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One of the major challenges in the coordination of large, open, collaborative, and commercial vehicle fleets is dynamic task
allocation. Self-concerned individually rational vehicle drivers have both local and global objectives, which require coordination
using some fair and efficient task allocation method. In this paper, we review the literature on scalable and dynamic task allocation
focusing on deterministic and dynamic two-dimensional linear assignment problems. We focus on multiagent system repre-
sentation of open vehicle fleets where dynamically appearing vehicles are represented by software agents that should be allocated
to a set of dynamically appearing tasks. We give a comparison and critical analysis of recent research results focusing on
centralized, distributed, and decentralized solution approaches. Moreover, we propose mathematical models for dynamic versions
of the following assignment problems well known in combinatorial optimization: the assignment problem, bottleneck assignment
problem, fair matching problem, dynamic minimum deviation assignment problem, X, -assignment problem, the semiassignment
problem, the assignment problem with side constraints, and the assignment problem while recognizing agent qualification; all
while considering the main aspect of open vehicle fleets: random arrival of tasks and vehicles (agents) that may become available

after assisting previous tasks or by participating in the fleet at times based on individual interest.

1. Introduction

Open collaborative vehicle fleets composed of autonomous
self-interested system participants are ever more wide-
spread. However, even though the drivers are autonomous
and self-interested, the authority and the ownership of these
systems today remain centralized in terms of management,
control, and access. The trend seems to be an ever-increasing
access to mobility and last-mile services for the average
person at the cost of relying on just a few (centralized)
worldwide enterprises. The state-of-the-art algorithms for
the allocation of tasks to vehicle fleets solve customer re-
quests in very large fleets in almost near real time, but they
seem to be limited to centralized systems. Centralization
here can be a source of failure (a single bottleneck of the
system), obsolete information due to significant

computation delay while processing ever-increasing quan-
tity of data, privacy evasion, and mistrust if the interests of
the enterprise mismatch the users’ interest.

Distributed decision-making (DDM) obviously resolves
the drawbacks of centralized systems. The multitude of the
connected smart devices of the vehicles” drivers and cus-
tomers makes it possible to combine their potential and to
coordinate fleets at a scale exceeding spatial and compu-
tational boundaries. This potential can be exploited for the
benefit of the fleet system as a whole as well as for the interest
of individual vehicle drivers and customers.

The decision-making authority in the DDM is distrib-
uted throughout a system, and the decisions are taken locally
based on the local and shared global information and the
interactions of an individual with the rest of the system and
with the environment. Here, each fleet participant is
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modelled as an autonomous collaborative individually ra-
tional software agent installed on a user’s smart device. The
agent has only a local vision of the fleet and it needs to
cooperate with other agents in order to find the allocation of
dynamically appearing tasks faced by the whole fleet.

The behaviour of the fleet as a whole is a result of
intervehicle coordination. Distributed task allocation
strongly contributes to the shift of knowledge and power
from the individual (fleet owner) to the collective (vehicles
composing the fleet). A desired behaviour of the fleet
emerges from the identifiable interest of its participating
vehicles, their beliefs, and collective actions and, as such, is a
shift away from the hierarchical organizational paradigm
(see, e.g., [1]). A major challenge is the identification of a
right decision-maker for each part of the problem, timely
exchange of relevant and up-to-date information among
vehicle agents, and modelling of complex relations in such a
multiagent system. A trade-off between the amount of
computation and the quality of the solution is often nec-
essary. Moreover, minimizing the overhead of communi-
cation required to converge to a desirable global solution is
desirable.

Decentralized coordination algorithms may be the
means to obtain scalability for task allocation in the context
of large-scale open fleets. Here, each self-concerned (vehicle,
driver, or courier) agent aims at achieving a desired local
objective based on a limited local information and by
communicating with the rest of the fleet and interacting with
the environment. Due to the limited local information, one
of the drawbacks of decentralization is lack of control of the
emerging fleet behaviour that cannot be predicted with
certainty. Moreover, to facilitate cooperation, assuming
individually rational agents, we have to consider efficiency
and fairness. How to balance decentralization and central-
ization to improve system performance is much investigated
but still not a completely solved question.

L.1. Contribution. In this work, we present a survey on
multiagent system (MAS) coordination mechanisms for
computationally complex dynamic (one-on-one) task allo-
cation problem (DTAP) and its variations for open vehicle
fleet applications. These problems may be modelled by a
variety of deterministic and dynamic two-dimensional linear
assignment problems, i.e., the problems regarding the as-
signment of two sets that may be referred to as “agents” and
“tasks” with at most one task per agent and one agent per
task, where the tasks appear dynamically and the task as-
signment is fully determined by the (cost, profit, or revenue)
parameter values and the initial conditions. We extend
mathematical models of the variations of the static task
assignment problem to their dynamic counterparts in open
vehicle fleet scenarios considering, among others, self-in-
terested and individually rational vehicle drivers, time re-
strictions, fairness, agent qualification, and personal rank.

We identify some of the main scalable solution methods,
i.e., coordination mechanisms, that can be put at work to
solve these problems. We investigate the theoretical scal-
ability of these approaches and introduce a taxonomy to
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classify them in terms of the level of interdependence in
decision-making available to individual vehicles and cus-
tomers during the coordination process (centralized, dis-
tributed, and decentralized coordination). Our intention
here is not to perform an exhaustive search nor to identify
the most scalable solution procedure. Contrarily, we identify
and mathematically model the variations of the dynamic task
assignment problem applicable to the studied fleet task al-
location contexts and provide general scalability charac-
teristics of their solution approaches. Our intention is to
make it easier for a researcher to solve some variation of the
task allocation problem in large-scale open vehicle fleets by
describing state-of-the-art solutions and their theoretical
scalability results.

Even though some works exist that include reviews of the
state of the art in multiagent-task allocation (see, e.g., [2-6])
and in vehicle fleet coordination (see, e.g., [7-9]) or ride-
sharing optimization (see, e.g., [10, 11]), none of them
addresses one-on-one dynamic task assignment problems in
open vehicle fleets. In addition, a few approaches apply
methods of multiagent-task allocation to the field of vehicle
fleet coordination (see, e.g., [12]) but, to the best of our
knowledge, there is no systematic survey combining both
fields.

The paper is organized as follows. In Section 2, we
discuss some relevant concepts in the context of coordi-
nation for dynamic task allocation in open systems with the
focus on distribution and decentralization of decision-
making. In Section 3, we present mathematical models of
various static and dynamic task assignment problems ap-
plicable in the open vehicle fleet context. Centralized, dis-
tributed, and decentralized state-of-the-art solution
methods and mechanisms for the problems presented in
Section 3 are discussed in Section 4. We conclude the paper
emphasizing open issues and challenges for possible future
research directions in Section 5.

2. Coordination in Open Vehicle Fleets

In this section, we introduce some key concepts and
characteristics of the target domains related to decentral-
izing coordination for scalable and dynamic task allocation.
The coordination problem arises due to the distributed
nature of the control exercised by the fleet’s vehicles.

Generally, coordination may be defined as “the process
of organizing people or groups so that they work together
properly and well” (https://www.merriam-webster.com/
dictionary/coordination). By the coordination in open ve-
hicle fleets for task allocation, we refer to the organization
and management of decision-making within the fleet with
the aim to improve given key performance indicators of a
fleet’s task allocation.

The topics of coordination and task allocation are the
object of studies in multiple disciplines, e.g., operations
research, economics, and computer science. The corre-
sponding definitions and related concepts may vary based on
the specific discipline at hand. In the so-called field of co-
ordination models and languages, for instance, the focus is
on the general-purpose abstractions (so-called coordination
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media) that can be generally used to model and engineer the
patterns of interaction between computational agents—with
no specific reference to a particular application scenario or
coordination problem. In our survey, and in the following,
we focus on the specific issues of dynamic task allocation and
distributed/decentralized coordination, with a particular
emphasis on open vehicle fleets.

2.1. Fleet Coordination. We consider the context with co-
operative vehicles in a large vehicle fleet, which functions as
an organization that constrains the cooperation schemes
within it. The coordination problem here can be tackled
from a bottom-up point of view, considering the emergence
of global properties from the interfleet direct vehicle-to-
vehicle communication and fleet-environment interaction.

For simplicity and without loss of generality, we consider
a two-dimensional space in which tasks may appear ran-
domly at any location in space and time while the vehicles
circulate through a transportation network within the space
to reach them. Each vehicle can have three states: idle, in
which a vehicle is waiting for the assignment of a task,
assigned in which a vehicle is assigned to a task but has still
not reached the task, and assisting in which the vehicle has
reached its assigned task and is assisting it. Only idle and
assigned vehicles can be assigned or reassigned from one
task to another. Once assigned, the vehicles start moving
towards their assigned task. A task is considered completed
once when it is reached and assisted by a vehicle.

Given a dynamically changing set (fleet) of idle and
assigned vehicles, a dynamically changing set of randomly
appearing tasks, and a cost function of the assignment of
each task to every idle and assigned vehicle (e.g., the distance
or time traveled or a given execution cost), the objective is to
dynamically assign these vehicles to tasks in a given time
horizon reaching a globally minimum cost assignment
considering that each task must be performed by exactly one
vehicle.

Coordinating the vehicles in this respect requires that
they find the globally best allocation in a distributed or
decentralized way and resolve conflicts that violate local
constraints. An efficient strategy in this context is a dynamic
(re-)assignment of the vehicles in the fleet to the tasks as they
appear. The vehicles require continuous communication and
processing for task allocation. The coordination system must
ensure a balanced use of shared resources, e.g., vehicle-to-
cloud (V2C) communication bandwidth and vehicle pro-
cessing capacities.

