
Cobo et al. 
Health Information Science and Systems (2023) 11:29
https://doi.org/10.1007/s13755-023-00229-8

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate 
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were 
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Health Information Science 
and Systems

Frailty detection in older adults via fractal 
analysis of acceleration signals from wrist‑worn 
sensors
Antonio Cobo1,2*†   , Ángel Rodríguez‑Laso3†   , Elena Villalba‑Mora1,2   , Rodrigo Pérez‑Rodríguez4,5    and 
Leocadio Rodríguez‑Mañas3,6    

Abstract 

Purpose:  Frailty is a reversible multidimensional syndrome that puts older people at a high risk of adverse health 
outcomes. It has been proposed to emerge from the dysregulation of the complex system dynamics of physiologic 
control systems. We propose the analysis of the fractal complexity of hand movements as a new method to detect 
frailty in older adults.

Methods:  FRAIL scale and Fried’s phenotype scores were calculated for 1209 subjects—72.4 (5.2) y.o. 569 women—
and 1279 subjects—72.6 (5.3) y.o. 604 women—in the pubicly available NHANES 2011–2014 data set, respectively. 
The fractal complexity of their hand movements was assessed with a detrended fluctuation analysis (DFA) of their 
accelerometry records and a logistic regression model for frailty detection was fit.

Results:  Goodness-of-fit to a power law was excellent (R2 > 0.98 ). The association between complexity loss and frailty 
level was significant, Kruskal–Wallis test (df = 2, Chisq = 27.545, p-value < 0.001 ). The AUC of the logistic classifier was 
moderate (AUC with complexity = 0.69 vs. AUC without complexity = 0.67).

Conclusion:  Frailty can be characterized in this data set with the Fried phenotype. Non-dominant hand movements 
in free-living conditions are fractal processes regardless of age or frailty level and its complexity can be quantified with 
the exponent of a power law. Higher levels of complexity loss are associated with higher levels of frailty. This associa‑
tion is not strong enough to justify the use of complexity loss after adjusting for sex, age, and multimorbidity.
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Introduction
Data from the World Bank for 2019 show that 92.29% of 
the women and 84.68% of the men in the European 
Union (EU) survived to age 65 [1, 2]. According to cur-
rent predictions, they will live for approximately 20 more 
years (21.8 years, in the case of women and 18.3 years, in 
the case of men) [3]. The World Health Organization 
defines healthy aging as “the process of developing and 

maintaining the functional ability that enables well-being 
in older age” ([4], p. 28). In other words, healthy aging 
involves remaining free of functional limitations and dis-
ability until very close to the end of life. However, accord-
ing to current predictions, people 65 years old will enjoy 
only half of their 20 years ahead without functional limi-
tations and disability. This scenario concerns 91,496,893 
people 65 years old and older in the EU [5], representing 
20.46% of the overall European population [6]. Before 
developing any severe functional limitations and becom-
ing disabled, older people may transition from robustness 
to a state of increased vulnerability known as frailty that 
can last for several years before eventually transitioning 
into disability [7]. Frailty is a multidimensional syndrome 
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that makes homeostasis difficult even under exposure to 
low power stressors [8]. Consequently, frail people are at 
a high risk of adverse outcomes, including twice the risk 
of disability than non-frail older adults [9], as well as falls, 
hospitalization, permanent institutionalization, and 
death [8, 10–12]. Besides its detrimental effect on peo-
ple’s functional ability and health, frailty also impacts 
health care systems economies. In 2012, frail people in 
the top 10% group of Medicare individual spending ben-
eficiaries were just 4% of the Medicare population in the 
USA. Despite they represented such a small proportion 
of the population, they accounted for 43.9% of the total 
potentially preventable spending [13]. Frailty is a well 
established concept in geriatrics, however, there is still 
some debate on how to conceptualize it [14]. One of the 
most validated and used approaches is the frailty pheno-
type, initially described by Fried et al. [7], which consid-
ers that frailty is manifested through five pre-defined 
signs and symptoms: exhaustion; wasting; and reduction 
of activity, strength and speed. Because some of these 
components need to be measured, one with a dynamom-
eter, attempts have been made to use questions to ascer-
tain even those designed to be measured; one of these 
questionnaires is the FRAIL scale [15]. Fortunately, 
frailty, in contrast to a disability, can be reversed [16–18]. 
Clinical interventions based on physical exercise proved 
to be effective in restoring frail people to robustness [16, 
17, 19]. These exercise-based interventions are particu-
larly effective if delivered at the early stages of the func-
tional decline process and if the older adult remains 
engaged in the care program [20]. Thus, identifying frail 
people at early stages is paramount. Some authors sug-
gest that frailty is an emergent property with no specific 
cause, arising from the complex system dynamics of 
physiologic control systems [21]. This hypothesis is con-
sistent with the fact that dysregulation signs in so many 
different physiologic systems have shown associations 
with frailty. Ghachem et  al. [21] even observed the 
amount of dysregulation to be more important than the 
particular identity of the systems involved. As a result, 
people’s ability to adapt to daily stressors degrades and 
functional decline arises [22]. Rector et al. [23] highlight 
two different paradigms that model the adaptive behav-
iors of physiological systems, namely, critical slowing 
down (CSD) and loss of complexity (LoC). Either of these 
paradigms makes a different assumption. CSD-based 
indicators model resilient, adaptive responses as low var-
iability fluctuations around an equilibrium point, whereas 
LoC-based indicators model resilient adaptability as 
complex fluctuations following a power law across time 
scales like fractals do [22, 24]. The appropriate paradigm 
may depend on the homeostatic role of the target varia-
ble—i.e., regulated vs. effector variables—with effector 

