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Modelling Sparse Saliency Maps on Manifolds
Numerical Results and Applications

Eduardo Alcain, Ana Isabel Mufioz, Ivdn Ramirez and Emanuele Schiavi

Abstract Saliency detection is an image processing task which aims at automati-
cally estimating visually salient object regions in a digital image mimicking human
visual attention and eyes fixation. A number of different computational approaches
for visual saliency estimation has recently appeared in Computer and Artificial Vi-
sion, Relevant and new applications can be found everywhere varying from auto-
matic image segmentation and understanding, localization and quantification for
biomedical and aerial images to fast video tracking and surveillance. In this con-
tribution, we present a new variational model on finite dimensional manifolds gen-
erated by some characteristic features of the data. A Primal-Dual method is imple-
mented for the numerical resolution showing promising preliminary results.

10.1 Introduction

In the last years, there has been a growing interest in the production of computa-
tional methods for the detection of saliency objects in an image. A general overview
of existing methods, drawbacks and virtues can be found in [5]. Salient (or fore-
ground) objects are those objects which grasp the most interest when an image is
considered. This estimation is normally used as a preprocessing step in a pipeline
for a computer vision system. The concept of saliency has been applied to adaptive
compression of images [7], image retrieval [2] and image cropping [14] to name
just a few emerging applications. Saliency methods can be classified into three cat-
egories: biological based, purely computational and a mix from both methods.
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Although variational methods have achieved great success when applied in com-
puter vision (denoising, deblurring, inpainting, etc.), there have been few saliency
detection models which make use of the power of the variational setting. This intro-
duces the main contribution of the paper which consists of a new variational model
for automatic saliency detection in digital images based on Total Variation (TV)
minimization on graphs.

We consider as a starting point of our modelling exercise the work in [15] where
a non local Ly minimization problem is proposed for bottom-up pure computation-
ally saliency estimation. Based on the discrete Ly norm on graphs, this model is
appropriate to capture the sparse properties of saliency maps which are vectors, fi-
nite dimensional solutions which estimate the saliency of each superpixel in which
the image has been previously partitioned. In fact, following the idea in [15] and
with a view to fast (real time) video saliency detection, the data image is divided
into superpixels for dimensional reduction and a non local graph is constructed in a
feature space in which each vertex is a superpixel connected to its k-NN (k-nearest
neighbour).

There has been a lot of effort in these years to develop the formalism of Non-local
Calculus ([9]) and Non-local Operators so providing a new tool for the mathemati-
cal analysis of problems on graphs. This has generated a new kind of models where
the influence of any pixel value is extended to all (or part) of the domain through the
concept of Non-local derivatives. When a graph structure is generated, by consider-
ing some characteristics of a given data image, spatial proximity is lost or attenuated
and Non-local operators are necessary to describe the manifold landscape.

In such a framework, our proposal is two-fold. We first generalize the superpix-
els partition considered in [15] including edges as features in the graph by means of
the use of the SCALP algorithm ([12]) where contour adherence is imposed using
linear paths. Also, instead of considering a fixed threshold, the final saliency mask is
obtained using the method proposed in [13]. Secondly, and more important, the Lg-
norm of the non local gradients in the saliency model presented [15] is replaced by
the NLTV (non local total variation) semi-norm on graphs defined by the non local
total variation operator, which preserves edges and induces the sparsity of the gradi-
ents of saliency maps. This step amounts to a convexification of the problem which
allows classical variational calculus to be applied. Finally, as in [15], a control map
is computed in the graph to drive the solution towards salient regions. With all these
ingredients a strictly convex energy functional is considered for minimization and
the well-posedness of the model is guaranteed. The numerical resolution is based
on a primal-dual algorithm that we designed to solve the associated minimization
NLTV problem. The proposed algorithm proves to be faster in convergence to the
solution than the one presented in [15] for the non local Ly minimization problem,
while obtaining results at least comparable to the ones in [15].
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The paper is organized as follows: First, in section 10.2 we introduce the con-
cept of superpixel (SP) as a guided (informed) partition of the given image through
the chosen characteristics. This is a critical step because the produced superpix-
els partitions (in number and characteristics) shall not be modified along the whole
pipeline. In section 10.3 the finite dimensional manifold (weighted graph) generated
by the partition of the image into superpixels by using some characteristic features
of the data is constructed. Sections 10.4 and 10.5 are devoted to the mathemati-
cal definitions of the control map and non-local operators used in the model. The
main contribution is presented in section 10.6 where the proposed Non-Local Total
Variation Model (NLTVM) and its numerical resolution in terms of a primal-dual
algorithm are described. The final saliency map segmentation step is considered in
section 10.7. Numerical results and discussion are presented in sections 10.8 and
10.9 in order to illustrate the performance of the proposed model.