V2C communication is limited in bandwidth and la-
tency, so is the vehicle processing capacity. Coordination
strategies that ignore these communication and computa-
tion constraints may fail to find a fleet’s action plan in close
to real time and thus may be inapt for the application in real-
time fleets (see, e.g., [13]). These fleets require both au-
tonomous and collaborative behaviours since vehicles have
localized viewpoints, knowledge, and control and lack the
overview of the global data integrated from various locations
beyond their local capabilities. Such a dynamic context
requires for coordination fault detection that indicates if the

coordination exists within the fleet (see, e.g., [14]). Once a
coordination fault is detected, a coordination recovery
process can begin in which cooperation can be rebuilt.

Vehicle fleets that rely on one-on-one vehicle task as-
signment are, for example, rescue fleets (see, e.g., [15]), ride-
hailing and taxi service (see, e.g., [16]), ambulance assistance
of urgent out-of-hospital patients (see, e.g., [17]), and home-
delivered restaurant hot meal services (see, e.g., [18]). Ride-
hailing and restaurant hot meal delivery services are ex-
amples of open vehicle fleets that use online on-demand
service platforms (see, e.g., [19]) to allocate in real-time
customers and independent private vehicle owners, drivers,
or couriers, using their personal vehicles. These platforms
usually exploit sensor and GPS data to track the delivery
process in real time [20].

Our focus is on the dynamic scenario with nonrecurring
prearranged and spontaneously requested single-rider
(customer), single-driver trips with at most one pickup and
delivery for each rider and driver. Dynamically appearing
riders (customers) should be allocated to drivers in a one-
on-one manner. Before the allocation, in ride-hailing, a
customer chooses the driver based on the time of arrival and
the price of the ride. In case of hot meal delivery, the system
gives an estimated delivery time to the customer and assigns
a courier that meets such an estimate.

Coordination here is the key issue, including the stages of
communication, resource allocation, and agreement. The
allocation of the dynamically appearing customers over time
needs to be performed in real time and it fails if not
completed within a specified deadline relative to an arrival of
a customer; deadlines must always be met, regardless of the
system load. Conventionally, the matching is based just on
the rider’s personal preferences and the nearby drivers’
availabilities. Reallocation of already matched drivers to
riders that are awaiting the service is not possible even if a
more efficient matching exists. At the end of each trip, every
driver is available for a new rider allocation.

Speedy meal delivery services are constrained in geo-
graphic availability and timing. Usually, restaurants, riders,
and customers have access to the system through an app. A
customer detects his/her location and displays restaurants
that participate in the platform in the region of interest and
are open at the time. Couriers participate in this open fleet
context by delivering whenever they choose and they may
get paid on the individual delivery basis. Once a customer
requests a meal from a restaurant via his/her app, the
corresponding delivery is assigned to a courier available
nearby. The courier picks up the delivery from the restaurant
and delivers it to the customer. After the delivery, a courier is
available for new deliveries.

The allocation of a courier to the customer is conven-
tionally done based on the shortest arrival time to the
restaurant (first-come-first-served strategy) and the avail-
ability of the courier; reallocation is not possible once the
courier is allocated. The challenge here is to assign couriers
to dynamically appearing pickups and deliveries in order to
maximize customer satisfaction (which can be measured in
different ways, as explored in [20]) without violating delivery
times agreed at the time of the customer’s hot meal request.



Task allocation problem in open vehicle fleets considers
both providers of transportation services (vehicle drivers)
and their customers and thus both of them may be con-
sidered active participants in the transportation process. In
the ride-hailing scenario, drivers are usually modelled as
agents and riders as tasks, while in the hot meal delivery
scenario, couriers are agents while meal deliveries are tasks.

Even though the ownership of most of the open fleet
systems today is centralized, not only customers but also
drivers with vehicles may appear dynamically and sponta-
neously in time and space influenced by a variety of factors
unknown in advance such that it is reasonable to assume that
they appear randomly. In this dynamic task allocation
context, available vehicles are assigned to pending customers
as they appear. Each agent and task is assumed to be
characterized by a set of attributes that influences the cost or
profit resulting from an agent-task allocation. In this way,
the task allocation problem that assigns tasks to agents in
time is simplified to task assignment problem focusing on the
one agent-one task allocation at the time (see, e.g., [17, 21]).
Optimized and dynamic task (re-)assignment may consid-
erably improve the performance of the fleet while consid-
ering individual fairness and efliciency (see, e.g., [21]). If
dynamic courier (rider) reallocation is allowed, a substantial
increase in efficiency may be observed, as in the case of
ambulance allocation to out-of-hospital patients (see, e.g.,
[8, 21, 22]).

2.2. Coordination Models for Open Vehicle Fleets. Based on
the ownership of the fleet, its structure, and the level of
decentralizing coordination that we want to achieve in the
fleet task allocation, we can design the following models:

A centralized coordination model, where the task al-
location problem is solved in a single block by only one
decision-maker (e.g., a single enterprise) having total
control over and complete information about the ve-
hicle fleet.

A distributed coordination model, where the global task
allocation problem is decomposed such that each
customer is represented by an autonomous decision-
maker (agent) that may solve its own subproblem only
with its own local decision variables and parameters.
The allocation of a limited number of vehicles (global
constraints) is done through the interaction between
competing customer agents and a vehicle fleet owner (a
single autonomous agent) having available all the fleet
information. Customer agents that compete for the
resources are not willing to disclose their complete
information but will share a part of it if it facilitates
achieving their local objectives. The vehicle fleet owner
agent is responsible for achieving globally efficient
resource allocation by interacting with customer agents
usually through an auction. The problem decomposi-
tion here is done to gain computational efficiency since
customer agents can compute their bids in parallel.
However, the resource allocation decisions are still
made by a single decision-maker (vehicle fleet owner)
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with the requirement on synchronous bidding of
customer agents (see, e.g. [23-25]).

A decentralized coordination model, which further
decentralizes the distributed model by allowing for
multiple resource owner (vehicle) agents, multiple
competing customer agents requesting the trans-
portation service, and asynchrony in decision-making.
Customer agents compete for fleet’s vehicles held by
multiple resource owners while each customer and
resource owner agent has access only to its local in-
formation with no global information available.
Therefore, they must negotiate resource allocation by
running localized algorithms while exchanging relevant
(possibly obsolete) information. Localized algorithms
make the achievement of a desired global objective
easier through simple local interactions of agents with
their environment and other agents, with no need for a
central decision-maker. The decisions specifying these
interactions emerge from local information. Fairness in
resource allocation here plays a major role. The same as
in the distributed model, an agent is not willing to
disclose its complete information but will share a part
of it if it facilitates achieving its local objective. Re-
source allocation here is achieved by the means of a
decentralized protocol.

Generally speaking, coordination is distributed when
complex behaviour within a system does not emerge due to
the control of the system owner, but through interactions
and communication of individual agents operating on local
information, while sharing globally relevant knowledge. This
form of control is typically known as distributed control, that
is, control where each agent is equally responsible for
contributing to the global, complex behaviour by acting
properly on local information. Agents are implicitly aware of
the interaction rules through mechanisms that are based on
the agent’s interaction with other agents and the environ-
ment. The system behaviour is then an emergent property of
distributed coordination mechanisms (algorithms) that act
upon agents, rather than the result of a control mechanism
of a centralized system owner. In decentralized algorithms,
no global clock is assumed, no agent has complete infor-
mation about the systems’ state, every agent takes decisions
based only on local information, and failure of one agent
does not prevent the system to continue running. An ex-
ample is Bitcoin: Instead of one central server owned and
operated by a single entity, Bitcoin’s ledger is distributed
across the globe making it impossible to shut down, break in,
or hack as there is no single central bottleneck of the system.

Let us notice the main difference between distributed
and decentralized coordination models. Distributed coor-
dination relies on local and shared (global) parameters and
variables. Local parameters and variables are private,
whereas shared and global parameters and variables need to
be shared among two or more agents—even among all the
agents of the system. If we assume self-concerned agents,
resource owner can manipulate these parameters and var-
iables or deceive agents in communicating their values to
influence the individual decision-making of each one of
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them and thus obtain the behaviour of the system the re-
source owner wants. This can be prevented by ensuring
individual agent access to nonobsolete and truthful infor-
mation—using, e.g., blockchain technology. Reaching a
globally optimal solution with quality of solution guarantees
is then possible, contrary to the decentralized coordination
case. In the latter case, due to the lack of the global non-
obsolete and truthful information, quality of solution
guarantees generally do not exist. In general, solution ap-
proaches for decentralized coordination concentrate on
finding a feasible (admissible) solution without quality of
solution guarantees. Contrary to the distributed case most
often studied in the operations research field where the
emphasis is on the method’s optimality gap, decentralized
coordination methods are mostly approximate heuristics-
based methods without quality of solution guarantees but
with proven completeness, soundness, and termination.

Open vehicle fleets are intrinsically distributed systems
since they comprise a multitude of geographically distrib-
uted and mutually communicating customers’ and vehicle
drivers’ apps. Traditionally, distributed systems refer to
systems consisting of sequential processes (each one with an
independent thread of control, possibly located on geo-
graphically distributed processors) that coordinate their
actions by exchanging messages to meet a common goal (see,
e.g., [26,27]). The common goal in this context is an efficient
and cost-effective transportation service of the vehicle fleet
while considering individual rationality, preferences, and
constraints whether it is of drivers, riders, or hot meal
delivery customers. Quality of solution guarantees play a
crucial role of sustainable competitive advantage in any
transportation network company.

Distributed open vehicle fleets exhibit some clear strong
points over their centralized counterparts. First of all, they
are more robust than their centralized counterparts because
they can rely on their intrinsic built-in redundancy. They can
operate at a larger scale and assist more customers at once
since they are aggregating vehicle capacity and customer
throughput across all their individual vehicle drivers.
However, distributed open vehicle fleets also have to deal
with intervehicle communication and coordination over-
head that can sometimes make them slower or more difficult
to control than their centralized counterparts. Applying
trustless distributed systems that are meant to operate in an
adversarial environment, such as Bitcoin, in open fleets
entails an additional overhead.