variables behaving consistently with the LoC paradigm 
[23]. The complexity of the dynamic fractal behavior of 
many effector variables has in fact been observed to 
degrade with aging and disease [22]. For instance, LoC 
under normal aging conditions has been observed in 
heart rate (HR) [25], blood pressure [26], respiratory 
cycle [27], stride interval [28], and postural sway dynam-
ics [29, 30]. Besides, less complex HR showed increased 
cardiovascular mortality in heart failure and ischemic 
heart disease patients [31], and older fallers showed less 
complex stride–stride intervals [32]. Moreover, greater 
complexity values have been observed to be associated to 
greater ability to perform adaptive tasks [22]. The overall 
effect of the progression of frailty and the subsequent 
functional decline is the degradation of people’s ability to 
keep on with their activities of daily living (ADLs). Hence, 
we wonder whether dysregulation in behavioral variables, 
such as physical activity (PA), can be used as a proxy for 
the overall dysregulation in physiologic control systems. 
Previous works on the complexity of PA suggest this vari-
able behaves consistently with the LoC paradigm (i.e., 
complexity decreases in the presence of frailty). In several 
cross-sectional studies, older people with more complex 
PA patterns have shown lower levels of frailty [23], disa-
bility [23], and fear of falling [33]. In contrast, older peo-
ple with high variance in PA have not shown high levels 
of frailty and disability, as would have been expected 
under the CSD paradigm [23]. In the same line, older 
people with less complex PA patterns at baseline have 
shown a higher risk of becoming frail and disabled [34] or 
even dying [34, 35] in follow-up studies. There is even 
evidence of a significant correlation between longitudinal 
changes in the complexity scores of PA and changes in 
balance and mobility performance after 4 weeks of home-
based physical exercise [36]. In particular, Rector et  al. 
[23] quantified PA complexity as the multiscale entropy 
(MSE) of the acceleration time series recorded by an 
Inertial Measurement Unit (IMU) on people’s chests. 
IMUs are a kind of sensors comprising an accelerometer 
and a gyroscope, which measure linear acceleration and 
angular speed, respectively. Then, the fluctuations of PA 
over time can be represented as a time series of activity 
counts [37]. Samples in a time series of activity counts are 
usually defined as the sum of raw acceleration values over 
epochs of a particular duration after removing frequency 
components outside the human movement spectrum 
[37]. IMUs based on Micro-Electromechanical Systems 
(MEMS) are tiny enough to come embedded in usual 
commercial devices such as smartphones, smartwatches, 
and fitness trackers. Lately, wrist-worn devices such as 
smartwatches and fitness trackers have consolidated their 
place as consumer goods and are a much more natural 
and socially accepted option than wearing sensors on the 
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chest or on a belt around the waist. However, people 
move their arms and hands even during the course of 
sedentary activities. Thus, it is unclear whether time 
series of acceleration or activity counts from wrist-worn 
devices are a proper representation of people’s PA. 
Despite that, Li et  al. [34] found a relationship between 
the complexity of people’s non-dominant hand move-
ments and the future onset of frailty. They observed that 
people with lower complexity scores at baseline had a 
higher risk of becoming frail over the next years. How-
ever, the potential use of hand-movement complexity to 
assess and diagnose the present level of frailty in older 
adults has not been explored yet. In the present paper we 
study whether the LoCin the fluctuations of the activity 
counts from wrist-worn sensors is capable of detecting 
frailty. We obtained the self-similarity exponent ( α ) of 
the hand-movement signals by means of a detrended 
fluctuation analysis (DFA) which is a common method 
for non-stationary time series [35, 38]. A value of α = 1 
corresponds to pink noise, which has been observed in 
many natural phenomena showing fractal behaviors [39]. 
In fact, values of α close to 1.0 have been observed to 
reflect healthy fractal complexity in HR signals [24]. As 
the value of α decreases, the long range correlations in 
the corresponding stochastic processes tend to disappear 
until their samples become completely uncorrelated 
(white noise) for α = 0.5 . On the other hand, as the value 
of α increases, the corresponding stochastic processes 
lose roughness and become Brownian noise for α = 1.5 ; 
which means that departures from pink noise in either 
direction are associated to complexity loss. Thus, we used 
the departures from pink noise in α as a measurement of 
complexity loss in hand-movement fluctuations.

Methods
We conducted a retrospective observational cross-
sectional study on data from the National Health and 
Nutrition Examination Survey (NHANES). This survey 
is a program of studies designed to assess the health and 
nutritional status of adults and children in the United 
States [40]. It examines a nationally representative sample 
of about 5000 civilian, non-institutionalized persons each 
year [40]. Most of the data set is in the public domain and 
is available on the Internet. This is a retrospective study 
of anonymized data in the public domain, and no ethical 
approval was required.

Participants
Subjects in the 2011–2014 NHANES waves were 
included in the present study if they:

•	met ALL the following INCLUSION CRITERIA:

–	 subjects 20 years old or older,
–	 subjects with available data from the Physical Activ-

ity Monitor (PAM) in the summary data files, and
–	 subjects wearing the PAM on their non-dominant 

hand,

•	did not meet ANY of the following EXCLUSION CRI-
TERIA:

–	 subjects with less than 2 days of valid PAM data,
–	 subjects without enough data to compute their 

frailty score,
–	 subjects with a history of stroke, and
–	 subjects taking antidepressants, antiparkinsonian 

drugs, or acetylcholinesterase inhibitors.

Apparatus
NHANES 2011–2014 relied on wrist-worn PAMs to 
collect PA information (CDC, 2020). In particular, they 
used the ActiGraph model GT3X+, manufactured by 
ActiGraph of Pensacola, FL [40]. NHANES participants 
over 3 y.o. were asked to wear the PAM for seven con-
secutive days to collect objective information on 24-h 
movement when awake and asleep [40]. In particular we 
used data from the Physical Activity Monitor—Header 
(PAMHD) and Physical Activity Monitor—Day (PAX-
DAY) data files to test the inclusion criteria; and we used 
the triaxial acceleration measurements summarized 
at the minute level in the Physical Activity Monitor—
Minute (PAXMIN) data file to compute PA complexity. 
NHANES 2011–2014 reports them in Monitor-Inde-
pendent Movement Summary (MIMS) units, “which 
is a non-proprietary, open-source, device-independent 
universal summary metric developed by researchers at 
Northeastern University (John et al. 2019)”.

On the other hand, NHANES 2011–2014 relied on 
examination tests and responses to different question-
naires to collect functional information [40]. Some of 
them were conducted during enrollment in a controlled 
environment in a mobile examination center (MEC) 
while some others were conducted during an interview 
in the subjects’ homes. In particular, we used data from 
the Demographics Data (DEMO), Body Measures Data 
(BMX), Muscle strength-Grip test Data (MGX), Men-
tal Health—Depression screener Questionnaire (DPQ), 
the Physical Functioning Questionnaire (PFQ), Physi-
cal Activity Questionnaire (PAQ), the Blood Pressure & 
Cholesterol Questionnaire (BPQ), the Diabetes Ques-
tionnaire (DIQ), the Medical Conditions Questionnaire 
(MCQ), the Kidney Conditions—Urology Questionnaire 
(KIQ_U), and the Weight History Questionnaire (WHQ), 
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Prescription Medication Questionnaire (RXQ_RX) and 
Muscle Strength Data (MSX).