10.2 Superpixel segmentation of the image

This section is based on the ideas and methods published in [12,15]. In order to com-
pute the graph structure, we first segment the given image into superpixels which
are clusters of pixels partitioning the image following some relevant characteristics
of the data. This will reduce the computation time of the saliency map providing
a dimensional reduction of the problem and fast implementation. Notice also that
the relevant information originally located into pixels is then encoded through the
shape and values of the superpixel. The method used in [15] to generate superpixels
is the SLIC method (Simple Linear Iterative Method [1]) which has been proven to
be very efficient in the sense that it is fast, easy to use and it produces high quality
partitions of the image. This method performs a local clustering of pixels taking into
account the location and the values of the CIELAB colour space of the pixels of an
image. The employed measure makes the superpixels shape to be compact and uni-
form. As an alternative to SLIC in [15] and in order to impose edges conservation
we consider the SCALP method (superpixels with contour adherence using linear
path [12]) which takes into consideration a contour prior with the aim of obtaining
superpixels constrained by the existing contours, being this aspect not considered
with SLIC (see the figure 10.1 for comparison). In the SCALP algorithm, when try-
ing to associate a pixel to a superpixel during clustering, the distance is enhanced
by considering the linear path to the superpixel barycenter and a contour prior. The
prior contour can be calculated by some recent learning based approaches to de-
tect edges like [8] or more classical variational approaches enhanced by implicit
finite differences [3}. In this work we used the approach in [8] suggested in [12]).
Different strategies shall be explored in future work.
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10.3 Weighted graph

Given an image and the superpixels partition generated by SLIC or SCALP method,
we consider, as in [15], an undirected, symmetric and weighted graph G in the space
of the superpixels. The weighted graph G = (V, E,w) consists of a finite set of super-
pixels V, the edges E linking superpixels and their associated weights w,, pg € E.
The weights are given by:

_||f,,—f,,||2)

Wpq = €Xp ( 202

where f), is a feature vector at superpixel p defined by f, = (ac,,1,), being ¢, the
mean of the superpixels in CIELAB colour space, and 1,, the mean of the coordi-
nates in the spatial space. In this case, & = 0.9 is a parameter controlling the balance
between the two features.

In order to reduce computational cost and to exploit local relationships in the
feature space, once we have computed the weight for each superpixel p with every
other superpixel g, we consider its k-nearest neighbours the first k vertices in a de-
creasing list with respect to weight) and keep these associated weights while setting
to zero the remaining ones. Then, a superpixel p is associated with a superpixel g if
the weight w,, is not zero. To go further in the suppression of the background, the
boundaries are connected together as well those superpixels such that their initial
saliency map has a value (score) below a user fixed threshold in the weight matrix.
In our case the 25% of the less representative values in the control map are neglected
(see the figure 10.2).