3. Task Assignment Models for Open
Vehicle Fleets

Assignment problems (APs) are among the earliest opti-
mization problems studied in the operations research field.
They involve optimally matching the elements of two or
more sets, where the dimension of the problem refers to the
number of sets to be matched [28]. For example, in two-
dimensional assignment problems, given is a set of agents A
and a set of tasks T and we have to match (assign) tasks to
agents. Tasks are assumed atomic, i.e., each task cannot be
decomposed into subtasks and it can be completed by a

single vehicle. In general, two-dimensional assignment
problems can be solved in polynomial time, while d-di-
mensional assignment problems, with d >2, in general are
NP-hard (see, e.g., [29]).

We distinguish between the static and dynamic assign-
ment problems (see, e.g., [30]). The former refers to the as-
signment of a set of tasks to a set of agents in a given static
environment in which the problem data does not change
during the planning horizon, while in the dynamic task as-
signment problems, both agents and tasks may appear and
disappear dynamically over time. In the open vehicle fleet
setting, agents can be in one of the following three states: idle,
assigned without still having reached the customer, or assisting
a customer, and only idle and assigned agents that have still
not reached their customers can be (re)assigned to unassisted
tasks. In general, agents are assumed renewable, i.e., after
completing a task, an agent’s state changes from assisting a
customer to idle and it becomes assignable again to customers
(tasks) that have not been assisted yet. This is a special case of a
more general computationally complex dynamic vehicle
routing problem (DVRP) in which, for each (vehicle) agent,
we find a minimum cost route that visits a dynamically
changing set of tasks (customers) [31]. Due to the high
computational complexity, myopic algorithms are the most
usual solution approaches for DVRP. For simplicity, we can
assume that agents are nonrenewable, i.e., an agent can be
assigned only to one task; if, after completing a task, it is still
available for new task assignment, it appears as a new agent.

The static and deterministic AP is a computationally easy
problem, which allows us (in theory) to find an optimal
solution in close to real time (in the nonrenewable agent
case). Dynamic AP can be solved by (suboptimal) myopic
approaches that consider only the information available at
the present time with no consideration for future events and
possibly reassign tasks among idle and already assigned
agents to improve the system’s efficiency (see, e.g.,
[8, 17, 21, 22]). However, in the case where tasks are not
randomly appearing, this approach can be significantly
improved by considering future developments.

3.1. Static Task Assignment. Based on the categorization of
the AP models presented in [28], in this section, we consider
the classic assignment problem and its variations relevant in
the open fleet vehicle task assignment considering self-in-
terested and individually rational vehicle users whose tasks
can be performed simultaneously: the classic linear as-
signment problem (LAP), assignment problem recognizing
agent qualification (APRAQ), the bottleneck assignment
problem (BAP), the fair matching problem (FMP), the
minimum deviation assignment problem (MDAP), the
Y. -assignment problem (X.-AP), the semiassignment
problem (SAP), and the assignment problem with side
constraints (APSC). In Figure 1, we give a framework for
easier understanding of the characteristics of both the static
and dynamic version of these problems.

For self-completeness of this article, we bring in the fol-
lowing the descriptions of these problems. Considering that the
number of publications concerning assignment problems is
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FIGURE 1: Static and dynamic task assignment problems in open vehicle fleets.

enormous, the references in this section constitute only a very
limited part of them. For the details and other assignment
problem variations, the reader is referred to [28].

3.1.1. Classic (Linear) Assignment Problem (LAP). The static
classic linear assignment problem involves two sets of the
same size and consists of finding, in a weighted complete
bipartite graph, a perfect matching in which the sum of
weights of the matched edges is as low as possible, i.e., a
minimum-weight  perfect matching. Perfect weighted
matching implies that each node must be matched to some
other node by minimizing the total cost of the arcs in the
(perfect) matching.

The classic linear assignment problem (LAP) can be
defined as follows: given a weighted complete bipartite graph
G = (AUT,E) with two vertex sets A and T, with
n =|A| =|T|, and an edge set E = A x T, with edge weights
c;; on edge (i,j) € E, find a minimum-weight perfect
matching of G, i.e., a perfect matching among vertices in A
and vertices in T such that the sum of the costs of the
matched edges is minimum. An edge (4, j) € E is matched if
two extreme vertices i and j are mutually matched, and a
matching is perfect if every vertex i of A is matched
(assigned) exactly to one vertex j of T, and vice versa. The
LAP is equivalent to the weighted bipartite matching, since
we may assume that the bipartite graph is always complete
by letting the weights of the edges that are missing being
sufficiently large. If |A|#|T|, we can add a number of
dummy nodes to the set with lower cardinality and connect
them by dummy arcs of zero cost to the other set. The
number of dummy nodes should be sufficient to balance the
cardinalities of the two sets.

The LAP is equivalent to the maximum weighted bi-
partite matching (with edge weights w;; >0), since we may
assume that the bipartite graph is always complete by letting
the weights of the edges that are missing being sufficiently

large. Furthermore, also in this case, we can assume that the
two vertex sets of the bipartite graph have the same size. At
this point, we can reformulate the problem as a minimi-
zation problem by considering costs ¢;; = W — w;;, where W
is larger than the maximum of the wjj, and ﬂence, this
problem corresponds to the LAP.

The LAP is a special case of the transportation problem
assuming an equal number of supplier agents and customer
agents and each one with their unitary supply and unitary
demand, respectively. The transportation problem is one of
the special cases of the minimum cost flow problem together
with, e.g., the shortest path problem and the max flow
problem. While it is possible to solve this problem using the
simplex algorithm, specialized algorithms take advantage of
its special network structure and are thus more efficient.

From the multiagent systems’ point of view, in the as-
signment problem, a number of agents need to be assigned
to a number of tasks based on the given cost of agent-task
assignment. In general, each agent can be assigned to any
task. In case an agent is not capable of performing a task, a
given agent-task assignment cost is modelled as a very large
number. All tasks should be performed with the objective to
minimize the total cost of the assignment such that exactly
one agent is assigned to each task and exactly one task to
each agent. The mathematical formulation of the problem is
as follows:

min ZC’J Xij> (1)
subject to
Yx;=1, VjeT, (2)
i=1
n
inj =1, Vie€eA, (3)
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xije{o,l}, VieA,jeT. (4)

Constraints (2) ensure that every task is assigned to only
one agent and constraints (3) ensure that every agent is
assigned to only one task.

The structure of the problem, i.e., the total unimodularity
of the constraint matrix, makes the binary requirements on
the variables unnecessary. In fact, in this case, it can be
proven that the linear relaxation has always an optimal
binary solution (see, e.g., [32, 33]) and, therefore, the LAP is
a linear programming (LP) problem.

3.1.2. The Classic Assignment Problem Recognizing Agent
Qualification (APRAQ). Caron et al. in [34] propose a
mathematical model in which not every agent is qualified to
do every task, and the objective is utility maximization:

max Z pijxij, (5)
i
subject to
i€eA
Y qx;<1, Vi€ A, )
jeT
x;€{0,1}, VieAjeT, (8)

where parameter ¢;; =1 if agent i is qualified to perform task
j» 0 otherwise, parameter p;; is the utility of assigning agent i
to task j (with p;; =0ifg;; =0), and variable x;; =1 ifagenti
is assigned to task j, 0 otherwise. Constraints (6) ensure that
no more than one qualified agent is assigned to any task,
while constraints (7) guarantee that each agent is assigned to
not more than one task.

The classic assignment problem does not consider
fairness. The solution of classic AP (1)-(4) maximizes
utilitarian social welfare (see, e.g., [35]), but it may be unfair
and unsatisfactory since there may be one or more agents
with a much higher task cost than the rest. This is why it is
best applied to centralized open vehicle fleets with a single
owner of the fleet’s vehicles that is interested in the mini-
mization of the overall cost of the fleet’s operation costs but
not in how they are distributed among the vehicles.

3.1.3. Bottleneck Assignment Problem (BAP). To resolve the
issues with fairness and workload distribution, we may
minimize maximum cost among the individual agent-task
assignments and thus maximize the system’s egalitarian
social welfare (see, e.g., [36]). The mathematical program for
the BAP is as follows: minimize max; ;1c; jxi} or minimize

1,
maxi,]-{cij | X = 1} subject to constraijnts (2)-(4) and defi-
nitions of the LAP.
Note that here the integrality requirements cannot be
relaxed. Contrary to the classic AP model, the BAP model
pursues the objective of fairness among agents. It is based on

the optimization of the worst-off performance and provides

a good solution when the minimum requirements of all
agents should be satisfied. However, only the most costly
agent-task assignment influences the objective function,
while the contribution of the rest of the agents is ignored. For
this reason, this approach deteriorates the system efficiency
and thus the system’s utilitarian social welfare.

3.1.4. The Fair Matching Problem (FMP). The fair matching
problem minimizes the difference between the maximum
and minimum assignment values [37]: minimize
maxi,j{cij |x;; = 1} - mini)j{cij |x;; = 1} subject to the same
constraints and definitions as in the classic AP.

This formulation of fairness is not unique. Sun and Yang
in [38] study the concept of fair and optimal allocations.
They define an allocation to be fair and optimal if it is envy-
free and the sum of compensations is maximized, subject to
the compensation assigned to each object is less than or
equal to the maximum compensation limit. They prove that
fair and optimal allocations exist and demonstrate that the
fair and optimal allocation mechanism achieves efficiency,
fairness, and strategy-proofness simultaneously. Andersson
[39] demonstrates that it is also coalitionally strategy-proof,
i.e,, it is not possible for any agent or any coalition of agents
to successfully manipulate the allocation rule.

3.1.5. The Minimum Deviation Assignment Problem
(MDAP). The objective here is to minimize the difference
between the maximum and average assignment costs:
n m
minimize min{n, m} x maxp’q{cpqqu} - 21 Zl CijXij  (9)
i=1 j=

or to minimize the difference between the average and
minimum assignment profit:
n m

minimize Z Z Pijxij — min{n, m} X mins,t{Pstxst}’ (10)
i=1 j=1

subject to constraints (2)-(4). Here, n is the cardinality of
agent set A, and m of task set T', and other definitions are the
same as in the LAP [40, 41].