Procedure
We used DFA to compute the self-similarity index ( α ) of 
the participants’ non-dominant hand movements. We 
used the triaxial acceleration measurements summarized 
at the minute level to build a time series for each partici-
pant. In accordance with the methodology described by 
Raichlen et al., we considered as valid those days contain-
ing between 10 and 20 h of valid wake time [35]. Samples 
labeled as sleep, non-wear, or unknown as well as sam-
ples with reliability flags and missing MIMS values were 
removed from the data set. The remaining valid wake 
minutes across all valid days were combined in a single 
time series for each participant. As stated by Raichlen 
et  al. [35],  “Ma et  al. (29) have shown that this method 
does not significantly alter the final results of the DFA 
analysis in time-series data sets.” DFA was performed 
on each subject using the nonlinearTseries package in 
R version 4.1.2 [41] “with 25 window sizes ranging from 
10 minutes to 7 hours in length”. Then, we computed the 
Manhattan distance between α and 1 (i.e., d = |1− α| ) as 
a measurement of complexity loss.

We appraised the participants’ frailty status by assess-
ing their frailty phenotype and scoring their FRAIL scale. 
Since data for neither of those scales were explicitly col-
lected in NHANES 2011–2014, we mapped NHANES 
variables on to them. The mapping on to the items of the 
FRAIL scale was quite straightforward as described in 
Fig. 1. Individuals were classified as robust, if they did not 
score any item; prefrail, if they scored 1 or 2 items; and 
frail, if they scored 3 or more items.

In relation to the frailty phenotype, the loss of weight 
and the exhaustion items were calculated in the same 
fashion than for the FRAIL scale (with the addition that 
the loss of weight had to be unintentional). The grip 
strength item was calculated as the lowest quintile of the 
maximum strength measured with a handgrip dynamom-
eter at three attempts in both hands (items MGXH1T1, 
MGXH1T2, MGXH1T3, MGXH2T1, MGXH2T2, 
MGXH2T3), for age (below and above 65 years old), sex 
and BMI ( ≤ 24;> 24,≤ 26;> 26,≤ 28;> 28 ) strata.

The presence of the PA item was defined as being in 
the lowest quintile of kilocalories expended per week 
according to a questionnaire based on the Global Physi-
cal Activity Questionnaire (GPAQ) of the WHO, which 
includes questions on number of days per week and 
minutes each day of daily activities, leisure time activi-
ties, and sedentary activities (items PAQ610, PAD615, 
PAQ625, PAD630, PAQ640, PAD645, PAQ655, PAD660, 
PAQ670, PAD675). Quintiles were calculated by strata of 

age (below and above 65 years old) and sex. Actually, the 
worst quintile in all strata was 0 expenditure.

Gait speed, the last item of the frailty phenotype, was 
not measured in the NHANES 2011–2014, which nev-
ertheless included questions on difficulty walking for a 
quarter of a mile (PFQ060B), walking up 10 steps with-
out resting (PFQ060C) and walking from one room to 

Fig. 1  Mapping of NHANES 2011–2014 variables on to the FRAIL 
scale
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another on the same level (PFQ060H; possible answers 
for all of them: no difficulty, some difficulty, much dif-
ficulty, unable to do). We used NHANES 2001–2002, 
which included these same questions and measured 
usual-pace gait speed at 20 ft. for individuals 50 years or 
older (the use of a walker or cane was permitted for the 
timed walk), to assess which of them detected better the 
lowest quintile of gait speed, stratified by age (below and 
above 65 years old), sex and height (below and above 173 
and 159 cm for men and women, respectively). The com-
bination of the answers having some or much difficulty 
and being unable to walk for a quarter of a mile, offered 
the best aggregate of accuracy (0.79 −95% CI 0.77; 0.81), 
sensitivity (0.51 −95% CI 0.45; 0.56) and specificity (0.85 
−95% CI 0.83; 0.87). Taking away the category ‘some dif-
ficulty’ increased accuracy at the expense of diminishing 
sensitivity notably.

In the same fashion than for the FRAIL scale, individu-
als who did not score any items were considered robust; 
those who scored 1 or 2, prefrail; and those who scored 3 
or more, frail.

Multimorbidity was measured as a count of ten condi-
tions referred by the patient as having been diagnosed 
by a doctor: diabetes; coronary heart disease, including 
angina and heart attacks/myocardial infarction; con-
gestive heart failure; ictus; asthma; chronic obstructive 
pulmonary disease, including emphysema and current 
chronic bronchitis; rheumatoid arthritis; current liver 
conditions; weak/failing kidneys; and cancer, up to four 
of them and including lymphomas and leukemias. The 
multimorbidity count was calculated even when up to 
three answers to individual conditions were missing.

Analysis
NHANES uses a complex, multistage probability design 
to sample the civilian, noninstitutionalized population 
residing nationwide in the U.S. (in the 50 states and D.C.) 
[40]. NHANES sampling weights and complex design 
were taken into account by using the survey package in R 
version 4.1.2. [41].

Fractal‑like behavior
We tested the fractal-like behavior of the participants’ 
hand movements by assessing the goodness-of-fit of 
their fluctuations across time scales to a power law. We 
estimated the linearity (R2 ) of the relationship between 
the logarithmic of the fluctuations and the values of the 
expected fitted line. Then we used the svymean function 
to estimate the mean value of R 2 and the confint function 
to estimate its 95% confidence interval. Finally, we used 
a scatterplot to look for any relationships between good-
ness-of-fit and the value of self-similarity.

Associations between frailty and complexity loss
We tested the associations between frailty status and 
complexity loss with non-parametric Kruskal–Wal-
lis tests instead of one-way ANOVA tests because the 
assumption of an unbounded outcome did not hold. We 
also used non-parametric Kruskal–Wallis tests with the 
Bonferroni correction for pairwise comparisons between 
frailty levels. We used the svyranktest function in the sur-
vey package to compute the Kruskal–Wallis tests and the 
p.adjust method to compute the Bonferroni correction.

Building the logistic regression models
We built two logistic regression models for people over 
65 years old, with a binary outcome (robust = 0 vs. pre-
frail/frail = 1) based on the frailty phenotype in one 
model and the FRAIL scale in the other one. We used 
age, sex, multimorbidity and complexity loss as candidate 
covariates.

We assessed the linearity of continuous covariates 
(complexity loss, age, and multimorbidity) and identi-
fied potential nonlinear transformations by visual inspec-
tion of their corresponding smoothed scatter plots [42] 
with the svysmooth function in the survey package. We 
fitted a bivariate model for each covariate, applying the 
corresponding nonlinear transformation when appropri-
ate, and assessed the significance of their coefficients. We 
then fitted a model with sex and age as initial covariates 
and subsequently added multimorbidity and complexity 
loss one at a time. We assessed the significance of their 
coefficients and built our main effects models (FRAIL 
model and FRIED model) by retaining the significant 
ones.

We fitted the models with the svyglm function in the 
R survey package with a quasibinomial family. We tested 
the overall significance of all the coefficients in the mod-
els with multivariable Wald tests and multivariable modi-
fied Wald tests. We conducted the multivariable Wald 
tests with the wald.test function in the R aod package. 
We conducted the multivariable modified Wald tests by 
manually computing the F statistic as described by Hos-
mer et al. [43] and by using the pf function to compute 
the p-value.

