motion. This motion and the value of the frequency479

should not be unfamiliar to quantum mechanical theo-480

rists, since they can be related to the trembling motion481

appearing in Dirac’s equation [35], commonly known 482

as zitterbewegung. 483

As we have shown in Sect. 2, the time-delay r 484

depends on the kinematic variables. We insist that, in 485

this sense, despite of the simplicity of the model at 486

analysis, we are facing a terribly complicated dynami- 487

cal system, since the delay itself depends on the speed 488

and the acceleration of the particle. This kind of systems 489

are formally referred in the literature as state-dependent 490

delayed dynamical systems [36] and, from an analytical 491

point of view, they are mostly intractable. Importantly, 492

we note that for a system of particles, the dependence 493

of the delay of a certain particle on the kinematic vari- 494

ables of the others at several times in the past and the 495

present as well, turn electrodynamics into a nonlocal 496

theory [37]. This functional dependence sheds some 497

light into the significance of entanglement, which can 498

now be regarded as a process of entrainment of nonlin- 499

ear oscillators [38,39]. 500

All this complexity notwithstanding, since we just 501

aim at illustrating the existence of self-oscillatory 502

dynamics, we shall have no problems concerning the 503

integration of this system. According to Eq. (22), when 504

the system is amplifying fluctuations from its rest state, 505

we see that the rate at which the amplitude of fluctua- 506

tions grows is comparable to the period of the oscil- 507

lations. Therefore, averaging techniques, for exam- 508

ple, the Krylov-Bogoliubov method, cannot be safely 509
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applied in the present situation. More simply, we con-510

sider the differential equation (24) and write it in the511

phase space as512

ẋ = y,513

ẏ = −
c

d

r

d

(

1 −
y2

c2

)

y −
( c

d

)2
(

1 −
y2

c2

)

(x − xτ ) ,

(26)

514

515

where xτ represents the position at the advanced time516

t + τ = t + r/c. As we have shown in the previous517

section, the fixed point ẋ = ẏ = 0 is unstable. Apart518

from the rest state, asymptotically, there can be only519

two possibilities. Since the speed of light is unattain-520

able for massive particles, either the particle settles at521

a constant uniform motion at a slower speed, or its522

speed fluctuates around some specific value. We do not523

enter into the issue whether these asymptotic oscilla-524

tions are periodic, quasiperiodic, or chaotic. We shall525

just prove that uniform motion is not stable and, con-526

sequently, a self-oscillatory dynamics is the only pos-527

sibility, whatever its periodicity might be. Assume that528

uniform motion is possible at some speed y, which is529

a constant number βc. Then, we have that x(t) = yt530

and also that x(t + r/c) = yt + yr/c, which implies531

x − xτ = −yr/c. Substitution in Eq. (25) yields532

ẋ = y,533

ẏ = −
c

d

r

d

(

1 −
y2

c2

)

y +
c

d

r

d

(

1 −
y2

c2

)

y = 0.

(27)

534

535

Thus, certainly, any uniform motion is also an invari-536

ant solution (a fixed trajectory, so to speak) of our state-537

dependent delayed dynamical system. However, it is538

immediate to show that this solution is unstable as well.539

We prove this assertion by computing the variational540

equation related to inertial observers541

δ ẋ = δy,542

δ ẏ = −
c

d

δr

d

(

1 −
y2

c2

)

y −
c

d

r

d

(

1 −
y2

c2

)

δy +
c

d

r

d

2y2

c2 δy−543

−
c

d

r

d

2y2

c2 δy −
( c

d

)2
(

1 −
y2

c2

)

(δx − δxτ ) . (28)544

545

At this point, we have to compute δr at ẏ = 0 and546

y = βc, with β a constant value. Using the formula547

(15), but evaluated at the present time, this calculation548

can be carried out without difficulties yielding 549

δr(t) = γ 4β

(

d

c

)2

δ ẏ(t) + dδγ (t), (29) 550

where again we notice that the variables are evaluated 551

at the present time. Gathering terms and using the fact 552

that r = γ d for ẏ = 0, we finally arrive at the varia- 553

tional problem 554

δ ẋ = δy, 555

δ ẏγ 2 = −
c

d
γ δy −

( c

d

)2 (

1 − β2
)

