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Abstract –We show that contextual hidden variables including the effect of the measuring devices
can be backward-propagated by means of the Green’s function to initial Cauchy hidden data.
If this data is uncorrelated in spacelike-disjoint sets, the CHSH-Bell inequality can be derived.
However, the correlation loophole remains unclosed.

Introduction. – Since the original demonstration of
the Bell-Kochen-Specker theorem, contextuality has sys-
tematically proven to be an essential feature of quantum
mechanical systems [1]. During the last decade, the idea
that hidden variable models incorporating the effects of
the measuring apparatus might be indispensable to un-
derstand the violation of Bell-type inequalities has also
gained increased support [2, 3].

Contrary to local realism, the contextual paradigm
claims that the experimental outcomes cannot simply be
thought of as revealing pre-existing values of a quantum
particle. Instead, it is proposed that they emerge from
their interaction with the apparatus. The contextuality
loophole has not yet been closed, setting a moratorium on
the validity of Bell tests [4, 5].

Among contextual advocates, some authors have
pointed out the crucial role of hidden electrodynamic zero-
point fluctuations [4, 6]. This line of reasoning has been
recently reinforced by studies with extended electrody-
namic bodies. Retarded potentials lead to time-delayed
self-interactions, which produce limit cycle oscillations
through a Hopf bifurcation [7–9]. The resulting jittery
motion has a frequency closely related to the frequency
of zitterbewegung and can be identified as a particular in-
stance of self-oscillation [10]. In analogy to experiments
with walking silicone oil droplets [11], it has been pro-
posed that this nonlinear oscillation is responsible for the
wave-particle duality of quantum particles [7].

The mathematical proof of Bell-type theorems, from
their original derivations [12, 13] to the most general case
provided to present date [14], relies on the fact that the
hidden variables on which the probability measure de-
pends are independent of the measurement process. At
the time of detection, the electromagnetic interaction be-

tween the particle and the measuring device introduces a
dependence of the probability density on its orientation,
precluding the derivation of Bell-type inequalities.
In classical field theories, this functional dependence

also appears when initial hidden fields are used to express
the spin-correlation integrals. The probability density can
be expressed as a function of hidden fields with support on
a compact domain in the Cauchy hypersurface enclosing
the initial data, by means of the Green’s function of the
dynamical theory. This entails a reduction of the contex-
tuality loophole to a correlation loophole. The later was
overlooked by Bell [15] (and also in a reply to his theory
of local beables [16]) as a possible source of violation of
the CHSH-Bell inequality in tests of local realism [14].

The Einstein-Podolsky-Rosen-Bohm experi-
ment. – We consider a classical experiment proposed
by Bohm and Aharonov [17, 18]. A similar argument for
optical quantum systems [19] used to test the locality
of quantum mechanics and its related field theories, is
straightforward to implement.
From the point of view of a local classical field the-

ory (e.g. Einstein-Maxwell electrodynamics), the internal
angular momentum could be related to the magnetic mo-
ment of an electromagnetic topological soliton [20,21]. Al-
ternatively, we can consider that particles are localized
point charge distributions evolving under the action of
electrodynamic retarded fields, with their internal prop-
erties (charge, mass and spin) embedded in the point. No
specific hypothesis about the nature of the particles, and
how the spin emerges from the currents inside them, are
essential to our argument. The only requirement to prove
our main result is the existence and uniqueness of solutions
to the partial differential equations describing the dynam-
ical evolution of the fields, once the initial field configu-
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ration and the boundary conditions have been specified
[20].
Before entering the Stern-Gerlach (S-G) apparatus, the

magnetic moment of each element of the entangled pair
could be dynamically evolving in a rather complicated
fashion inside a sphere. The process of measurement in-
volves the orientation of its intrinsic magnetic moment
along the external magnetic field, from the moment that
each particle enters the S-G apparatus, to the first instant
of time when its spin has fully aligned with the external
non-uniform magnetic field.