10.4 Control map

We still follow the ideas in [15] to compute a saliency control map which we wiil
include in the fidelity term of the variational model here presented. The control map
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Fig. 10.1 Comparison between SLIC (left) vs SCALP (right) algorithm with 300 superpixels. The
edges and contours of the cheetah are better preserved in the partition provided by SCALP.
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Fig. 10.2 The image was divided by SLIC. On the left, we show a superpixel (yellow) and its
k-neighbours. On the right, it is shown a superpixel within less than 25 % in the initial control map
is associated to the boundaries as well to its k-neighbours.

v is a vector of components v, = {v;, p € G}, where vy, is the value of the salient
map in the superpixel p. This value, v¢, is computed as the product of a contrast prior
v, which takes into consideration similarity of colours weighted by the distance
to each superpixel and an object prior v;’,bj , which introduces the assumption of
the most likely location of the salient object. Hence, the saliency control map is

computed:

V; — v;on . v;b j ,
where
. / 2 ! 1 2
= L willep =yl why=exp (_—202 [ Lol )
4,pqEE
and

- -2
v;’,bj=ex]7(—“’720_2” )

where [ are the coordinates of the center of the image (where the region of interest
is usually located). The parameter ¢ is empirically set as in [15] where 62 = 0.05.

10.5 Non local operators

In order to deal with variational models in a weighted graph, we need to introduce
the notion of non local gradient and divergence operators in a weighted graph G.
Details can be found in [9].

Definition 1. Let p € G, v = (v,)pec be a real function defined on G and taking
values in R, and w4, for p and g € G, a nonnegative symmetric weight function.
Then, the nonlocal gradient at a superpixel p, V,.v,, is defined as the vector of all
partial differences V,,v, , at p:

Vv, ={Vywp 4, pg € E},
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where
Vivpg = /Wpg(vg —vp)-

In fact, we are only interested in the components such that w, , # 0. Hence, the
nonlocal gradient V,,v is defined as V,,v = (V,.,) pe. Analogously, the divergence
divy; of a vector dp, given a function ¢ : G x G — R can be defined as:

divyd, = E (dpg — dg.p)/Wpg-

4.qpEE

Notice that, in our particular case, d, will be taken as V,,v.

10.5.1 Non local Ly for saliency detection

In this section, we shall briefly present the model and the method of numerical reso-
lution presented in [15]. This will allow the reader to notice where our contribution
resides.

In [15] it is proposed the following nonlocal discrete Ly minimization model to
describe the sparse structure of the saliency maps:

. A .
min ():Ilvvalln+§|lt'—v IF) , (10.1)
P

where v, stands for the value of the saliency map v at the superpixel p, V,.v, =
{Vwvpq : pg € E}, as it was defined in the previous section, and the Lo norm is
given by ||V,vpllo =#{g: Vv, 4 #0, pqg € E} (# s the cardinality of the set). The
positive constant A is a parameter controlling the relative importance given to the
fidelity term with respect to the sparsity inducing prior.

In order to solve the minimization problem, the authors in [15] use an Alternated
Directions Method (ADM). Setting d, = V,,v,, the equivalent minimization problem

. A cy2
min (;”dpno'*‘ E(Vp_"p) ) .

is solved through the iterative scheme

. . A : : 1
A = min [ Y 2 (v, =502+ 1 — Vv, + =y P
v > 2 2 P
A m d Pig. v ftt Lap
= mdm le p“0+ 2 ” 2 wVp + yp”
- P

where the relaxation variable is given by yf,“ = yf, + p(d;‘,' — V,‘.vf,+l ). The solution
of the problem for vf,“ can be written as
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A+l _ g
(A+2p Zw,,q)vp =4V,
q

] 3
—P Y/ Wpgldy, dt’}l,+5(y;‘,q—y";p)) +2p) wagvg"'.
- q

Finally, the auxiliary problem for ¢**! has a component-wise close solution is given
by:

dk+1 —

{0, Vvt = 2vhgl < V20,
P

kel 1ok ;
Vit Yo otherwise.

In [15], the iterative procedure is stopped when a fixed number of iterations is
reached. This is not a convergence criteria and obscures the behaviour of the algo-
rithm. In order to analyze and compare the results with the ones obtained with our
NLTV model, we consider in both cases a typical convergence criteria: the compu-
tation is stopped when the difference between two consecutive iterations is less than
a small value €. In our computations we have considered € = 1073, We refer the
reader to [15] for more details. Notice that this convergence criteria do not reveal
if the limit solution is a minimum of the original Ly model problem (10.1). It just
shows that the algorithm stabilizes and converges to a saliency vector which may
not be a minimum of functional (10.1). This is due to the fact that, contrary to our
model, the energy in (10.1) is not convex. In fact, a careful analysis of the behaviour
of the energy functional reveals the existence of two different cases which we show
in figures [10.3] and [10.4] where the total energy, the Ly energy and the fidelity L,
discrepancy norm are represented. We shall refer to case 1 when the total energy
stabilizes to a value but do not converge to a minimum. The Ly norm is constant and
the energy is dominated by the fidelity term. Case 2 refers to convergence to a mini-
mum. An oscillatory form is presented (see figure 10.4) and the energy is dominated
by the Ly norm.