(δx − δxτ ) . (30) 556

557

If we consider solutions of the form δx = Aeλt , the 558

characteristic polynomial of the system (30) is found. 559

It reads 560

λ2γ 2 +
c

d
γ λ +

( c

d

)2
(1 − β2)(1 − eλγ d/c) = 0. 561

(31) 562

Two limiting situations appear. In the non-relativistic 563

limit β → 0 we can write 564

λ2 +
c

d
λ +

( c

d

)2
(1 − eλd/c) = 0. (32) 565

which, considering µ = λd/c, can be written as 566

µ2 + µ + 1 − eµ = 0. (33) 567

This is in conformity with previous results [see Eq. (21)]. 568

Finally, in the relativistic limit, we get 569

µ2 + µ + (1 − eµ)(1 − β2) = 0, (34) 570

where we have now defined µ = λγ d/c. Except for 571

one eigenvalue, the real part of the solutions to this 572

equation are always positive and therefore unstable for 573

any value of β, as confirmed by numerical simulations 574

(see Fig. 3). Again, an infinite set of frequencies are 575

obtained, which can be written as 576

ωn = ηn

c

γ d
, (35) 577

where the factor γ accounts for the time dilation related 578

to Lorentz boosts. The parameters ηn , according to 579

Fig. 3, can be reasonably approximated by means of 580

a linear dependence on n, which is an integer greater or 581

equal than one. From the same image, we can see that 582

these parameters are almost independent of the speed 583

of the system. 584

In this manner, we have proved the existence of 585

self-oscillating motion in this dynamical system for 586
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On an electrodynamic origin of quantum fluctuations

Fig. 3 The roots of the polynomial f (z) = z2 +z+(1−ez)(1−
β2) The complex roots of the f (z) have been numerically com-
puted using Newton’s method for different values of the speed,
ranging from the rest state (β = 0) to the ultrarelativistic limit.
The values of the imaginary part depend weakly on β, and can
be written as multiples of a fundamental frequency, what gives
the spectrum of the self-oscillation ωn ∝ nc/γ d