Results. – As usual, we now define Aa[λA(xa, T )] and
Bb[λB(xb, T )] as the two observables representing the re-
sult of measuring the spin of each particle along the di-
rections a and b in the Euclidean space, with outcomes
of either 1 for spin up, or −1 for spin down. Then, the
spin-correlation integral of the entangled pair at the time
of measurement t = T can be written as

Cab(T ) =

Z

C
Aa[λA(xa, T )]Bb[λB(xb, T )]pab[λ, T ]Dλ,

(1)
with λ = (λA(xa, T ),λB(xb, T )) the value of the hidden
fields inside the particles, whose centers of mass are lo-
cated inside a small region, described by xa and xb re-
spectively, where most of the particle’s energy is stored,
once the spin alignment has completed. The sample space
of all possible field configurations with compact support
in the region where the particles are placed has been de-
noted as C. Recall, because of contextuality, the proba-
bility density of the random hidden fields at the time of
measurement pab[λ, T ] depends on the orientations of the
magnetic fields of the two S-G artifacts.
To revert the flow to the initial setting, we have to take

into account the light cones of the particles, which con-
nect their field configuration at the time of measurement
with the fields inside an initial Cauchy slice of their causal
past at t = 0, as depicted in Fig. 1. From the point of
view of the partial differential equations that govern the
dynamics of the fields [22], the Green’s function G(x′, x, t)
selecting the causal region of the initial data λ0(x) on
which the present hidden fields depend, satisfies the iden-
tity λa(x

′, t) =
R
G(x′, x, t)λ0(x)d

3x.
Therefore, the correlation of spins, when expressed in

terms of the initial hidden fields, is given by the functional
integral

Cab =

Z

C0

Âa[λ0(x)]B̂b[λ0(x)]pab[λ0(x)]Dλ0, (2)

where Âa[λ0(x)] ≡ Aa[
R
G(x′, x, t)λ0(x)d

3x] has been

defined as a functional, and similarly for B̂b[λ0(x)].
The probability densities are related through a change
of variables, in the form pab[λ, t] =

R
C0

δ[λA(xa, t) −
λa(xa, t)]δ[λB(xb, t)− λB(xb, t)]pab[λ0(x)]Dλ0.

The Eq. (2) is defined over the set of functions C0 hav-
ing compact support in the spatial domain Σ = Ωa ∪ Ωb,

Fig. 1: Minkowski diagram of the EPRB experiment in 2+1
dimensions. Two entangled particles are emitted at the source
at time t = 0. Then, they follow their world lines until they
enter their respective apparatuses at t = τ . At t = T these
two particles have aligned their intrinsic magnetic moments
with the external magnetic field. The causally connected initial
domains in the initial Cauchy surface at time t = 0 for the
observers Aa and Bb are represented by Ωa and Ωb.

enclosed in the Cauchy hypersurface at t = 0. If the ini-
tial fields are only correlated in the domain Σc = Ωa ∩Ωb

depicted in Fig. 1, the CHSH-Bell inequality can be imme-
diately derived. We only have to average over the regions
Σa = Ωa/Σc and Σb = Ωb/Σc, to get rid of the contextual
hidden field fluctuations.

For clarity, but without loss of generality, we give the
proof assuming that the fields are uncorrelated in any
two spacelike-separated sets in the initial Cauchy surface.
Nevertheless, it suffices to consider that fields in Σa and
Σb are mutually uncorrelated and that the fields in Σc

are also independent of a and b. This conspiracy also
involves field correlations and is thoroughly discussed in
Refs. [14,16] and has been considered as particular case of
superdeterminism [23].

Under such hypotheses, the probability density
pab[λ0(x)] can be expressed as a product of densities
pa[λa(x)]pb[λb(x)]p[λc(x)], where λa(x) = {λ0(x) : x ∈
Σa}, λb(x) = {λ0(x) : x ∈ Σb} and λc(x) = {λ0(x) :
x ∈ Σc}. Now we write the functions Âa[λa(x),λc(x)]
and B̂b[λb(x),λc(x)], as well. This yields the functional
integral

Cab =

ZZZ
Âa[λa(x),λc(x)]B̂b[λb(x),λc(x)]

pa[λa(x)]pb[λb(x)]p[λc(x)]DλaDλbDλc.

(3)

After averaging out the fluctuations Āa[λc(x)] =R
Âa[λa(x),λc(x)]pa[λa(x)]Dλa, and the same for

B̄b[λc(x)], the following Bell-type integral results

Cab =

Z
Āa[λc(x)]B̄b[λc(x)]p[λc(x)]Dλc. (4)

It has been pointed out that it is impossible to accom-
plish these experiments [2,3]. This fact is irrelevant, since
Eq. (4) allows to derive the CHSH-Bell inequality

|Cab − Cab′ + Ca′b + Ca′b′ | ≤ 2. (5)
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Therefore, the Eq. (4) must describe the same type of
correlations. Of note, the existence of Eq. (4) is a neces-
sary and sufficient condition for the fulfillment of Eq. (5)
[24].