We checked for interactions between complexity 
loss and each of the other covariates after centering the 
variables.

The results of the model building process are summa-
rized in “Appendix”.

Goodness of fit and predictive performance
We assessed goodness-of-fit with Archer and Leme-
show’s extension of the decile of risk test for complex 
sample surveys [44]. We adapted the Si and Pritchard’s 
working version of R code [45] to our use case according 
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to Damico’s suggestions [46]. We assessed the power of 
the test by evaluating the sample size and the frequency 
of the outcome according to Hosmer’s et  al. rule of 
thumb: n ≥ 500 and 0.25 ≤ n1/n ≤ 0.75 [47].

We assessed the predictive performance of the mod-
els by computing the area under their receiver operating 
characteristic curves (AUC) with the roc.curve func-
tion in the PRROC package. We interpreted the results 
according to the following rule of thumb [47]:

•	AUC = 0.5 suggests no discrimination,
•	0.5 < AUC < 0.7 is considered poor discrimination,
•	0.7 ≤ AUC < 0.8 is considered acceptable discrimina-

tion,
•	0.8 ≤ AUC < 0.9 is considered excellent discrimina-

tion,
•	AUC ≥ 0.9 is considered outstanding discrimination.

Results
Sample
A total of 19,931 people participated in NHANES 2011–
2014—mean age (standard deviation) 31.4 (24.5) y.o., 
10,072 women. Among them, 6722 participants—47.7 
(17.2) y.o., 3276 women—were included in the present 
study. The 13,209 excluded subjects were 23.2 (23.5) y.o., 
6796 women. Data to compute the FRAIL scale scores 
were available for 6,480 of them—47.0 (17.1) y.o., 3159 
women; on the other hand, data to assess the frailty phe-
notype were available for 3906 of them—56.8 (15.4) y.o., 
1952 women. Both the FRAIL scale and the frailty pheno-
type were computed for 3664 subjects. Table 1 describes 
the overall, Frail scale, and Fried phenotype samples.

Table 2 shows the confusion matrix for the FRAIL scale 
and the frailty phenotype for people in the sample 50 
years old and older.

Fractal‑like behavior
The population represented by the participants with the 
FRAIL scale assessed showed R 2 = 0.9865 (0.0002) with 
a 95% CI = (0.9861, 0.9868) and a distribution as shown 
in Fig. 2 (top). The scatterplot in Fig. 2 (bottom) does not 
show any relationships between goodness-of-fit and self-
similarity scores.

The population represented by the participants with 
the frailty phenotype assessed showed R 2 = 0.9870 
(0.0002) with a 95% CI = (0.9865, 0.9874) and a distri-
bution as shown in Fig. 3 (top). The scatterplot in Fig. 3 
(bottom) does not show any relationship between good-
ness-of-fit and self-similarity scores.

Table 3 shows the results for the assessment of the frac-
tal behavior of hand movements across age groups for 
the overall sample and the FRAIL scale and Fried pheno-
type subsets. Goodness-of-fit is excellent in all of them 
(R2 > 0.98)

Table  4 shows the results for the assessment of the 
fractal behavior of hand movements across levels of 
functional status for the FRAIL scale and the Fried phe-
notype subsets. Goodness-of-fit is excellent in all of them 
(R2 > 0.98).

Table 1  Descriptive statistics for the overall sample of NHANES participants included in the present study (left) as well as 
for the FRAIL (center) and Fried phenotype (right) subsets

For each of the three samples, figures are provided for the total amount of subjects and for the subset of older adults 65 years old and older

Overall sample FRAIL scale sample Fried phenotype sample

Total ≥ 65 y.o. Total ≥ 65 y.o. Total ≥ 65 y.o.

Sample size 6722 1326 6480 1209 3906 1279

Age 47.7 (17.2) 72.6 (5.3) 47.0 (17.1) 72.4 (5.2) 56.8 (15.4) 72.6 (5.3)

Women 3276 626 3159 569 1952 604

Robust n/a n/a 4307 (66.5 %) 697 (57.7%) 1389 (35.6%) 555 (43.4 %)

Prefrail n/a n/a 2043 (31.5%) 463 (38.3%) 2326 (59.5%) 641 (50.1%)

Frail n/a n/a 130 (2.0%) 49 (4.1%) 191 (4.9%) 83 (6.5%)

Table 2  Confusion matrix between the outcomes of apply-
ing the FRAIL scale and the Fried phenotype, as defined in 
the methods section, to the subset of people 50 years old 
and older in our overall sample

Fried phenotype FRAIL scale

Robust Prefrail Frail

Robust 1171 210 0

Prefrail 564 641 44

Frail 0 66 53
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Associations between frailty and complexity loss
Associations between frailty status and complexity loss 
for the overall population, regardless of age, were statisti-
cally significant for both the FRAIL scale (df = 2, Chisq 
= 56.966, p-value < 0.001 ) and the frailty phenotype (df 
= 2, Chisq = 68.343, p-value < 0.001 ). Table 5 shows the 
estimates of mean complexity loss for each functional 
level (robust, prefrail, and frail) for the two scales.

Associations between frailty status and complexity 
loss for people over 65 years old were statistically signifi-
cant for both the FRAIL scale (df = 2, Chisq = 39.743, 
p-value < 0.001 ) and the frailty phenotype (df = 2, Chisq 
= 27.545, p-value < 0.001 ). Table 6 shows the estimates 

of mean complexity loss for each frailty level (robust, pre-
frail, and frail) in adults 65 years old and older.

Table 7 shows the results of post-hoc pairwise compar-
isons of complexity loss across frailty levels; p-values are 
reported after applying the Bonferroni correction. Com-
plexity loss in the robust group resulted significantly dif-
ferent from complexity loss in both the prefrail and frail 
groups. However, no differences were observed between 
the complexity losses in the prefrail and frail groups.

Fig. 2  On the top, distribution of individual R 2 values (FRAIL scale). 
On the bottom, goodness-of-fit as a function of self-similarity scores 
(FRAIL scale). No relationship is observed between the two variables

Fig. 3  On the top, distribution of individual R 2 values (Fried pheno‑
type). On the bottom, goodness-of-fit as a function of self-similarity 
scores (Fried phenotype). No relationship is observed between the 
two variables
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Goodness of fit and predictive performance of the logistic 
models
Table  8 summarizes the final FRAIL model. The overall 
model is significant according to both a multivariable 
Wald test (W = 14.0, df = 2, p-value = 0.001) and an 
adjusted Wald test [F(2, 30) = 6.758, p-value = 0.004]. 
Only multimorbidity resulted statistically significant; 
however, we also retained complexity loss because it is 
the main variable in our study. Their interaction was not 
significant; thus, we retained the main effects model as 
the final FRAIL model. The probabilities estimated by 
this model did not fit well the probabilities observed in 

the data set [F(8, 23) = 5.000, p-value = 0.001]. Accord-
ingly, the area under the curve showed poor discrimina-
tion power (AUC = 0.62).