all values of β. We recall en passant that the damp-587

ing term and the delay introduce an arrow of time in588

the system [40]. In other words, the limit cycle can589

be run in one time direction, but not in the reverse.590

This lack of reversibility is inherent to delayed systems,591

which depend on their previous history functions [41]592

and, therefore, are fundamentally non-conservative593

systems. Nevertheless, we note that the violation of594

energy conservation should only last a small time until595

the invariant limit set is obtained, and that it applies596

as long as we just look at the particle and not to the597

fields. This fact evokes nicely the time-energy uncer-598

tainty relations, as can be noticed in the next sec-599

tion. Even though self-oscillations were pointed out600

a long time ago for a charged particle [42], the insta-601

bility of “classical” geodesic motion had been unno-602

ticed before, perhaps due to the fact that artificial iner-603

tia was assumed and because there exists a dependence604

of the degree of instability on the geometry of the parti-605

cle [43]. This would be simply natural, given the com-606

plexity of retarded fields, and justifies the use of the607

apparently simple present model.608

6 The self-potential 609

In the present section, we obtain the relativistic expres- 610

sion of the potential energy of the charged body, start- 611

ing again from the Liénard–Wiechert potential of the 612

electromagnetic field. We denote this self-energy as U 613

since it can be regarded as the non-dissipative energy 614

required to assemble the system and set it at a certain 615

dynamical state. As it will be clear at the end of the sec- 616

tion, it harbors both the rest and the kinetic energy of 617

the particle, and also a kinematic formulation of what 618

we suggest might be the quantum potential, which is 619

frequently written as Q in the literature [44]. 620

The electrodynamic energy of the dumbbell can be 621

computed as the energy required to settle it in a partic- 622

ular dynamical state. Since the magnetic fields do not 623

perform work, we would have to compute the integral 624

U =
e

2

∫ r

r0

E · dr = −
e

2

∫ r

r0

∇ϕ 625

·dr −
e

2

∫ r

r0

∂ A

∂t
· dr, (36) 626

along some specific history describing a possible jour- 627

ney of the dumbbell. However, it can be shown that the 628

second term is just the dissipative contribution. There- 629

fore, we concentrate on the irrotational part of the field. 630

The electrodynamic potential energy of the dumbbell 631

is just given by the Liénard–Wiechert potential as 632

U =
e2

16πǫ0

1

r · u
, (37) 633

where the additional one fourth factor comes from the 634

fact that each charge brings a value q = −e/2. This 635

can be written by means of Eq. (3) as 636

U =
h̄αc

4(r − lβ)
. (38) 637

If we now substitute Eqs. (15) and (16), and develop 638

them in powers of d/c, we obtain the series expansion 639

of the self-potential 640

U = γ
h̄αc

4d
− γ 7 a2

2c2

h̄α

4

(

d

c

)

+ γ 13 3a4

8c4

h̄α

4
641

(

d

c

)3

− γ 19 5a6

16c6

h̄α

4

(

d

c

)5

+ · · · (39) 642

We recall that these computations are very lengthy and 643

again strongly recommend the use of software for sym- 644

bolic computation. We arrive in this manner at the cru- 645

cial point of this exposition. If we once again simply 646
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assume the idea that inertia has an electromagnetic ori-647

gin, we can write the size of the particle as648

d =
h̄α

4mec
. (40)649

Substitution in the previous equation yields the series650

U = γ mec2 −
h̄2

2me

α2

8c2 γ

(

γ 6 a2

2c2 − γ 12 3a4

8c4

(

d

c

)2

+ γ 18
651

5a6

16c6

(

d

c

)4

− . . .

)

, (41)652

which can be written more formally as653

U = γ mec2 +
h̄2

2me

α2

32r2
e

γ

∞
∑

n=1

qn(−1)nγ 6n a2n

c2n

(

d

c

)2n

,654

(42)655

where the coefficients qn = {1/2, 3/8, 5/16,656

35/128, 63/256 . . .} of the expansion belong to a657

sequence, which can be computed from the quadrature658

qn =
∫ 1

0
cos2n(2πx)dx =

(2n − 1)!!
2nn!

. (43)659

We clearly identify two terms in Eq. (42). The first660

one is just the relativistic energy [45], which contains661

both the rest and the kinetic energy of the particle. But662

note that, in addition to the kinetic and the rest energy663

of the particle, the potential664

Q =
h̄2

2me

α2

32r2
e

γ

∞
∑

n=1

qn(−1)nγ 6n a2n

c2n

(

d

c

)2n

, (44)665

has unveiled as a new contribution. By inserting the666

integral appearing in Eq. (43) into Eq. (44), we can667

derive, after summation of the series and one additional668

integration, the potential669

Q = −
h̄2

2me

α2

32r2
e

γ

⎛

⎝1 −
1

√

1 + γ 6β̇2
(

d
c

)2

⎞

⎠ , (45)670

which vanishes for uniform motion. Again, we note671

how the Lorentz factor precludes traveling at speeds672

higher or equal than the speed of light.673

This potential evokes nicely the quantum potential674

appearing in Bohmian mechanics [4,5], with the same675

term h̄2/2me preceding it. Importantly, we notice the676

dependence of fluctuations on the fine structure con-677

stant. Moreover, we have found a dependence of this678

potential on the acceleration of the particle that, we679

should not forget, is evaluated at the retarded time. On680

the other hand, since681

Q = −
h̄2

2me

∇2 R

R
, (46)682

in quantum mechanics, we can settle a bridge between 683

the square modulus of the wave function and the kine- 684

matics of the particle in the non-relativistic limit. In 685

this way, we would restore the old relationship between 686

forces and geometrical magnitudes. Once the dynam- 687

ics is constrained to the asymptotic limit cycle, a rela- 688

tion between the acceleration of the particle and its 689

position can be established and replaced in Q. Then, 690

the resulting partial differential equation is similar to 691

Helmholtz’s equation 692

∇2 R +
2me

h̄2 Q R = 0, (47) 693

while we can independently write down the Hamilton- 694

Jacobi equation for a particle immersed in an external 695

potential V (x, t). In the non-relativistic limit, it is given 696

by 697

∂S

∂t
+

1

2me

(∇S)2 + Q + V = 0. (48) 698

In principle, once the two previous Eqs. (47) and (48) 699

have been solved using the knowledge of the trajectory 700

of the particle, the wave function can be built as 701

ψ(x, t) = R(x, t) exp

(

i

h̄
S(x, t)