10.6 Non local total variation model

As an alternative to the nonlocal Ly norm, we propose the following saliency detec-
tion model based on the consideration of a non local version of the total variation
suitable for weighted graphs, taken into consideration the well known properties of
the total variation operator.

In order to do that, we shall first present the notion of NLTV norm of the weighted
gradient V,.v introduced in definition 1 (see [10]):

Definition 2. The non local total variation norm in its discrete version can be defined
as the following isotropic L; norm of the weighted graph gradient V,,v:
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Fig. 10.3 Case 1: From left to right and top to bottom: original image, ground truth, saliency map,
energy curve, Ly term of the energy functional and the fidelity term.
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Fig. 10.4 Case 2: From left to right and top to bottom: original image, ground truth, saliency map,
energy curve, Lg term of the energy functional and the fidelity term.
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The minimization problem based on the NLTV for saliency detection we shall
consider is:

A .
min | & Z ||va,,||2+5 Z [vp—Vj 2], (10.2)
! peG peG

where
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1/2
”VW"p”Z:( Z W/J,q(Vq_"p)Z)
g

PYEE

In order to illustrate the mathematical foundations of our numerical method we
rewrite our minimization problem in the general setting of the primal problem:

m\jn F(Vi\v)+G(v), (10.3)
with

A .
F(va) =a Z ”VIVV])”2 and G(V) = 5 Z va - V;, 2'
peG peG

10.6.1 Numerical resolution: Primal-Dual algorithm

In order to solve numerically the minimization problem (3), we generalize the
Primal-Dual algorithm ([4, 11]). We briefly review the mathematical setting. The
primal-dual formulation of the nonlinear primal problem in (10.3) is the saddle-
point problem

m}n max (Viv,d)+ G(v) — F*(d) (10.4)

for the primal variable v, the dual variable d and F*, the convex conjugate of F .
Assuming that these problems have a solution (v,d), it satisfies

Vv €OF*(d),  divy(d) € IG()

where d F* and dG are the subdifferentials of F* and G. Introducing the resolvent
operator defined through

[lv =¥l

7= (+19G)"'(v) = min (—21_

+60)

the final algorithm is:

A = (I+ 6dF* )Y (d"+ aV,")
Vit = (14 19G) ™' (V' + tdiv,,d")

The algorithm therefore consists of an alternate minimization and maximization
step, where the dual variable d is updated in the maximization step and the solution
v is set in the minimization one. These two steps are repeated iteratively until the
convergence is reached. Making explicit the above equations we have: Given the
k—step solution (V¥,d*):

e Maximization step: For every superpixel q compute
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k k
Kl _ dq + Tdevq
4 max(1, |d&+ 14V, vh|e)

Notice that d"; is a vector of components d(‘l'_ p for p superpixel such that gp € E.

e Minimization step: Fixed d**', we compute v%*! for every pixel g:

’ . 1 3 .
vz"" =(1- Tp)vl,; +1, (Idiv(df;ﬂ) +v§1) ,

where
S A k41 gkt
divid,t')= Y (d —dit) g (10.5)
PgpeE
The iterations are stopped when the difference between the values in two consec-
utive iterations is less than a fixed value &.

The parameters 7, and 7, refers to the gradient descent steps employed to solve
the maximization and minimization problems associated to the dual d and the pri-
mal variable v respectively. A pseudo code of our primal dual algorithm for saliency
is shown in 1.