3.1.6. The X -Assignment Problem (X,-AP). Since there may
be generally multiple different sets of assignments with the
same minimum value for max{ci X j}, the objective here is to
find a set of assignments for which the sum of the k largest
values is minimized. The BAP and LAP can be viewed as
special cases of £, -AP with k = 1 and k = n, respectively.
A recent study on generic mixed integer problem with X,

optimization is done by Filippi et al. [42].

3.1.7. The Semiassignment Problem (SAP). This is the ver-
sion of the assignment problem where every agent or task
may not be unique. This results in a constraint matrix
containing a number of rows or columns with equal coef-
ficients. Kennington and Wang in [43] show examples of
such a problem in workforce and project planning and



scheduling as use case examples. Here, constraints (2) from
the classic LAP are substituted by

m

xij=dj, vj, (11)
i1

everything else being the same as in the classic LAP for the
situation in which there are n agents and m task categories.
Here, m<n, and d; is the number of tasks in task group j
with },d; = n.

Note that if also the agents are not unique and are
clustered into agent groups, with g; agents in each group i,
where Y d; =%,q;, the problem is equivalent to the
transportation problem.

3.1.8. The Assignment Problem with Side Constraints (APSC).
Classic assignment problem can be solved by multiple
centralized and efficient polynomial algorithms. However,
by introducing side constraints, generally, this problem
becomes NP-hard. Side constraints may include budgetary
limitations, degree of technical training of personnel, the
rank of personnel, or time restrictions that limit the as-
signment of agents to tasks.

Aggarval [44] introduces to the classical LAP problem an
additional knapsack-type constraint:

Zrijxijﬁb, (12)
L]

where r;; is the amount of resource used if agent i is assigned
to task j and b is the amount of a resource available. Adding
constraint (12) to LAP results in a resource-constrained
assignment problem (RCAP), which is a knapsack problem
under perfect matching over a bipartite network. Constraint
(12) deranges the unimodularity of the LAP set of con-
straints so that the optimal solution of the linear relaxation
of the problem is no more always within the values {0, 1} and,
hence, integrality constraints cannot be relaxed. The
resulting problem belongs to the class of NP-complete
problems for which no polynomially bounded algorithm is
likely to exist (see, e.g., [44]).

Mazzola and Neebe [45] present a general model for the
assignment problem with side constraints that generalizes
the general assignment problem (GAP) (see, e.g., [46]) and
adds the following constraints to either the classic LAP
model or the classic LAP recognizing agent qualifications:

Zrijkx,-j Sbk’ Vk, (13)
L]

where 7, is the amount of resource k used if agent i is
assigned to task j and by is the amount of resource k
available.

By side constraints, we can model drivers that belong to
different seniority classes and customers that have different
priority levels. Seniority constraints impose for the solution
to be such that no unassigned agent can be assigned to a task
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unless an assigned agent with the same or higher seniority
becomes unassigned, while priority constraints specify that
the solution must be such that no unassigned task can
become assigned without a task with the same or higher
priority becoming unassigned [34].

3.2. Dynamic Task Assignment. In this section, we propose
extensions of the static assignment problem models pre-
sented previously to the dynamic versions in which new
agents and tasks may enter the system in each time period
and the costs or profits of agent-task assignment are updated
in (close to) real time. This problem is similar to the online
bipartite matching problem, in which tasks that appear in
sequence should be assigned to the agents immediately as
they appear. Relating to the previously presented termi-
nology of the static AP, a set of available (idle and assigned)
agents A (that are not assisting any customer) is known in
the given weighted bipartite graph G = (AUT, E). Tasks in T
(along with their incident edges) arrive online. Upon the
arrival of atask j € T, we must assign it to one of agentsi € A
with an existing edge (i, j) € E. At all times, the set of
matched edges must form a (feasible) matching, i.e., each
agent should be matched with at most one task and vice
versa. In case of different cardinalities of the two sets, to
balance the two, dummy elements are added to the set with
lower cardinality.

We assume random arrivals of customer demands
(tasks) over time. In open fleets, we also assume that agents
(drivers and couriers) either become available randomly
after assisting previous tasks (customers) or by entering and
leaving the fleet based on personal interest, available time,
and/or other individual constraints and preferences. Given
are attribute parameters both for agents and tasks that define
their main characteristics in terms of the assignment.

We consider deterministic on-demand task allocation
where the (re-)assignment of vehicles (agents) to tasks is
performed as soon as a new vehicle or task enters the system.
Close to real-time reassignment is beneficial here since the
parameters and variables of the assignment problem are
perfectly known.

Spivez and Powell [30] propose a Markov decision
process model for the dynamic assignment problem. In this
paper, inspired by their work, we propose mathematical
programming models for the variations of the static task
assignment described in the previous section while re-
specting agent-task taxonomy used previously in this paper.

The decisional variables in the dynamic AP receive a
third index such that

1,
Xijr = 0,

Moreover, we introduce two additional binary variables
ayand B, for all i € A, j € T defined as follows:

if task j € T is assigned to agenti € Aatperiod7 € 7,
otherwise.

(14)
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otherwise,
otherwise.

Let  be a set of consecutive time periods of the
planning time horizon. The mathematical formulation of the
deterministic and dynamic LAP problem considering utility
maximization is then given by

7 = max Z Z Z Pij¥ijr> (16)

1€ i€A jeT
subject to
Z Xijr S, Vi, T (17)
jeT
th]‘r—ﬁ]r’ V]’ 7 (18)
icA
O = O — Z Xijr + ;\i,ﬂp Vi,V e {l,...,|T| -1},
jeT
(19)
ﬁj,‘[+1 =ﬁjr_zxij‘r+Tj,T+1’ Vj,VTG {1’ "|g|_1}a
i€A
(20)
;=AY (21)
Bji= Tj,l’ Vjs (22)
xijT € {0: 1}) Vi € Aa] € T)T € g, (23)
a,€{0,1}, VieAreT, (24)
Bj- €{0,1}, VjeT,t€ T, (25)

where p;;, is the utility of assigning agent i to task j at period
7 (note that it may vary through time) and A and T are given
parameters such that

—

- { , ifagenti € Aentersintoset A (the fleet) in period 7,
it =
0,

otherwise.

—

, iftask j € T becomes known in period 7,

T, -
oo

Moreover, based on the assumption of nonrenewable
agents and tasks, we assume that Y . ;A; <1 and
Zregf"ﬁ <1, i.e, every agent and task are unique and enter
into the fleet and thus become available for assignment only
once.

The aim is maximizing the total utilitarian social welfare
over the planning time horizon, which is achieved by

maximizing the assignment utility (16) over all agent-task

otherwise.

(26)

if agenti € Aisknown and available for assignment in period 7,

(15)

if task j € T is known and available for assignment in period 7,

assignments in all periods of the planning time horizon.
Constraints (17) guarantee that each available agent at time
period 7 is assigned to at most one task while unavailable
agents cannot be assigned to any task. Constraints (18)
ensure that at most one agent is assigned to any available task
while no agent can be assigned to any unavailable task.

Constraints (19) and (20) represent the dynamics of
dependent variables a; and 8, assuming that both agents
and tasks disappear from the system at the end of the period
when they are assigned. Furthermore, constraints (21) and
(22) represent the initial conditions of the problem, while the
variable ranges are given by (23)-(25).

We can also consider cost minimization problem where
we substitute (16) with the following objective function:

7 = min Z Z Z CijrXijr> (27)

1€T i€A jeT

subject to

Z Z Z Xije = (28)

icA jeT 1€T

and (17)-(25). Constraint (28) guarantees the assignment of
all the tasks and/or agents in the planning time horizon,
depending on the relative size of these two sets.

3.2.1. The Dynamic Classic Assignment Problem Recognizing
Agent Qualification. Here, the objective function is again
the utility maximization (16), while constraints (17) and (18)
are substituted by the following ones, everything else
remaining the same as in the dynamic LAP:

; qz]'rxz]r S Vi, T, (29)
;\qz‘ﬁxzjr <B:jp Vi (30)
1

where parameter g;;, =1 if agent i is qualified to perform
task j at period 7, 0 otherwise, parameter p; ;. is the utility of
assigning agent i to task j at period 7 (with p;;; =0if g;;,
=0), and variable x;;; =1 if agent i is assigned to task j at
period 7, 0 otherwise. Constraints (29) guarantee that no
more than one qualified agent is assigned to any task, while
constraints (30) ensure that each agent is assigned to not
more than one task. Instead of the profit maximization, here,
we can introduce cost minimization by substituting (16) with
(27) and introducing (28) into the constraint set.

3.2.2. The Dynamic Bottleneck Assignment Problem (DBAP).
The objective function of the DBAP problem can be
formulated as follows: at each period 7 € 7, maximize
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Z = mini’j{piﬁxiﬁ} or maximize Z = mini’j{piﬁ | x50 = 1}.
This maxmin problem can be expressed by maximizing an
additional variable L that is a lower bound for each of the
individual values {p;;; | x;;; = 1} as follows: max L subject to
constraints L<} ;.rp;;.X;;; for all i€ A, 7€7, and

(17)-(25) and definitions of the dynamic LAP.

3.2.3. The Dynamic Fair Matching Problem (DFMP).
Here, at each period 7€ J, we minimize the objective
function maxi,{ciﬁ | x5, = 1} - mini)j{cijr | x50 = 1} and
subject to constraints (17)-(25). Similarly, we can minimize
the difference between the maximum and minimum profit
obtained among agents, i.e., minimize (max,-,j{ Pije | xijr =
1} - mini’j{ Pije | Xijr = 1} and subject to constraints
(17)-(25).

3.2.4. The Dynamic Minimum Deviation Assignment Prob-
lem (DMDAP). Ateach period T € 7, the objective function
is as follows:
minimize min{n, m} x maxp)q{cpqrqu} =2 X CijeXijr
i€A jeT ?
(31)
or

n m
minimize Y Y pijx;; — min{n, m} x ming, {p,x,},
i=1j=1

(32)

subject to constraints (17)-(25) and definitions of the
minimum deviation assignment problem.