The final FRIED model is summarized in Table 9. The 
overall model is significant according to both a multivari-
able Wald test (W = 64.8, df = 4, p-value = 0.000) and an 
adjusted Wald test [F(4, 29) = 14.677, p-value = 0.000]. 
The coefficients of all four variables (sex, age, multimor-
bidity, and complexity loss) resulted statistically signifi-
cant. The interactions of complexity loss with the other 
variables were not significant; thus, we retained the main 
effects model as the final FRIED model. The probabilities 

Table 3  Results for the assessment of the fractal behavior of hand movements across age groups, namely, young adults 
(left), middle-aged adults (center) and older adults (right)

Results are reported for the overall sample (top) the FRAIL scale subset (center) and the Fried phenotype subset (bottom). Average values, standard deviations, and 
confidence intervals for the linearity of the log–log fluctuations of hand movements across different time scales are reported for each subset

20–49 y.o. 50–64 y.o. 65+ y.o.

Overall R2 = 0.9844 (0.0004) R2 = 0.9864 (0.0004) R2 = 0.9853 (0.0004)

(0.9837, 0.9851) (0.9856, 0.9872) (0.9844, 0.9861)

FRAIL scale R2 = 0.9860 (0.0002) R2 = 0.9871 (0.0004) R2 = 0.9872 (0.0004)

(0.9855, 0.9865) (0.9863, 0.9879) (0.9864, 0.9881)

Fried phenotype R2 = 0.9864 (0.0004) R2 = 0.9872 (0.0004) R2 = 0.9871 (0.0004)

(0.9855, 0.9873) (0.9864, 0.9880) (0.9863, 0.9879)

Table 4  Results for the assessment of the fractal behavior of hand movements across different frailty levels, namely, 
robust (left), prefrail (center), and frail (right)

Results are reported for the FRAIL scale (top) and the Fried phenotype (bottom) subsets. Average values, standard deviations, and confidence intervals for the linearity 
of the log–log fluctuations of hand movements across different time scales are reported for each subset

Robust Prefrail Frail

FRAIL scale R2 = 0.9866 (0.0002) R2 = 0.9863 (0.0003) R2 = 0.9871 (0.0012)

(0.9861, 0.9870) (0.9857, 0.9868) (0.9846, 0.9896)

Fried phenotype R2 = 0.9874 (0.0003) R2 = 0.9868 (0.0004) R2 = 0.9850 (0.002)

(0.9867, 0.9881) (0.9864, 0.9873) (0.9810, 0.9890)

Table 5  Descriptive statistics for the complexity of the 
fluctuations of hand movements across different frailty 
scores, namely, robust (left), prefrail (center), and frail 
(right)

Results are reported for both the FRAIL scale (top) and the Fried phenotype 
(bottom) subsets. Average values, standard deviations, and confidence intervals 
for complexity loss are reported for each subset

Robust Prefrail Frail

FRAIL scale 0.113 (0.002) 0.122 (0.002) 0.154 (0.008)

CI = (0.110, 
0.116)

CI = (0.117, 
0.127)

CI = (0.137, 0.170)

Fried pheno‑
type

0.111 (0.002) 0.127 (0.002) 0.153 (0.009)

CI = (0.107, 
0.115)

(0.124, 0.131) (0.134, 0.171)

Table 6  Descriptive statistics for the complexity of the 
fluctuations of hand movements in older adults, across dif-
ferent frailty scores, namely, robust (left), prefrail (center), 
and frail (right)

Results are reported for both the FRAIL scale (top) and the Fried phenotype 
(bottom) subsets. Average values, standard deviations, and confidence intervals 
for complexity loss are reported for each subset

Robust Prefrail Frail

FRAIL scale 0.116 (0.003) 0.137 (0.004) 0.153 (0.010)

CI = (0.110, 
0.122)

CI = (0.130, 
0.145)

CI = (0.131, 0.175)

Fried pheno‑
type

0.115 (0.003) 0.134 (0.002) 0.153 (0.009)

CI = (0.110, 
0.122)

(0.129, 0.139) (0.133, 0.172)
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estimated by the FRIED model fitted well the probabil-
ities observed in the data set [F(8, 24) = 0.466, p-value 
= 0.868] with the Archer–Lemeshow test showing high 
power (n = 1279; n1/n = 0.57). However, the discrimi-
nation power of the resulting classifier, although close to 

acceptable, remained poor (AUC = 0.69). In addition, a 
classifier based just on sex, age, and multimorbidity does 
not perform much worse (AUC = 0.67).

Finally, Table 10 shows the odds ratios for women over 
men, increments of five years in age, each additional 
comorbidity, and increments of 0.038 in complexity loss 
(which corresponds to the difference observed in the 
older population between the mean complexity-losses of 
the robust and the frail groups when accounting for three 
levels of frailty).

Discussion
In this representative sample of the US population, we 
have shown that the movements of the non-dominant 
hand follow a fractal-like behavior, and that, in older peo-
ple, their complexity loss is associated in a statistically 
significant way with being prefrail or frail according to 
the frailty phenotype; the diagnostic accuracy for frailty 
of a model with age, sex, multimorbidity and LoC was 
very close to be acceptable, but this latter variable con-
tributed very little.

The distribution of frailty for older adults in the Fried 
phenotype subset is consistent with the prevalence fig-
ures reported by Fried et  al. [7] in their original study. 
However, NHANES 2011–2014 did not test for gait speed 
and we had to use the participants’ responses to a ques-
tionnaire entry to assess the slowness component. The 
said questionnaire entry showed low sensitivity, espe-
cially for people younger than 65, thus, the results for that 
age group are less reliable. On another level, NHANES 
2011–2014 holds a very large proportion of people over 
65 scoring in the low-PA component. In particular, the 
number of people reporting no activity at all is way over 
the lower quintile threshold reported by Fried et al. [7]. 
Consequently, our estimations for frailty prevalence in 
NHANES 2011–2014 resulted slightly greater than Fried 
et  al.’s [7]. Our estimations for the FRAIL scale subset 
resulted reasonable as well. The agreement between both 
scales is 67.8% and no one is two categories away from 
his frailty score in the other scale. Frailty and prefrailty 
are less prevalent according to the FRAIL scale, even for 
the subset of older people. This result is consistent with 
previous comparisons [48, 49]. However, the final logis-
tic model based on the FRAIL scale subset does not show 
any significant associations with age, which casts doubts 