In figures 10.5 and 10.6, we present the results obtained with our NLTV model
for the examples shown in figures 10.3 and 10.4 regarding the Ly-mode. It can be
seen that in this case, convergence to a minimum of the functional is achieved, and
also that the convergence is faster than in the Ly case.
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Fig. 10.5 Results obtained with the NLTV model for the image consider in case 1 (figure 10.3):
from left to right and top to bottom: original image, ground truth, saliency map, energy curve, the
NLTYV term of the energy functional and the fidelity term.
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Fig. 10.6 Resuits obtained with the NLTV model for the image consider in case 2 (figure 10.4):
from left to right and top to bottom: original image, ground truth, saliency map, energy curve, the
NLTYV term of the energy functional and the fidelity term.

Algorithm 1 Saliency estimation on non local TV

1. procedure SALIENCYNLTV(inputlmage,parameters)

2 Calculate Superpixels

3 wknn < Create knn graph

4; controlMap « Calculate controlMap

5: vk = controlMap;

6 d=0;

7 repeat

8: d =d + (7 - gradNLTV (wknn,* JNoSuperpixels) / max(l, | d + 7, -

gradNLTV (wknn,*,NoSuperpixels) |..)) ;

9: div d= (1/A) - divNLTV(wknn,d,NoSuperpixels);
10: Prevvk=yk;
11: vk=(1 -Tp) - v+ Tp -( div d + controlMap);
12: energyv= energyNLTV(wknn,*,controlMap ,A);
13: stopCriteria = | Prevy*-1¥ |
14: energyPrevi =energyv* ;
15: iter = iter+1;
16: until stopCriteria < tol
17 return vk,

18: end procedure
end

In section 10.8, we shall show a comparison about the times of computation and
also the results obtained for several measures with the Ly and NLTV models.
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10.7 Saliency map segmentation

The segmentation by fixed threshold T € [0,2535] is the simplest method to obtain
the final saliency map of the input image. Varying 77 provides also a fair methodol-
ogy to compare other algorithms with the precision vs recall curves and confirm the
efficiency. However, there exist methods which provide a final saliency segmenta-
tion given a saliency map such as the Saliency Binarization with Mean Shift or the
Saliency Cut algorithm [6] to name a few. The Saliency Cut Algorithm is based on
the GrabCut algorithm [13] and it can be initialized with the saliency map calculated
with the algorithm. For this it was considered here to obtain the final saliency map.

10.8 Numerical results

The results have been carried out on MSRA10K benchmark which has 10000 im-
ages and each image has an unambiguous salient object. This benchmark provides
the ground truth masks (salient objects) with pixel level accurately in comparison
with MSRA where only the bounding box is provided. For Ly algorithm, we take
the parameters proposed by the authors in [15] N = 300 (number of superpixels),
k=35,A=0.001,p =0.0001, & = 0.9 and 6% = 0.05 for NLTV algorithm T, = 0.3,
73 =0.03,A =0.1and N =300, k = 5, ot = 0.9 for fair comparison. There are three
more parameters that have been modified (enable/disable) to see the influence in the
variational methods:

e Normal: No boundaries, no location prior.

¢ Prior: The control map gives more importance to the center position of the su-
perpixels in the image.

¢ Boundaries: Suppression of the background associating the external borders in
the image and the superpixels with less value.

The naming conventions used in the experimental results are as follows:

Fig. 10.7 Saliency cut algorithm in an image from MSRA 10K benchmark. On the left hand side
our NLTV + SCALP + Bon and right hand side the result of applying SaliencyCut to this saliency
map.
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e Variational method: NLTV and Lg

e Superpixel method: SLIC and SCALP

e Parameters: Loc (location prior is enabled) for the control map and Bon (Lo-
cation prior is enabled as well as Boundaries) for the weights otherwise these
parameters are disabled.