)

, (49) 702

even though this solution may not be easily attained 703

in most cases, especially when an external potential 704

is present. Interestingly, we can see from these rela- 705

tions that the wave function is a real objective field, 706

as claimed in the seminal works of David Bohm [4,5], 707

and not just a probabilistic entity. Both its modulus 708

and phase are related to internal and external electro- 709

dynamic forces. 710

To gain some insight into the self-potential of the 711

“free” particle, we illustrate these ideas using an exam- 712

ple. For this purpose, we can invoke the oscillatory 713

dynamics after the transient amplification to show the 714

repulsive nature of electrodynamic fluctuations. A con- 715

servative version of the potential Qc(x) can be derived, 716

which should only be regarded as an illustrative approx- 717

imation. If we disregard the delay and consider the 718

approximation a = −ω2
0x , in the non-relativistic limit, 719

and keeping just the two first term of the series, we 720

obtain the potential 721

Qc(x) = −
h̄2

2me

α2

64r2
e

(

1

d2 x2 −
3

4d4 x4
)

. (50) 722

This potential is very well known in the world 723

of nonlinear dynamical systems since it appears in 724
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On an electrodynamic origin of quantum fluctuations

Fig. 4 The quantum potential Qc(x). This conservative approx-
imation of the repulsive potential (blue line) has an unstable fixed
point at the origin x∗ = 0, flanked by two minima, representing
stable fixed points at x∗ = ±

√
2/3. The repulsive character of

this potential guarantees the perpetual oscillatory motion of elec-
trodynamic bodies. An approximation of the self-force is shown
in red

the Duffing oscillator [46]. This oscillator has been a725

paradigmatic model in the study of chaotic dynamical726

systems and has received remarkable attention both in727

physics and engineering, since it can describe many728

important phenomena, such as beam buckling, super-729

conducting Josephson parametric amplifiers, or ioniza-730

tion waves in plasmas, among many others. It illustrates731

in a very clear manner the instability of stillness (see732

Fig. 4), because Qc(x) presents a maximum at x = 0.733

In particular, this potential is responsible for the spon-734

taneous symmetry breaking of the Poincaré group. We735

recall that symmetry breaking is a typical feature of736

nonlinear dynamical systems [47–49].737

Interestingly, this potential can be written in a sim-738

plified form as739

Qc(x) = −
1

2
h̄ω

(

1

2d2 x2 −
3

8d4 x4
)