Table 7  Results for the statistical differences between the complexity loss of older adults’ hand movements across differ-
ent frailty scores, namely, robust vs. prefrail (left), robust vs. frail (center), and prefrail vs. frail (right)

Results are reported for both the FRAIL scale (top) and the Fried phenotype (bottom) subsets

Robust vs. prefrail Robust vs. frail Prefrail vs. frail

FRAIL scale t = 4.957, df = 31, p < 0.001 t = 3.359, df = 31, p = 0.002 t = 1.436, df = 31, p = 0.483

Fried phenotype t = 3.994, df = 31, p = 0.001 t = 3.817, df = 31, p = 0.002 t = 1.826, df = 31, p = 0.232

Table 8  Logistic regression model for the FRAIL scale sub-
set in the older sample

The model includes multimorbidity and complexity loss without any nonlinear 
transformations and no interaction terms

*Statistically significant values (p < 0.05)
aComplexity loss

Coefficient Std Err t p-value

Multimorbidity 0.300 0.119 2.513 0.018*

DALPHAa 5.306 3.059 1.734 0.093

Intercept 0.053 0.391 0.136 0.893

Table 9  Logistic regression model for the Fried phenotype 
subset in the older sample

The model includes all four variables (sex, age, multimorbidity, and complexity 
loss) without any nonlinear transformations and no interaction terms

*Statistically significant values (p < 0.05)
aComplexity loss

Coefficient Std Err t p-value

Sex 0.538 0.133 4.050 0.000*

Age 0.059 0.015 4.042 0.000*

Multimorbidity 0.384 0.085 4.531 0.000*

DALPHAa 5.418 1.276 4.245 0.000*

Intercept −6.087 1.200 −5.071 0.000*

Table 10  Odds ratios for women over men, increments of 5 
years in age, each additional comorbidity, and increments 
of 0.038 in complexity loss

aMultimorbidity
bComplexity loss

Increments Odds ratio 95% CI

Sex Women 1.712 (1.452, 1.972)

Age 5 Years 1.345 (1.201, 1.488)

Multimorbiditya 1 Disease 1.468 (1.302, 1.634)

DALPHAb 0.038 1.229 (1.134, 1.324)
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on the ability of the FRAIL scale to detect frail individu-
als in this sample.

The linearity of the log-log fluctuations of hand move-
ments across different time scales is excellent (over 0.98) 
in both the FRAIL scale and the Fried phenotype subsets. 
These results suggest that hand movement fluctuations 
conform to a power law; which is supported by their nar-
row 95% CIs (0.07% and 0.09%, respectively). Therefore, 
hand movement fluctuations show a self-affine and scale-
free nature with long-range correlations over multiple 
time scales. Moreover, goodness-of-fit did not show any 
dependencies with age, frailty level, or the value of the 
exponent. This means the fractal and complex nature of 
the process and its variability does not depend on these 
factors. Thus, the exponent of the corresponding power 
law can be used to characterize the fractal complexity of 
hand movements regardless of age or frailty level.

The same fractal-like behavior has been previously 
observed for the DFA outcomes of trunk acceleration 
signals recorded with wearable devices on older people’s 
waists [35] . Li et al. studied the complexity of the fluctu-
ations of hand movements but they did not conduct any 
statistical tests to assess fractal behavior in their signals. 
They demonstrated self-similarity by providing a visual 
comparison of the irregularity of the fluctuation patterns 
of one of their signals at different temporal scales and 
comparing them with the irregularities of a shuffled ver-
sion of the same signal [34].

Our logistic model for the Fried phenotype subset 
shows significant associations between frailty and sex, 
age, and multimorbidity. The observed associations imply 
that the probability of being frail is greater for women 
than for men and increases with age and with the num-
ber of comorbidities. These results are consistent with 
the previous established knowledge in the field and, 
thus, supports the use of the Fried phenotype subset for 
the study of frailty-related issues in the NHANES 2011–
2014 data set. The Fried phenotype model also shows a 
significant association between frailty and complexity 
loss after adjusting for sex, age, and multimorbidity. The 
observed association imply that the probability of being 
frail increases for larger reductions in complexity. This 
result is consistent with the LoC model, which states that 
either a noisier or a more regular behavior in physiologi-
cal processes result in a decrease of system adaptability. 
Li et  al., conducted a longitudinal follow-up study and, 
in the same line, they observed a statistically significant 
increase in the risk of becoming frail or developing a dis-
ability for individuals with less complex fluctuations of 
hand movements at baseline [34]. They also observed 
that the increased risk of frailty remained statistically 

significant after adjusting for age, sex, education, and 
multimorbidity [34]. We observed a lack of significance 
in an unadjusted, pairwise comparison between the pre-
frail and the frail groups, but a statistically significant dif-
ference between the healthy (aka robust) and non-healthy 
(aka prefrail and frail) groups. This result suggests that 
complexity loss could help to identify those in need of 
a therapeutical intervention but not to assess the sever-
ity of functional decline. However, the performance of 
the model as a binary classifier (robust vs. prefrail/frail) 
does not reach an acceptable level, although it gets very 
close (AUC = 0.69; threshold for acceptable performance 
= 0.70). Moreover, the small improvement in the AUC 
value due to complexity loss suggests that its inclusion in 
the model is not worth the increment in cost and effort 
respect to a model based on sex, age, and multimorbidity.