3.2.5. The Dynamic X -Assignment Problem (DZ.-AP).
Given parameter k, objective function (16) is modified to

k
Z = max Z Z Z piijijT’ (33)

€T i=1 jeT

subject to constraints (17)-(25) and definitions of the dy-
namic LAP.

3.2.6. The Semiassignment Problem. Here, constraints (18)
from the dynamic LAP are substituted by
m

Xip=difin VT, (34)

i=1

everything else being the same as in the dynamic LAP for the
situation in which there are n agents and m task categories,
where m <n.

3.2.7. The Assignment Problem with Side Constraints.
Side constraints (13) here include also the time index:

Z riijijTSbTi, Vk, T, (35)
jeT
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where 7, is the amount of resource k used if agent i is
assigned to task j at period 7 and by, is the amount of
resource k available at period 7 € J. Constraints (35) are

simply added to the formulation of the dynamic LAP.

3.3. Bottom Line. To sum up, in Table 1, we give the overview
of the characteristics of the treated (static and dynamic) task
assignment problems related to (i) the kind of the social
welfare they optimize (utilitarian, egalitarian, elitist, or a
difference between them), (ii) whether agents are qualified to
perform only certain tasks or not, (iii) including fairness or
not, (iv) whether the agents are considered homogeneous or
not, (v) time restrictions, (vi) personal ranking, and (vii)
technical training.

Note that once we introduce additional constraints to the
classic assignment problem, the resulting model is, generally,
no more resolvable in polynomial time and is highly
computationally expensive. Additionally, we consider tasks
and agents that may be known both at some future time
period and at the first period of the planning time horizon.
Therefore, we can use this model to coordinate task allo-
cation for planned tasks and agents that schedule their
appearance in advance for some future time period, but also
for the tasks and agents that need to be allocated on short
notice or immediately as they get known and enter the
system. To this aim, we must use highly computationally
efficient close to real-time solution approaches and, gen-
erally, exact methods do not suffice for this purpose.
Therefore, we are obliged to use heuristic-based
approximations.

4. Coordination Approaches in Task
Allocation to Fleet’s Vehicles

In this section, we recall the main (coordination) solution
methods for the task allocation problem in open vehicle
fleets in general and the treated assignment problems in
particular, categorizing them in centralized, distributed, and
decentralized (Figure 2), with special attention to those with
the best time complexity. Recall that the static classic as-
signment problem consists in finding the minimum cost
perfect matching of a complete bipartite graph
G = (AUT,E), with E=AXT and n = |A| = |T|.

4.1. Centralized Coordination Approaches. There are a huge
number of algorithms for the linear assignment problem
(LAP). They can be subdivided into primal, dual, and primal-
dual algorithms. The worst-case time complexity of the best
algorithms is O (n*).

We preliminary recall the mathematical formulation of
the dual problem of the linear formulation of the LAP:

maXZui + Zvj, (36)

subject to

U+ v;<¢ Vi, j € {1,...,n}, (37)
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TaBLE 1: Characteristics of the discussed task assignment models.

Model Soc. welfare Agent qualif. Fairness Unique ag./tasks Time restr. Pers. rank Tech. train.
LAP Util. No No Yes No No No
APRAQ Util. Yes No Yes No No No
BAP Egal. No No Yes No No No
FMP El - Eg. No No Yes No No No

El —ut. No No Yes No No No
MDAP Ut. —el. No No Yes No No No
2.-AP Egal. No Yes No No No No
SAP Util. No No Yes No No No
APSC Util. No No No Yes Yes Yes

o

Dynamic task
allocation

/

Coordination approaches

Centralized Decentralized

Distributed

FiGgure 2: Coordination approach framework for task allocation.

where u; and v; are the (dual) variables.

4.1.1. Primal Algorithms. Primal algorithms are in general
special implementations of the network simplex algorithm:
one of the best primal algorithms is proposed in [47] and
runs in O (#%) time.

4.1.2. Dual Algorithms. Dual algorithms are iterative algo-
rithms which at each iteration maintain a feasible dual
solution, and only at the final iteration, they come up with a
primal solution (i.e., a feasible assignment). In this regard,
also the primal-dual algorithms can be viewed as special dual
algorithms. Typical dual algorithms are those based on
successive shortest paths, signature, pseudoflow, interior
point, and auction methods. In the following, we concen-
trate on the auction methods because from the latter, one
can easily derive distributed versions of the same. For ad-
ditional details, the reader is referred to [29, 36].

For a short survey on the above solution algorithms for
the LAP, the reader is referred to a not so recent but detailed
experimental comparison of some of the algorithms in [48].
Another survey on the state-of-the-art algorithms for the
LAP is provided in [36].

4.1.3. Auction Algorithms. The first auction algorithm for
the LAP was given by Bertsekas [49] and successively im-
proved by Bertsekas and Eckstein [50] through a scaling
technique providing an algorithm that runs in
O (n’log(nC)), where C = max{|cij|}. A survey of iterative
combinatorial auction algorithms for task allocation in
multiagent systems can be found in, e.g., [4, 51-53].

The auction algorithm proposed by Bertsekas in [49] is
an iterative algorithm that at each iteration maintains a triple
(x, (u,v)) of primal and dual solutions that satisfy the
complementary slackness conditions such that the dual
solution is feasible. The algorithm terminates when also the
corresponding primal solution is feasible. At each iteration,
the dual solution is updated and the corresponding primal
solution (with respect to complementary slackness condi-
tions) is found.

In particular, given a dual vector v, the optimal (feasible)
dual vector u can be obtained by considering
u; = min-{ci~ - vj}, and, hence, the dual problem can be

AN
rewritten as

n n
maxq(v) = Zminj{cij - vj} + ) v (38)
=1 j=1

Denoting with j; = arg — minj{cl-j - vj}, the primal so-
lution x, with x; =1 and 0 for j#j, withi=1,...,n,
satisfies the complementary slackness conditions.

The dual problem has a nice economical interpretation.
Assume that p; = —v; represents the price that any agent will
pay for being assigned to task j and u; is the utility for agent i
for being assigned to a task. The dual assignment problem
consists in determining u; and p; (i.e., —v;) maximizing the
agents’ total net utility, such that agents’ net utilities cannot
be greater than the costs ¢;; they face. LP duality theory states
that the maximum agents’ total net utility equals the total
assignment cost. At optimum, each task is assigned exactly to
one agent, and the LP duality theory and complementary
slackness conditions in particular assure that each agent i is
assigned to the most profitable task j;, which guarantees that
agent net utility u; — p; is exactly equal to the assignment
cost ¢; ;..

From the LP duality theory applied to the AP, we can
derive the following auction algorithm [51]. Assume that
agents are assigned to tasks through a market mechanism,
with agent i acting according to its own best interest. Assume
that task prices p; = —v; are given. The total agent utility
D juj) is maximized if we set each u; to its largest value
allowed by the dual constraints, that is, #; = min j?ci itp j}.
From the complementary slackness conditions, it follows
that each agent i will bid for the most profitable task j;, i.e.,
with ¢;; + p; = u; in order to be assigned to it. If no task is
bid by more than one agent, we reach an equilibrium and the
assignment is optimal; otherwise, we may change (increase)
task prices p; in order to discourage agents to bid for the
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same task. This mechanism may be regarded as a naive
auction algorithm that proceeds in rounds and halts if we get
an equilibrium. We call it naive because it contains a flaw (as
we will show next), but it motivates a more sophisticated and
correct algorithm.

At each round of the naive auction algorithm, we start
with a partial assignment and a given set of task prices and
repeat the following two steps until all agents are assigned to
their desired task (when we are at the equilibrium):

(1) Bidding step: given task prices p; and a partial as-
signment of agents to tasks, (i) each unassigned agent
i bids for its most profitable task
ji =arg — minj{c,»j + pj} with an offer equal to
pj,+vi» with y; = B; — a;, where o; = minj{cij + pj}
and f3; = min;, jiﬂci itp j}, while (ii) each already
assigned agent still submits the previous winning bid
(without changing their bid offers).

(2) Pricing step: each task j is assigned to the highest
offering bidder (agent) for that target. The price p; of
each task j receiving a new (greater) bid is increased
to the highest received offer, i.e., the new price value
will be equal to p; +y;.

Unfortunately, this naive auction mechanism does not
always work. It gets trapped in a cycle when (a) there is at
least one unassigned agent and (b) each new winner bidder i
submitted an offer for its preferred task j; at its given target
price p;, i, y; = 0, meaning that its first and second best
choices have the same cost.

In order to avoid this to happen, we need to keep rising
the prices of tasks receiving new bids by at least a small
amount € > 0. Therefore, we assume that agent i will bid for
its preferred task j; by offering p i tyite

This means that agent i desires to be assigned to task j; if
cij+ P < min]-{cij + pj} + € = a; + €, which therefore is not
necessarily its best choice. The above condition is known as
e-complementary slackness (see, e.g., [51]).

With this correction, the auction algorithm works
ending in a finite number of rounds (depending on €), with
each task receiving a bid. At the end, we are almost at an
equilibrium with agent i assigned to its almost desired task
j;- In general, this corresponds to an almost optimal solution
for the assignment problem, since complementary condi-
tions are only almost satisfied, while primal and dual
complementary solutions are both feasible. It can be proved
that if the cost ¢;; are integers and 0<e<1/n, then the
(corrected) auction algorithm ends with an optimal solution
for the assignment problem (see, e.g., [51]).