, (51)740

where the frequency ω = αc/2d has been defined,741

which is manifestly related to the frequency of zitter-742

bewegung of the dumbbell.743

What we find of the greatest interest in this expres-744

sion is that it nicely evokes Planck’s relation. Moreover,745

we recall that me is proportional to h̄, as long as we are746

in a position to assume that mass is of electromagnetic747

origin. Therefore, all sorts of energy and momentum748

can be ultimately written as proportional to Planck’s749

constant. For example, the rest energy of the electron is750

written as h̄ω/2. It is then reasonable to argue that pho-751

tons, which are light pulses emitted from accelerated752

electron transitions between different energy states,753

have energy E = h̄ω. Furthermore, by considering the754

relativistic relation E = pc, it is immediate to obtain755

from this equality that p = h̄k, which brings in the De 756

Broglie’s relation between momentum and wavelength. 757

As we can see, perhaps the main problem when 758

studying the electrodynamics of extended bodies is that 759

it leads to very complicated state-dependent delayed 760

differential equations. Things would get terribly com- 761

plicated if continuous bodies are considered, instead 762

of the simple toy discrete model used here [43]. This 763

physical phenomenon arises as a consequence of the 764

principle of causality, which imposes a limited speed 765

at which information can travel in physics, introducing 766

an infinite number of degrees of freedom in the non- 767

linear Lagrange equations. In fact, we wonder how the 768

principle of least action can be reformulated to cover 769

the complex time-delayed systems appearing in elec- 770

trodynamics. In light of these facts, and from a prac- 771

tical point of view, the Schrödinger equation would 772

be surely a much more appropriate and manageable 773

mathematical framework than the use of the compli- 774

cated functional differential equations resulting from 775

the Liénard–Wiechert potentials to treat quantum prob- 776

lems. Certainly, it would not be surprising that partial 777

differential equations, which have an infinite number of 778

degrees of freedom, are of so much usefulness replac- 779

ing delayed systems, which harbor an infinite number 780

of degrees of freedom as well. 781

7 Discussion 782

As we have shown, the dynamics of an extended 783

charged moving body has resemblances with the 784

dynamics of the silicon droplets experimentally found 785

in the recent years. However, in our picture, the waves 786

travelling with the particle “belong” to the particle 787

itself, and do not require of any medium of propagation 788

(any aether), since they are of electromagnetic origin. 789

In our model, the fluctuations arise as self-interactions 790

of the particle with its own field and have as an anal- 791

ogy the fluctuating platform appearing in their exper- 792

iments [7]. Nevertheless, this analogy must be drawn 793

with great care, since the physical phenomenon lead- 794

ing to fluctuations in our moving charged body is not 795

resonance, but self-oscillation [30]. 796

The most astonishing consequence of the present 797

work is the demonstration of the possibility of an insta- 798

bility of natural or uniform motion, which defies com- 799

mon intuition and beliefs on radiation as a purely damp- 800

ing field on electromagnetic extended moving sources. 801
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We believe that this misunderstanding is present at802