Other studies on the complexity of accelerometry sig-
nals from wearable devices present some methodological 
differences compared to the present study. Most of them 
assess the complexity of trunk movements instead of 
hand movements. Rector et al. collected signals with an 
accelerometer on the participants’ chests [23]; Paraschiv-
Ionescu et  al. and Zhang et  al. used an accelerometer 
on the participants’ lower backs [33, 36]; and Raichlen 
et  al. used an accelerometer on the participants’ waists 
[35]. The only study we found on hand movements was 
Li et  al.’s [34]. Paraschiv-Ionescu et  al. and Zhang et  al. 
did not assessed the complexity of time series of activity 
counts but the complexity of a multivariate metric based 
on the type, duration, and intensity of PA [33, 36]. Rec-
tor et al., Raichlen et al., and Li et al. each used epochs of 
different duration to compute their time series of activ-
ity counts; none of them used MIMS. Rector et al. used 
4 s epochs [23]; Raichlen et  al. used 1 min epochs [35]; 
and Li et al. used 15 s epochs [34]. Different studies have 
also used different complexity measurements. Paraschiv-
Ionescu et al. and Zhang et al. used Lempel-Ziv complex-
ity [33, 36]; Rector et al. used MSE [23]; while Raichlen 
et  al. and Li et  al. used DFA like we did in the present 
study [34, 35]. Finally, different studies have used differ-
ent scales to operationalize the functional status of older 
adults. Zhang et  al. used the Community Balance and 
Mobility Scale (CBMS) [36]; Rector et al. used The Older 
Persons and Informal Caregivers Survey—Minimal Data-
set (TOPICS-MDS) [23]; while the scale in Li et al.’s work 
was based on the Linda Fried phenotype like we did in 
the present study [34]. Despite these methodological dif-
ferences, all the studies found an association between the 
LoC in accelerometry signals from wearable devices and 
functional decline.
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The main limitation of the present study came from 
the fact that the original NHANES 2011–2014 wave did 
not include the clinical assessment of frailty. For some 
of the criteria in the FRAIL scale and the Fried pheno-
type, the data set did not include the original variables 
needed to score the items. Nevertheless, the variables in 
the data set allowed us to compute indirect estimations 
for those criteria. As discussed above, despite the noise 
added by these indirect estimations, the distribution of 
the resulting outcomes was consistent with the previ-
ous established knowledge in the field. Another limita-
tion came from the cross-sectional nature of the data set; 
which limited the scope of our study to between-subjects 
differences and did not allow us to explore the ability of 
complexity loss to detect changes in function over time. 
However, the study conducted by Zhang et  al. suggests 
that such a relationship exists since they observed an 
association between the changes in the complexity of 
their multivariate metric and functional changes meas-
ured with the CBMS [36]. On the other hand, the large 
size of the sample strengthens the power of our results. 
Finally, the main strength of the present study is the 
availability of accelerometry and angular velocity meas-
ures of the hand movements for a nationally-representa-
tive sample.

Conclusion
Frailty can be characterized in the NHANES 2011–2014 
data set with the Fried phenotype. The movement of a 
person’s non-dominant hand in free-living conditions 
is a fractal process regardless of age or frailty level and 
its self-similarity can be quantified with the exponent of 
a power law. Higher levels of complexity loss are associ-
ated with higher levels of frailty. However, the effect of 
this association is not strong enough to justify the use 
of complexity loss to detect frailty in older adults after 
adjusting for sex, age, and multimorbidity.

Appendix: Building the models
The FRAIL model
The smoothed scatter plots for the FRAIL model in Fig. 4 
show nonlinear behaviors of frailty status with both com-
plexity loss and age.

Fig. 4  Nonlinear behavior of frailty respect to the continuous vari‑
ables in the FRAIL model. Frailty vs. complexity loss (top), frailty vs. 
age (center), and frailty vs. Multimorbidity (bottom)
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Both complexity loss and age were initially modeled 
by fitting quadratic and linear terms for each of them 
after centering the variables. Both the quadratic and lin-
ear terms resulted non-significant for age. In contrast, 
a linear model for complexity loss (DALPHA) was sta-
tistically significant. The addition of the quadratic term 
(DALPHA_square) resulted in non-significant coeffi-
cients. According to the smoothed scatterplot, only a lin-
ear model was fit for multimorbidity. The corresponding 
coefficient resulted statistically significant. The results of 
all these models are summarized in Table 11.

Table 12 shows the results for a FRAIL model compris-
ing sex, age, and multimorbidity as covariates. Only mul-
timorbidity showed a significant coefficient. The addition 
of a quadratic term for age did not result in any signifi-
cant changes in the model.

Table 13 shows the results for a FRAIL model com-
prising sex, age, multimorbidity, and complexity loss 
as covariates. Multimorbidity remains the only signifi-
cant term in the model.

Finally, Table 14 shows the results for a FRAIL model 
excluding the variables age and sex that were not sig-
nificant. The coefficients for complexity loss and mul-
timorbidity varied by less than a 10%; multimorbidity 
maintained its statistical significance and complex-
ity loss remained non-significant. Adding a quadratic 
term for complexity loss did not result in a significant 
coefficient.

Table 11  Results of the univariate regressions for the con-
tinuous variables in the FRAIL model

*Statistically significant values (p < 0.05)
aComplexity loss
bQuadratic term for complexity loss
cQuadratic term for age

Coefficient Std Err t p-value

DALPHAa 6.574 3.655 1.799 0.082

DALPHA_squareb 65.723 38.941 1.688 0.102

Intercept 0.882 0.184 4.70 0.000*

DALPHAa 6.403 3.064 2.090 0.045*

Intercept 0.222 0.412 0.539 0.594

Age 0.029 0.029 0.999 0.326

Age_squarec 0.009 0.007 1.261 0.218

Intercept 0.843 0.216 3.904 0.001*

Age 0.034 0.027 1.255 0.219

Intercept −1.429 1.975 −0.723 0.475

Multimorbidity 0.345 0.115 2.985 0.000*

Intercept 0.695 0.152 4.568 0.000*

Table 12  Results of an intermediate FRAIL model compris-
ing the effects sex, age, and multimorbidity

*Statistically significant values (p < 0.05)
aQuadratic term from age

Coefficient Std Err t p-value

Sex 0.454 0.285 1.592 0.123

Age 0.029 0.026 1.117 0.274

Multimorbidity 0.331 0.116 2.846 0.008*

Intercept −2.116 1.800 −1.175 0.250

Sex 0.440 0.290 1.516 0.141

Age 0.024 0.028 0.877 0.388

Age _squarea 0.009 0.007 1.188 0.245

Multimorbidity 0.331 0.115 2.888 0.008*

Intercept −0.165 0.462 −0.358 0.723

Table 13  Results of an intermediate FRAIL model compris-
ing the effects sex, age, multimorbidity, and complexity 
loss

*Statistically significant values (p < 0.05)
aComplexity loss
bQuadratic term for complexity loss

Coefficient Std Err t p-value

Sex 0.464 0.295 1.575 0.127

Age 0.024 0.028 0.855 0.400

Multimorbidity 0.292 0.121 2.418 0.023*

DALPHAa 5.158 3.120 1.654 0.110

Intercept −2.387 1.842 −1.296 0.206

Sex 0.483 0.291 1.657 0.110

Age 0.028 0.029 0.975 0.338

Multimorbidity 0.314 0.129 2.435 0.022*

DALPHAa 4.966 3.887 1.278 0.213

DALPHA_squareb 74.239 38.016 1.953 0.062

Intercept −2.220 1.961 −1.132 0.268

Table 14  Results of two FRAIL models comprising the 
effects multimorbidity and complexity loss

*Statistically significant values (p < 0.05)
aComplexity loss
bQuadratic term for complexity loss

Coefficient Std Err t p-value

Multimorbidity 0.300 0.119 2.513 0.018*

DALPHAa 5.306 3.059 1.734 0.093

Intercept 0.053 0.391 0.136 0.893

Multimorbidity 0.316 0.125 2.529 0.017*

DALPHAa 5.299 3.736 1.418 0.167

DALPHA_squareb 70.363 39.425 1.785 0.085

Intercept 0.542 0.211 2.562 0.016*
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The interaction between multimorbidity and com-
plexity loss resulted non-significant (coefficient = 
4.629, std err = 2.449, t = 1.890, p-value = 0.069).