Without loss of generality, let us assume that ¢;; >0, and
let C = maxij{ci]-}. In this case, it can be proved that the
auction algorithm runs in O (n® (C/e)) time (see, e.g., [51]).
Then, choosing 0 < € < 1/, the algorithm returns an optimal
solution in O (n*C) time. By using the scaling technique,
Bertsekas and Eckstein in [50] proposed a modified version
of the above-described auction algorithm that runs in
O(n*log(nC)) time. In real-world vehicle networks, the
quality of solution in localized algorithms for task assign-
ment is related to the communication network quality and
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range of communication. In [54], the influence of the
communication range and different strategies of movement
on the task assignment value in the auction algorithm was
evaluated in simulations in mobile (robot) agent-task allo-
cation scenarios.

4.1.4. Primal-Dual Algorithms. Primal-dual algorithms start
from a dual feasible solution (u,v). From this solution, a
restricted primal problem is defined and solved, consisting
in finding the maximum cardinality matching on the bi-
partite subgraph G' = (AUT,E"), where
E' = {(i, JeElc—u—-v;= 0}. If the optimal matching
has a size equal to n, we are done; otherwise, the dual so-
lution is improved (the dual objective function is increased),
while assuring that also the size of E’ is increased, and the
procedure is repeated.

Note that also the auction algorithms for LAP consider
simultaneously primal and dual solutions but, differently
from primal-dual algorithms, they can improve as well as
worsen both the primal and the dual cost through the in-
termediate iterations, although at the end, the optimal as-
signment is found (see, e.g., [51]).

4.1.5. Hungarian Algorithm. In particular, the Hungarian
algorithm proposed by Munkres [55] is a primal-dual al-
gorithm. The original version of the algorithm runs in O (n*)
time and was improved to O (n*) by Lawler in 1976 (see, e.g.,
[32]) by using successive shortest path technique when
finding a new maximum cardinality matching after having
updated the dual variables.

In the following, we give some insights of the Hungarian
algorithm that will be also useful for describing a decen-
tralized version of the same. The Hungarian algorithm
proceeds as follows:

Start with any feasible dual solution (u,v) and any
matching MCE' = {(i, NeElc—u—v;= 0}. For the
starting dual solution, we can consider v; = min -{ci]-},

j i
with j=1,...,n and ui:mini{ci~—v~}, with
i=1,...,n

] J

While M is not perfect, repeat the following:

(1) Given M and G’ = (AUT, E'), find an alternating
augmenting path P (ie., a sequence of an odd
number of edges that alternate edges of E'\M and
edges of M, starting and ending with nonmatched
edges); augment the matching by considering the
new matching M/ = M\PUP\M. Note that
[M1] = |M]| + 1. Update the matching M (with M)
and repeat until no new alternating augmenting
path exists. M is the maximum cardinality
matching of G'.

(2) If M is not perfect, update the dual solution such
that at least a new edge is added to the set of
(admissible) edges E' = ?(i, j) € Elc;j=u—v; =0},
and continue with a new iteration. In particular, we
can achieve this result by updating the values of u;
with u; + & and the values of vj with vj— 0, where
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d =minqc;; —u;—v;li € Ar,jeTry with A7 and
T'1 being the subsets of the vertices incident to the
edges of the matching.

Searching for the alternating augmenting path can be
done by a graph visiting algorithm that identifies a forest of
alternating trees of G'. Note that in each step of the loop, we
will either be increasing the size of M or the size of E' so this
process must terminate. Furthermore, when the process
terminates, M will be a perfect matching of G' = (AUT, E'),
whose edge set E' is defined according to a feasible dual
solution (u,v). Since the matching is perfect also for the
complete bipartite graph G, the former represents a feasible
primal solution for the assignment problem, respecting
complementary constraints (by construction of E'); there-
fore, the primal and dual solutions are optimal.

4.1.6. Parallel Primal-Dual Algorithms. A certain number of
parallel algorithms for the linear assignment problem have
been proposed. They are parallelized versions of primal-dual
algorithms based on shortest path computations, of the
auction algorithm, and of primal simplex-based methods.
Among the most efficient parallel algorithms for the LAP is
the one proposed by Orlin and Stein [56] that adopting the
cost scaling technique solves the problem using Q(n?)
processors in O (log’ - log (max{cij})) time. For a review,
the reader is referred to [36, 51, 57].

4.1.7. Algorithms for the Bottleneck Assignment Problem.
The bottleneck assignment problem can be solved in
polynomial time, for example, by the so-called threshold
algorithm that alternates two phases (see, e.g., [36, 58]). In
the first one, a threshold value ¢;; is chosen, and in the
second phase, it is checked if the bipartite graph
G' = (AUT,E') admits a perfect matching or not, where
E'={(i, j) € E| <t}

One possible way to implement the first phase is ap-
plying a binary search. This leads to a threshold algorithm
that runs in O (T (n)logn) time, where O (T (n)) is the time
complexity for perfect matching checking. One of the best
time complexity algorithms is by Punnen and Zhang (see,
e.g., [59, 60]) that runs in O(m+/nlogn), where m is the

number of finite entries of the cost matrix {c,-j}.

4.1.8. Algorithms for the Fair Matching Problem. The bal-
anced assignment problem can be solved in polynomial
time, for example, by means of an iterative algorithm based
on a feasibility subroutine that runs in O (kT (n)) (see, e.g.,
[37]), where k <#? is the number of distinct values of ¢;; and
O(T (n)) is the time required to test if there is a feasible
assignment on a subset ECE of the edges of the complete
bipartite graph G = (AUT, E). Testing if there is a feasible
assignment on E corresponds to check if the bipartite graph
G = (AUT, E) admits a perfect matching that can be done by
solving the maximum cardinality matching of G, e.g., in
O (n*°) time [61]. Hence, since k <n?, the overall algorithm
runs in O (n*°) time. Martello et al. in [37] improved the
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algorithm time complexity to O (n*) with a special refine-
ment of the same.

4.1.9. Algorithms for an Online Bipartite Matching. Karp
et al. in [62] evaluate an online algorithm for bipartite
matching by comparing its performance by the worst-case
ratio of its profit to that of the optimal offline algorithm.
They propose an optimal online 1 — 1/e competitive simple
randomized online algorithm to maximize the size of the
matching in an unweighted bipartite graph. The best ap-
proximation algorithm for this problem is presented in [63]
that applies the power of two choices paradigm, i.e., compute
two offline matchings and use them to guide the adaptive
online solutions.

Haeupler et al. in [64] study the unrestricted weighted
problem in the stochastic arrival model and present the first
approximation algorithms for it. They improve 1 — 1/e-ap-
proximation for the online stochastic weighted matching
problem to a 0.667-approximation. Moreover, they apply a
discounted LP technique to give an improved competitive
algorithm for the online stochastic matching problem and
use the dual of the tightened LP to obtain a new upper bound
on the optimal solution with a competitive ratio of 0.684. Via
pseudomatching, they obtain an algorithm with a compet-
itive ratio of 0.7036. They also present simple adaptive online
algorithms to solve the online (weighted) stochastic
matching problem optimally for the union of two matchings.

In [65], at each time step, a task is sampled indepen-
dently from the given distribution and it needs to be
matched upon its arrival to an agent. The goal is to maximize
the number of allocations. An online algorithm is presented
for this problem with a competitive ratio of 0.702. A key idea
of the algorithm is to collect statistics about the decisions of
the optimum offline solution using Monte Carlo sampling
and use these statistics to guide the decisions of the online
algorithm. The algorithm achieves a competitive ratio of
0.705 when the rates are integral.

4.1.10. Summary. While it is possible to solve most of these
problems using the simplex algorithm, each AP variation has
specialized more efficient algorithms designed to take ad-
vantage of its special structure.

Many centralized algorithms have been developed for
solving the assignment problem in polynomial time (see,
e.g., [36]). One of the first such algorithms was the Hun-
garian algorithm [55]. Other solution approaches include
augmenting path methods (see, e.g., [66, 67]), adaptations of
the primal simplex method (see, e.g., [68]), relaxation
methods and auction algorithms (see, e.g., [51]), and sig-
nature methods (see, e.g., [69]).

The complexity of the Hungarian method by using
Fibonacci heaps is O (mn + n*logn) [70]. Duan and Su’s
approach in [71] give an algorithm whose running time for
integer weights is O (m+/nlog N), where m and n are the
number of edges and vertices and N is the largest weight
magnitude. Sankowski in [72] gave an O (Wn®) (O denotes
the so-called “soft O” notation) time, where w is the matrix
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multiplication exponent and W is the highest edge weight in
the graph.

Duan and Pettie in [73] find an O (me™ 'loge™!) running
time algorithm that computes (1 — ¢)-approximate maxi-
mum weight matching for any fixed e.

Dell’Amico and Toth in [48] consider the classic linear
assignment problem with a min-sum objective function, and
the most efficient and easily available sequential codes for its
solution that include shortest path algorithms APC, CTCS,
and LAPm; shortest augmenting path algorithm with re-
duction transfer procedure JV, naive auction and sequential
shortest path algorithm NAUCTION SP, two different
implementations of the auction method, AFLP and AFR,
and pseudoflow cost scaling algorithm CSA. Based on the
results of the computational experiments obtained on dense
instances containing both randomly generated and bench-
mark problems, it is not possible to obtain a precise ranking
of the eight algorithms. However, APC is the fastest code for
the two cost class and has a behaviour, on average, similar to
that of CTCS for the other classes. Algorithm LAPm is the
winner for the uniform random and the geometric classes
and for the instances from the OR library. No dominance
with respect to NAUCTION SP, CTCS, and APC exists for
the remaining classes. Code JV has a good and stable average
performance for all the classes, and it is the best algorithm
for the uniform random (together with LAPm) and for the
single-depot class. CSA performance strongly depends on
the class, and it wins for no-wait flow-shop classes.

4.2. Distributed Coordination Approaches. By distributed, we
consider the algorithms that combine the concepts of
centralized and decentralized coordination, and principally
market-based approaches, where solutions are built based on
a bidding-auctioning procedure between the bidders
(agents) and coordinators that play the role of auctioneers
for allocating tasks to agents. There may be one or more
coordinator agents as intermediaries in the task assignment
process. The most known such algorithm is the auction
algorithm that is presented in the following.