The results of applying the SaliencyCut algorithm to the whole benchmark
MSRAIOK for both saliency algorithms Ly and NLTV is shown in the figure 10.8.
We used the precision, recall and F3 measurements to compare our results with the
ones obtained with the model proposed in [15], and illustrate the fact of including
the location prior and the boundaries identification. On one hand, precision (positive
predictive value) is the fraction of relevant instances among the retrieves instances.
On the other hand, recall (sensitivity) is the fraction of relevant instances that have
been retrieved over the total amount of relevant instances. The Fg measure is given
by
(1 + B)?Precision - Recall
= B2 Precision + Recall

It can be seen that the results we have obtained are similar confirming the efficiency
of our proposal.

Fp ., B=03.

The results in the figure 10.9 demonstrate that the quality of the solution in both
cases (case 1 and case 2, see figures 10.3, 10.4, 10.5 and 10.6) is good. We com-
pare both methods with the same initial control map enabling a fair comparison.
Although the case 2 presents oscillations in the energy functional, it achieves the
best performance for these two images. We understand that the oscillations and the
way to reach the convergence are not determinant for the quality in the solution.
However, the method we proposed achieves a much better performance in computa-
tional time while keeping the same grade of quality in terms of precision and recall
metrics.

Experimentation was performed on an Intel Xeon E5-1650v3, 3.5GHz hexa-
core processor, from the 2014 Intel Haswell architecture (Haswell-EP), 1.5MB L2
cache and 15MB L3 cache with 64GB DDR3 RAM as a CPU platform using Mi-
crosoft Windows Server 2012R2 as operating system. this procesor can run up to 12
threads among its 6-cores simultaneously due to the Intel Hyper Threading technol-
ogy (HTT). The Intel Xeon family of microprocessors belongs to the professional
line instead of the more consumer oriented Intel Core family.

The algorithm has been implemented in C++ Visual Studio 2015 with Intel tools
for compilation. No threads implementation has been used in our code. The time
until convergence and the iterations in the case 1 and 2 for Ly and TV are shown in
the following table 10.1.
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Table 10.1 Computational time (in seconds) using the two variational methods for each case 1
(Bear) and 2 (Parachute man). As it can be seen NLTV method improves considerably both itera-
tions and time performance.

# Case Method Iterations Time Size
1 TV 1620  1.38 sec [400x253]
LO 4128 9,09 sec [400x253]
2 vV 1903 1.45 sec [400x300]
Lo 4266  8.43 sec [400x 300]

10.9 Conclusions

In this work, we have presented a new saliency model as an alternative to the sparse
gradient saliency detection model based on Ly minimization proposed in [15]). An
efficient primal dual variational method to obtain the saliency of an input image
has also be described and implemented. A numerical comparison is presented based
on the MSRA 10K benchmark dataset. The results are qualitative and quantitatively
comparable to [15], but the numerical resolution is faster opening the way to au-
tomatic real time saliency detection in video and multichannel images. We also in-
cluded the edges and contours of the images to generate high quality superpixels
using the SCALP algorithm. Some preliminary results indicate a clear improvement
but the results are not conclusive in this benchmark.

Considering the model parameter we observe that the location prior parameter
has more influence than the boundaries in the generation of accurate saliency binary
partitions similar to the ground truth. From the results we can see that there is a clear
improvement when applying the location prior (0.89 vs 0.83 when no location prior
is imposed). The initial control map is also a key ingredient to obtain high quality
results and machine learning techniques shall be used in future work to learn prior

SLIC ScaLP
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Fig. 10.8 Precision, recall and F-measure for the complete data set MSRA10K using SLIC and
SCALP as superpixels method and Ly and NLTV as the regularization terms and Loc and Bon
mean with Location prior and Boundaries background suppression enabled.
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Fig. 10.9 On the top of the image we present from left to right the results obtained in the Ly model
for the precision vs recall curves in the case 1 and case 2 . On the bottom, the ones obtained with
our model for the same cases.

information about the object to be detected. This will allow to develop models tai-
lored to specific saliency detection tasks.

The automatic segmentation has proven to be a robust method to efficiently seg-
ment the final saliency against the fixed threshold. Regarding the numerical perfor-
marnce the computation time is less than 0.5 seconds per image when the converge
criteria is not that strict making this technique promising for real time systems.

In future research, we shall extend this computation to GPGPU! to be able to
detect saliency in video in real time.
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