the beginning of many important introductory texts803

on quantum theory to justify the imperious neces-804

sity of a quantum mechanical theory that has no805

basis on the classical world [50]. On the contrary, the806

present work suggests that self-interactions provide the807

required repulsive force (the quantum force) to avoid808

the collapse of electrodynamical systems. In particu-809

lar, we predict that self-interactions and recoil forces810

are enough to stabilize the hydrogen atom and prevent811

its collapse [51].812

We also note that the wave-particle duality is imme-813

diately solved in our framework. The waves are just814

perturbations of the fields, and any charged acceler-815

ated particle can present such perturbations as a conse-816

quence of its self-oscillatory dynamics. Furthermore,817

there does not exist a fundamental particle that does818

not participate from some fundamental interaction and,819

consequently, there can be a pilot-wave [52] attached820

to any charged particle in accelerated motion. Impor-821

tantly, we highlight the rich dynamical feedback inter-822

action between these two apparently differentiated enti-823

ties. We recall that feedback is a crucial phenomenon824

for the understanding of nonlinear dynamical systems825

in general, chaotic dynamics, and, especially, for con-826

trol theory [53].827

It is now evident that nothing can travel faster828

than field perturbations since, any aggregate of charge,829

whatever its nature is, will show resistance to acceler-830

ation due to its electromagnetic energy. This intuition831

brings back the concept of vis insita, as appearing in832

Newton’s work [6]. A concept that is also related to833

the original notion of inertia and Galileo’s resistenza834

interna [54], and which can be traced back to the835

seminal works of the Dominican friar Domingo de836

Soto [55,56]. The fact that the inertia of a body might837

be of electromagnetic origin (electroweak and strong, if838

desired) is an old argument in physical theories. As we839

have shown, it has been a sufficient and necessary con-840

dition to derive Newton’s second law, kinetic energy,841

Einstein’s mass-energy relation and what seems to be842

the quantum potential, just from Maxwell’s electrody-843

namics. In this way, the present work gives a founda-844

tion of classical and quantum mechanics in the theory845

of electrodynamics [57].846

Perhaps, the greatest lesson of Einstein’s relation847

is not that energy is mass, but that mass is a useful848

and simple way to gather the constants appearing in849

electrostatic energy. Consequently, we shall not invoke850

Occam’s razor to defend the idea of gravitational mass 851

as a redundant concept in fundamental physics. Instead, 852

we focus the attention on the fact that our findings imply 853

to reconsider Newton’s second law as a law of statics, 854

just as suggested by D’Alembert. Following the same 855

line of reasoning, this idea perfectly connects with the 856

theory of general relativity, since the principle of equiv- 857

alence simply states that, in a non-inertial reference 858

frame comoving with a body, any object experiences 859

forces of inertia. In fact, these forces are equivalent 860

to a gravitational field. Therefore, an electromagnetic 861

theory of the gravitational field would also be in accor- 862

dance with the principle of equivalence. Moreover, the 863

identity of inertial and gravitational mass would be the 864

consequence of a very simple fact, i.e., their common 865

electromagnetic origin. However, we must be careful 866

at this point, since electromagnetic forces create strong 867

ripples in space-time. Thus, a freely falling extended 868

charged particle in a gravitational field, which in gen- 869

eral relativity would correspond to an inertial observer, 870

can experience very strong tidal self-forces that, as we 871

have shown, can lead to self-oscillations. 872

Delving deeper into the principle of covariance, we 873

recall that the electromagnetic stress-energy tensor can 874

be plugged into Einstein’s equation and interpreted 875

as a curvature of spacetime. The Einstein–Maxwell 876

equations are nonlinear high-dimensional partial dif- 877

ferential equations, which can have as solutions soli- 878

tary waves [58,59]. Certainly, the model presented in 879

this work is far too simplistic and unrealistic, because 880

it assumes a rigid solid as a particle, which is con- 881

trary to electromagnetic theory, and whose structure is 882

unstable. We expect particles to rotate and also to be 883

deformable, and wonder if these two properties should 884

be enough to stabilize the electron. 885

To conclude, we must not miss the chance for self- 886

criticism. Firstly, the simplicity of the model should 887

prevent us from drawing too general conclusions. It 888

can be shown that purely longitudinal motion of the 889

dumbbell is dissipative. The authors recognize to have 890

found a dependence of instability on the geometry of 891

an electrodynamic moving body [43]. As the shape of 892

the body turns from oblate to prolate, a Hopf bifurca- 893

tion befalls. Therefore, some external field perturba- 894

tions might be necessary to unleash the oscillation for 895

more complicated bodies. Secondly, a full correspon- 896

dence between electrodynamics and the relativistic for- 897

malism of quantum mechanics has not been here pro- 898

vided. Nevertheless, we hope that this new perspective, 899
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On an electrodynamic origin of quantum fluctuations

based on modern theories of nonlinear dynamics, might900

serve to enlighten the complex dynamics of elementary901

classical particles and, if not, at least to drive physics902

closer to the establishment of a dynamical picture of903

fundamental particles.904
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Appendix917

The following lines are devoted to obtain a power series918

relating the size of the particle d and the magnitude of919

the delay r/c. This relation allows us to approximate the920

distance l between the dumbbell’s position at time t and921

at the delayed time tr , as a function of the mass center922

velocity, its derivatives and the particle’s size [20,21].923

We begin with the relation924

d = r

√

1 −
(

l

r

)2

= r

(

1 −
z2

2
−

z4

8
− . . .

)

, (52)925

where the variable z = l/r has been introduced. On926

the other hand, Eq. (6) can be rewritten as927

z =
l

r
= β +

a

2c2 r +
ȧ

6c3 r2 +
ä

12c4 r3 +
...
a

120c5
r4 . . .(53)928

The square of z can then be computed. If we disregard929

the terms of the third order and higher orders as well,930

we obtain931

z2 = β2 +
a

c2 βr +
a2

4c4 r2 +
ȧ

3c3 βr2 + O(r3). (54)932

Concerning the fourth power of z we can write933

z4 = β4 +
2a

c2 β3r +
3a2

c4 β2r2
934

+
2ȧ

3c3 β3r2 + O(r3). (55)935

to the same approximation as before.936

Substitution of Eqs. (54) and (55) into Eq. (52), after 937

gathering terms, yields 938

d =
(

1 −
β2

2
−

β4

8

)

r −
a

2c2 β

(

1 +
β2

2

)

r2 − 939

(

a2

8c4

(

1 +
3β2

2

)

940

+
ȧβ

6c3

(

1 +
β2

2

))

r3 + O(r4). (56) 941

If we consider the non-relativistic limit, by just keep- 942

ing terms of the first order in β, we arrive at the approx- 943

imated relation 944

d = r −
a

2c2 βr2 −
(

a2

8c4 +
ȧ

6c3 β

)

r3. (57) 945
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