In this section, we recall two distributed solution ap-
proaches, respectively, based on auction algorithm and on
primal-dual Hungarian method.

The Bertsekas auction algorithm (see, e.g., [51]) can be
naturally implemented in a decentralized fashion. Zavlanos
et al. [23] provide a distributed version of the auction al-
gorithm proposed by Bertsekas for the considered net-
worked systems with the lack of global information due to
the limited communication capabilities of the agents.
Updated prices necessary for accurate bidding can be ob-
tained in a multihop fashion only by local exchange of
information between adjacent agents. No shared memory is
available, and the agents are required to store locally all the
pricing information. This approach calculates the optimal
solution in O(An*C) time, with A <n - 1 being the maxi-
mum network diameter of the communication network.

Another market-based algorithm has been proposed
more recently by Liu and Shell in [74] that instead of
auctioning via a series of selfish bids from customers
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(agents) adopts a mechanism from the perspective of a
merchant. The algorithm is capable of producing a solution
(equilibrium) that satisfies both merchant and customers
and is globally optimal; its running time is O (n’logn).

Otte et al. in [75] study various auction algorithms for
task assignment in the multirobot context and study how
lossy communication between the auctioneer and bidders
affects solution quality. They demonstrate both analytically
and experimentally that even though many auction algo-
rithms have similar performance when communication is
perfect, they degrade in different ways as communication
quality decreases from perfect to nonexistent. They compare
six auction algorithms including standard implementations
of the sequential auction, parallel auction, combinatorial
auction; a generalization of the prim allocation auction
called G-Prim; and two multiround variants of a repeated
parallel auction. Variants of these auctions are also con-
sidered in which award information from previous rounds is
rebroadcast by the auctioneer during the later round. They
conclude that the best performing auction changes based on
the reliability of the communication between the bidders
and the auctioneer.

Giordani et al. in [24, 25] propose a distributed version
of the Hungarian method for solving the LAP, based on the
concept of alternating augmenting paths that are searched by
maintaining a forest of alternating trees that is updated
during the execution of the algorithm. In particular, given
the current bipartite subgraph G' = (AUT,E'), where
E' = {(i,j) €Elc;;—u;—v;=0j,and Aand T are agent and
task vertices, respectively, the algorithm maintains forest F,
of all the alternating trees rooted at free task vertices.
Moreover, it maintains forest F, of the alternating trees of G'
rooted at agent vertices containing all the agent/task vertices
not contained in F,. Clearly, the alternating trees in F, are
not connected with vertices in F,.

The algorithm involves root agents that initiate message
exchange with other agents in the network via a depth-first
search and synchronize the decision rounds (iterations, each
containing multiple communication hops) across all agents.
Through autonomous calculations and the communication
with the (agent) neighbors, with respect to the position of the
vertex representing the agent in the spanning alternating
forests, agents get and share the information about the
position of each task vertex (whether in F, or F,), the values
of dual variables related to tasks, the value of ¢ for the dual
variables’ update, the new admissible edge entering in a set of
admissible edges of G' due to the dual variables’ update, and
the root agents r(F,) and r(F,) of forests F, and F,, re-
spectively. All these data are locally stored by each agent. In
this way, there is no common coordinator or a shared
memory of the agent’s system. The agents, depending on the
positions of the related vertices in the forests, change their
roles and accordingly execute some of the steps of the
distributed Hungarian algorithm. The total computational
time is O(n’) as well as the total number of messages ex-
changed by the robots; nonetheless, the computational time
required to perform the local calculation by each robot is
O (n?). Regarding the robustness of the proposed method, if
the agent during the execution of the algorithm stops
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responding, it is considered erroneous and is eliminated
from the further calculations. In the case where the agent was
unmatched in forest F,, the calculation continues without
any modifications, ignoring the agent in question. Other-
wise, the algorithm starts from the beginning excluding the
same.

Chopra et al. in [76] propose a novel distributed version
of the Hungarian method for solving the LAP that does not
use any coordinator or shared memory. Specifically, each
agent runs a local routine to execute ad hoc substeps of the
centralized Hungarian method and exchanges estimates of
the solution with neighboring robots. The authors show that
with their approach, all agents converge to a common op-
timal assignment in a finite number (O (1)) of communi-
cation rounds if agents act synchronously. The overall
performance of their approaches in terms of running time is
only evaluated experimentally.

Eiselt and Marianov in [77] propose a model for the task
assignment to employees with heterogeneous capabilities
and multiple goals. Employees and tasks are mapped into the
skill space where, after finding feasible matchings, they are
assigned to each other by minimizing employee-task dis-
tance to minimize assignment cost, boredom, and unfairness
between employees” workloads.

Peters and Zelewski in [78] develop two goal pro-
gramming models for the employee assignment to work-
places according to both their competencies and preferences
and the workplace requirements and attributes to ensure
effective and efficient task performance. A review and
classification of the literature regarding workforce planning
problems incorporating skills can be found in [79].

The bottleneck assignment problem can be solved in
polynomial time, for example, by the so-called threshold
algorithm that alternates two phases (see, e.g., [36, 58]). In
the first one, a threshold value ¢;; is chosen, and in the
second phase, it is checked if the bipartite graph
G' = (AUT,E') admits a perfect matching or not, where
E'={(i,j) € E|¢; <5}

One possible way to implement the first phase is ap-
plying a binary search. This leads to a threshold algorithm
that runs in O (T (n)logn) time, where O (T (n)) is the time
complexity for perfect matching checking. One of the best
time complexity algorithms by Punnen and Zhang (see, e.g.,
[59, 60]) that runs in O (m+/nlogn ), where m is the number
of finite entries of the cost matrix {cij}. Efrat et al. in [80]
propose algorithms that, assuming planar objects, run in
roughly O (n'*log n) time. Pothen and Fan in [81] propose a
parallel algorithm with O(nm) time complexity, which is
currently among the best practical serial algorithms for
maximum matching. However, its performance is sensitive
to the order in which the vertices are processed for matching.

In [82], Azad et al. study the performance improvement
of augmentation-based parallel matching algorithms for
bipartite cardinality matching on multithreaded machines
over serial algorithms and report extensive results and in-
sights on efficient multithreaded implementations of three
classes of algorithms based on their manner of searching for
augmenting paths: breadth-first search, depth-first search,
and a combination of both.
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In [80], algorithms for the balanced assignment problem
and minimum deviation assignment are presented that run
in roughly O (n!%?) and, as such, are more efficient than the
algorithms in [37, 41] that run in O(n*) time on general
bipartite graphs. Kennington and Wang in [43] present a
shortest augmenting path algorithm for solving the semi-
assignment problem in which each iteration during the final
phase of the procedure (also known as the endgame) obtains
an additional assignment.

4.3. Decentralized Coordination Approaches. In contrast to
centralized and distributed coordination approaches to task
allocation where full knowledge of global information is
assumed available to every relevant decision-maker (central
decision-maker or fleet coordinator (fleet owner) and (ve-
hicle) bidder agents), in the decentralized task assignment
approaches, there is no coordinator and each vehicle agent
disposes only of its local (possibly incomplete and imperfect)
information and finds its local assignment based exclusively
on this information and the communication with the rest of
the agents and interaction with its environment.

In general, decentralized approaches have several ad-
vantages, i.e., real-time property, robustness, and scalability.
These characteristics are in general absent in centralized and
distributed approaches that outperform decentralized ap-
proaches in terms of efficiency especially for large-scale
instances. The decentralized decision-making does not in-
clude any intermediary. In case of imperfect communica-
tion, conflicts may occur. This is why the related literature in
decentralized multivehicle cooperative control is related to
consensus, i.e., the agreement of all vehicles on some
common features by negotiating with their local neighbors.
General consensus issues are related to, e.g., positions, ve-
locities, and attitudes. In the following, we analyze localized,
scalable, and decentralized heuristic algorithms for coor-
dination of deterministic and dynamic task assignment in
open vehicle fleets. We concentrate on the approaches
resulting in both task assignment feasibility and efficiency
even though these approaches usually have no quality of
solution guarantees.

Decentralized task assignment approaches have been
mostly developed in the multirobot and unmanned aerial
vehicle (UAV) coordination domain. The most known ones
are sequential auction-based or consensus and negotiation-
based algorithms (e.g., [83-85]).

One of the most known approaches for the decentralized
task assignment in the coordination of a fleet of unmanned
vehicles when all-to-all intervehicle communication is not
possible is the consensus-based auction algorithm (CBAA)
and its more general version that allows for the assignment
of bundles of tasks to each agent called the consensus-based
bundle algorithm (CBBA) [84].

The CBAA is a polynomial time market-based decen-
tralized task selection agreement protocol running in two
phases: in the first phase, each vehicle places a bid on a task
asynchronously with the rest of the fleet, and in the second,
consensus phase, conflicting assignments are identified and
resolved through local communication between neighboring
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agents within certain predefined rules to avoid task conflicts.
The agents use a consensus strategy to converge on the list of
winning bids and use that list to determine the winner and
associated winning scores. The list accounts for inconsistent
information among agents guaranteeing a conflict-free as-
signment for all. This allows conflict resolution over all tasks
that are robust to inconsistencies in the situational aware-
ness across the fleet and the changes in the communication
network topology. If the resulting scoring scheme satisfies a
diminishing marginal gain property (i.e., the value of a task
does not increase as other tasks are assigned to the same
agent before it), a feasible, conflict-free solution is
guaranteed.

Provided that the scoring function abides by the
principle of diminishing marginal gains, the CBBA has
convergence guarantees. In a synchronized conflict reso-
lution phase over a static communication network, it
produces the same solution as the sequential greedy al-
gorithm sharing across the fleet the corresponding winning
bid values and winning agent information. Moreover, the
convergence time is bounded from above and it does not
depend on the inconsistency in the situational awareness
over the agent set.