The FRIED model
The smoothed scatter plots for the FRIED model in 
Fig.  5 show nearly linear behavior for complexity loss. 
However, the age and multimorbidity smoothed scatter 
plot suggest that a nonlinear transformation might be 
appropriate.

Both complexity loss and multimorbidity were ini-
tially modelled with a linear term. A univariable linear 
model for multimorbidity was fit and was statistically 
significant. Three additional models were fit with differ-
ent nonlinear transformations of multimorbidity, one 
for a logarithmic transformation, a second one for a 
transformation of the form 1− 1/multimorbidity (both 
statistically significant), and another one comprising a 
spline with a knot at 4, where only the coefficient below 
4 was significant. The AIC resulted lower in the linear 
model (1715.657 vs. 1720.248 vs. 1727.860 vs. 1717.615, 
respectively). The value of t was more extreme for the 
linear model as well (see Table  15). The linear model 
for multimorbidity was retained. Age was initially 
modeled with a linear and quadratic model. The linear 
term resulted statistically significant but the quadratic 
term did not, although the quadratic model resulted in 
a lower value of the AIC (1734.774 vs. 1736.533). The 
linear model for age was retained. The results of these 
four models are summarized in Table 15.

Table 16 shows the results for an intermediate FRIED 
model comprising sex and age as covariates. The coeffi-
cients for both sex and age were statistically significant. 
Adding a quadratic term for age kept sex and age sig-
nificant; but the quadratic term was not significant.

Table  17 shows the results for another intermediate 
FRIED model comprising sex and age and adding mul-
timorbidity to the set of covariates. The coefficients 
for all three covariates (sex, age, and multimorbidity) 
were statistically significant and the addition of mul-
timorbidity showed a confounding effect on sex. Add-
ing a quadratic term for age did not result statistically 
significant.

Table  18 shows the results for a complete FRIED 
model comprising sex, age, multimorbidity, and com-
plexity loss as covariates. The coefficients for all four 
covariates (sex, age, multimorbidity, and complexity 

Fig. 5  Nonlinear behavior of frailty respect to the continuous vari‑
ables in the FRIED model. Frailty vs. complexity loss (top), frailty vs. 
age (center), and frailty vs. multimorbidity (bottom)
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loss) were statistically significant. Adding a quadratic 
term for age did not result statistically significant.

Table  19 shows the results for the interaction terms 
in the FRIED model. None of the interaction terms is 
statistically significant.
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Table 15  Results of the univariate regressions for the con-
tinuous variables in the FRIED model

*Statistically significant values (p < 0.05)
aComplexity loss
bQuadratic term for age
cMultimorbidity
dCoefficient of the spline below the knot at 4
eCoefficient of the spline above the knot at 4

Coefficient Std Err t p-value

DALPHAa 6.810 1.342 5.075 0.000*

Intercept −0.790 0.203 −3.900 0.000*

Age 0.066 0.015 4.291 0.000*

Age_squareb 0.005 0.003 1.835 0.076

Intercept −0.049 0.121 −0.407 0.687

Multimorbidity 0.415 0.086 4.825 0.000*

Intercept −0.341 0.133 −2.558 0.016*

log(Multimorbc) 0.824 0.177 4.648 0.000*

Intercept −0.391 0.145 −2.702 0.011*

1− 1/Multimorbc 1.299 0.300 4.331 0.000*

Intercept −0.392 0.150 −2.620 0.014*

Morb.ns1d 3.297 0.867 3.804 0.001*

Morb.ns2e 1.959 1.277 1.534 0.136

Intercept −0.335 0.137 −2.448 0.020*

Table 16  Results of an intermediate FRIED model compris-
ing the effects of sex and age

*Statistically significant values (p < 0.05)
aQuadratic term for age

Coefficient Std Err t p-value

Sex 0.445 1.328 3.346 0.002*

Age 0.068 0.016 4.336 0.000*

Intercept −5.505 1.248 −4.413 0.000*

Sex 0.437 0.136 3.208 0.003*

Age 0.066 0.016 4.225 0.000*

Age_squarea 0.005 0.003 1.637 0.112

Intercept −0.696 0.257 −2.712 0.011*

Table 17  Results of an intermediate FRIED model compris-
ing the effects of sex, age, and multimorbidity

*Statistically significant values (p < 0.05)
aQuadratic term for age

Coefficient Std Err t p-value

Sex 0.540 0.136 3.975 0.000*

Age 0.062 0.015 4.081 0.000*

Multimorbidity 0.422 0.084 5.049 0.000*

Intercept −5.676 1.208 −4.697 0.000*

Sex 0.533 0.139 3.827 0.001*

Age 0.060 0.016 3.892 0.001*

Age _squarea 0.006 0.003 1.774 0.087

Multimorbidity 0.428 0.085 5.058 0.000*

Intercept −1.292 0.302 −4.273 0.000*

Table 18  Results of a complete FRIED model comprising 
the effects of sex, age, multimorbidity, and complexity 
loss (DALPHA)

*Statistically significant values (p < 0.05)
aComplexity loss
bQuadratic term for age

Coefficient Std Err t p-value

Sex 0.538 0.133 4.050 0.000*

Age 0.059 0.015 4.042 0.000*

Multimorbidity 0.384 0.085 4.531 0.000*

DALPHAa 5.418 1.276 4.245 0.000*

Intercept −6.087 1.200 −5.071 0.000*

Sex 0.531 0.136 3.902 0.001*

Age 0.057 0.015 3.831 0.001*

Age_squareb 0.006 0.003 1.789 0.085

Multimorbidity 0.390 0.086 4.548 0.000*

DALPHAa 5.453 1.279 4.263 0.000*

Intercept −1.945 0.383 −5.078 0.000*

Table 19  Results of a complete FRIED model comprising 
the effects of sex, age, multimorbidity, complexity loss 
and their interaction terms

*Statistically significant values (p < 0.05)
aComplexity loss
bMultimorbidity

Coefficient Std Err t p-value

Sex 0.542 0.132 4.090 0.000*

Age 0.058 0.015 3.959 0.001*

Multimorbidity 0.389 0.086 4.519 0.000*

DALPHAa 11.236 3.684 3.050 0.005*

Sex × DALPHAa −3.945 2.418 −1.632 0.115

Age × DALPHAa −0.036 0.277 −0.131 0.897

morbb × DALPHAa −0.633 1.224 −0.517 0.610

Intercept −0.735 0.234 −3.147 0.004*
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