Last instant and free choices. – We can also ex-
tend the previous argument to systems in which the orien-
tations of the S-G are set right before the measurements
are made [19]. The dependence of the probability density
pab[λ0(x)] on the orientations a and b cannot be avoided in
general. To compute the correlation when we select a def-
inite orientation (e.g., a) of the apparatus, we must disre-
gard all the initial field configurations that evolve towards
a different orientation (e.g., a′). In the particular case of
purely deterministic local field theories this is unavoidable,
because the set of initial conditions in the Cauchy surface
that lead to a specific orientation of the apparatus are al-
ways different from those leading to another orientation.
Concerning stochastic hidden variable models [14],

we can represent random fluctuations by incorporating
Langevin currents in the partial differential equations de-
scribing the field theory. As an example, we can con-
sider a case where there exists a deterministic drift term
in the Langevin stochastic differential equation governing
the evolution of the dynamical fields, and the intensity of
the random fluctuations is bounded. Then, it can happen
that a particular orientation of the apparatus is not acces-
sible through the stochastic flow from some hidden field
configurations in the initial Cauchy surface, which would
evolve in time towards some other orientation. Thus a re-
striction of events in the sample space of the initial hidden
fields is imposed even when random dynamical settings are
used.
In recent works, the dependence of the probability den-

sity pab[λ0(x)] on the orientation of the apparatuses has
been considered a revisited type of superdeterminism [23].
However, in the present case the correlations involve fields
taking values at two points in Σa and Σb, but not nec-
essarily those involving the apparatuses and their orien-
tations. The existence of p[λc(x)] also assumes that the
orientation of the S-G and the hidden fields at the source
are independent. Moreover, since our argument is exten-
sible to models described by stochastic partial differential
equations, we do not need to assume determinism. It is
evident that the correlation loophole is different from su-
perdeterminism, specially as this conspiracy is frequently
considered [14, 23], and as was discussed by Bell initially
[25].

Conclusions. – The simplest proofs of the CHSH-
Bell inequality rely on the existence of a joint probability
density including experimental realizations in which the
same S-G apparatus has two different orientations [24].
The non-Kolmogorovness of such a probability density [26]
is sometimes attributed to the contextual role of the mea-
suring devices [3].
We have shown that contextual implications can be cir-

cumvented by reverting the flow to the initial hidden fields,

when the particles are created at their source. Instead,
we have to prove that the electrodynamic field fluctua-
tions are uncorrelated in the spacelike-separated sets Σa

and Σb. As has been recently shown using silicone droplet
models, particles communicating through correlated back-
ground fields can synchronize their dynamics and violate
the CHSH-Bell inequality [27]. However, these experi-
ments use static analyzers and cannot close Bell’s locality
loophole.

This correlation loophole (likewise, the contextual) is
far more feasible to close from an empirical point of view.
A general experimental protocol to overcome the indepen-
dence of space-like separated sets must maximize the size
of Σc, excluding at the same time the apparatuses from it.
Such tests are favored by our analysis to avoid a statistical
dependence between Σa and Σb.
For example, in the case that two entangled bodies re-

cede each other in opposite directions with uniform mo-
tion, the radius of Σc is equal to D(1− β)/β, with D the
distance between the measuring device and the source,
and β the speed of the particles relative to the speed of
light in the laboratory frame. This equation suggests that
the optimum speed for two massive bodies would be one
above, but as close as possible, half the speed of light.

On the other hand, experiments with correlated pho-
ton pairs receding from each other at the speed of light
should be disregarded as an appropriate experimental en-
vironment to discard contextual theories like classical elec-
trodynamics and its covariant generalization, since Σc is
reduced to its minimum in these experiments with mass-
less particles. Counterintuitively, apart from closing the
locality loophole, last-instant choices are not particularly
favored by our result, as well. If a and b are dynamically
set at some time right before the particles enter the S-G
devices, a correlation between the fields in Σc and each ori-
entation of the measuring instruments must be prevented
[28]. Otherwise, the probability density p[λc(x)] could in-
herit a dependence on a and b, hindering the warrant of
the no-conspiracy previously referred and precluding the
derivation of Eq. (5) [14, 16].
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