In [84], it is analytically shown that CBAA produces the
same solution as some centralized sequential greedy pro-
cedures, and this solution guarantees 50% optimality. Segui-
Gasco et al. [86] propose a decentralized algorithm for
multirobot task allocation with a constant factor approxi-
mation of 63% for positive-valued monotone submodular
utility functions and of 37% for general positive-valued
submodular utility functions. Therefore, the authors im-
prove the approximation guarantee of Choi et al. [84] for
monotone positive-valued submodular utility functions
from 50% to 37%.

The CBBA has also been extended to consider coupled
constraints [87, 88]. Choi et al. in [87] extended CBBA for
heterogeneous task allocation to UAV agents with different
qualifications and various cooperation constraints. The
CBBA was extended with task decomposition and a scoring
modification to allow for soft constraints related to coop-
eration preferences and a decentralized task elimination
protocol that ensures the satisfaction of the hard constraints
related to cooperation requirements. The performance of the
algorithms was analyzed in Monte Carlo simulations in
some randomly generated experiments.

The CBBA was also extended in [88] to consider the
assignment of tasks with assignment constraints and also
with different types of coupled and temporal constraints,
where it was assumed that assigned tasks are executed in the
order defined by their temporal precedence.

The temporal sequential single-item (TeSSI) auction
algorithm [83] allocates tasks with time windows to coop-
erative robot agents using a variant of the sequential single-
item auction algorithm. Contrary to the CBBA algorithm
that does not let the change of the start time of the tasks once
they are allocated and thus reduces the number of tasks that
the algorithm allocates, the TeSSI algorithm overcomes this
limitation by allowing tasks’ start times to change, which
results in higher allocation rates.

Complexity

The main features of the TeSSI algorithm are a fast and
systematic processing of temporal constraints and two
bidding methods that optimize either completion time or a
combination of completion time and distance. The main
objective function used in the TeSSI algorithm is the
makespan (the time the last task is finished) even though it is
also combined with the total distance traveled. Each robot
maintains the temporal consistency of its allocated tasks
using a simple temporal network. The authors show that
TeSSI outperforms a baseline greedy algorithm and the
CBBA through random experiments and related work
datasets.

Ponda et al. in [89] further extend the CBBA to tasks
with time windows and address replanning in dynamic
environments and consider agents with different capabil-
ities. Agents obtain new plans based on the changes in the
environment considering new tasks while pruning older or
irrelevant ones.

One of the drawbacks of the CBBA algorithm is that it
relies on global synchronization mechanisms which are hard
to enforce in decentralized environments. Johnson et al. [85]
proposed the asynchronous CBBA (ACBBA) for agents that
communicate asynchronously. To allow for asynchrony in
communication, the ACBBA contains a set of local
deconfliction rules that do not require access to the global
information. In ACBBA, agents locally replan their actions
that, possibly, affect only a limited number of agents.

Johnson et al. [90] propose a situational awareness al-
gorithm for task assignment when agents predict the bids of
their neighbors, in order to obtain more informed decisions
in a cooperative way.

To respond to the problem with local information
consistency assumption that reduces optimization capabil-
ities compared to global information assumption ap-
proaches, Johnson et al. [91] proposed a bid warped
consensus-based bundle algorithm that converges for all
deterministic objective functions and has nontrivial per-
formance guarantees for submodular and some non-sub-
modular objective functions. They analyze the convergence
and performance of the algorithm and show its efficiency
compared with some other relevant local and global in-
formation approaches.

Another extension to the CBBA is provided by Binetti
et al. [92] that consider the decentralized surveillance
problem by a team of robots. Tasks are assigned to each
robot with the additional constraint that a subset of the tasks
called critical tasks must be assigned. The authors use the
CBBA incorporating hard constraints in order to ensure that
the critical tasks are not left unassigned.

In [93], Garcia and Casbeer present a robust task as-
signment algorithm that reduces communication between
vehicles in uncertain environments. Piece-wise optimal
decentralized allocation of tasks is considered for a group of
unmanned aerial vehicles. They present a framework for
multiagent cooperative decision-making under communi-
cation constraints. Each vehicle estimates the position of all
other vehicles in order to assign tasks based on these esti-
mates, and it also implements event-based broadcasting
strategies that allow the multiagent system representing the
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vehicle fleet to use communication resources more effi-
ciently. The agents implement a simple decentralized auction
scheme in order to resolve possible conflicts.

Cui et al. in [94] investigate game theory-based nego-
tiation for task allocation in the multirobot task assignment
context. Tasks are initially allocated using an approach based
on contract net (see [95]), after which a negotiation ap-
proach employing the utility functions to select the nego-
tiation robot agents and construct the negotiation set is
proposed. Then, a game theory-based negotiation strategy
achieves the Pareto-optimal solution for the task realloca-
tion. Extensive simulation results demonstrate the efficiency
of such a task assignment approach.

Yet another extension of the consensus-based bundle
algorithm (CBBA) allowing for the fast allocation of new
tasks without a full reallocation of existing tasks is CBBA
with partial replanning (CBBA-PR) [96]. The algorithm
enables the multiagent system to trade-off between con-
vergence time and increased coordination by resetting a
portion of their previous allocation at every round of bidding
on tasks. By resetting the last tasks allocated by each agent,
the convergence of the MAS to a conflict-free solution is
assured. CBBA-PR can be further improved by reducing the
team size involved in the replanning, further reducing the
communication burden of the team and runtime of CBBA-
PR.

In [97], Sayyaadi and Moarref investigate a proportional
task assignment problem in which it is desired for (robot)
agents to have an equal duty to capability ratios, i.e., the
agents with more capability should perform more tasks.
They address this problem as a combination of deployment
and consensus problems in which agents should reach
consensus over the value of their duty to capability ratios.
They propose a distributed, asynchronous and scalable al-
gorithm for this problem in the continuous time domain.

Duran et al. in [98] study the problem of finding the list
of solutions with strictly increasing cost for the semi-
assignment problem. Four different algorithms are described
and compared. The results show that they find the exact list
of solutions and considerably reduce the computation times
in comparison with the other exact approaches.

Spivey et al. in [99] propose a distributed, flexible, and
scalable control scheme that evenly allocates tasks. Dynamic
load balancing exploits feedback information about the
status of tasks and vehicles with the objective to keep a
balanced task load and, thus, force cooperation in the so-
lution of the randomized bottleneck task assignment
problem.

In summary, most of the state-of-the-art decentralized
and deterministic coordination approaches for task alloca-
tion are heuristic algorithms developed for multirobot or
UAV task allocation scenarios that often include both op-
erational and tactical constraints of a vehicle fleet and its
environment. Even though their adaptation for the use in
open vehicle fleets does not seem difficult, it remains an open
challenge, especially if we consider task allocation efficiency,
the key performance indicator of commercial open fleets.
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5. Challenges in Open Vehicle
Fleet Coordination

In this paper, we proposed new mathematical programming
models of dynamic versions of the following assignment
problems well known in combinatorial optimization and
applicable in open vehicle fleets: the assignment problem,
bottleneck assignment problem, fair matching problem,
dynamic minimum deviation assignment problem,
Y —assignment problem, the semiassignment problem, the
assignment problem with side constraints, and the assign-
ment problem while recognizing agent qualification. The
goal of the studied problems is finding an optimal (mini-
mum cost or maximum profit) assignment to the (vehicle)
agents of the tasks that are known at the time of decision-
making. These approaches do not take into account un-
known tasks that may appear once when the current tasks
are completed.

With the long-term objective of decentralizing and
democratizing shared mobility, we categorized solution
approaches for static and dynamic task assignment problems
applicable in open vehicle fleets into centralized, distributed,
and decentralized and discussed their main characteristics.
The presented distributed and decentralized task assignment
methods are applicable in distributed and decentralized
open vehicle fleets, respectively. In case of decentralized
fleets, the issues related to privacy, trust, and control in-
trinsic to centralized systems are gone.

We focused on homogeneous vehicle agents and tasks,
i.e., each vehicle agent is able to complete each task with
equal efficiency but varying cost or profit. In the real world,
that might not be the case since in open vehicle fleets, the
vehicles tend to be heterogeneous. The proposed mathe-
matical programs can easily be adapted to this case by
varying the agent-task assignment cost/profit depending on
the performance efficiency of an agent; in case of an agent
inapt to perform a task, its agent-task assignment cost is
assigned a very large value.

With fully decentralized scalable coordination of task
allocation, there is no need to put limits to the size of the
system. However, even though scalable task allocation and
related coordination mechanisms are essential for efficiently
managing large-scale open vehicle fleet systems, it should be
noticed that, for real-world applications, they need to be
complemented with scalable and efficient solution ap-
proaches to other combinatorial optimization problems
depending on the context, e.g., dial-a-ride problem and
traveling salesperson problem, etc.

We dealt with the deterministic and dynamic assignment
problem where real-time reassignment is beneficial since
both the variables and parameters of the optimization
problem are perfectly known at each period. However, when
dealing with real-world stochastic environments with in-
creased sensor noise, a too high frequency of task reas-
signment may result in a churning effect in the assignment
and may lead to increased human errors. Thus, a chosen
coordination method must consider churning in this context
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to obtain good overall task allocation performance (see, e.g.,
[100]).

A truly open vehicle fleet system should work also based
on heterogeneous software agents produced by multiple
producers. The agent software could be an open source
and/or there may be multiple proprietary software com-
panies working on a common open fleet coordination
standard. The Agreement Technologies (AT) paradigm
[101] identifies and relates various such technologies. It
provides a sandbox of mechanisms to support coordination
among (heterogeneous) autonomous software agents,
which focuses on the concept of agreement between them.
To this respect, AT-based systems not only support the
interactions for reaching an agreement in a coordinated
manner (e.g., as part of a distributed or decentralized al-
gorithm) but are also endowed with means to specify and
govern the “space” of agreements that can be reached, as
well as monitoring agreement execution. In particular, in
truly open vehicle fleet systems where there may be a
multitude of (possibly heterogeneous) software providers,
semantic mismatches among vehicle agents need to be dealt
with through the alignment of ontologies, so that vehicle
agents can reach a common understanding on the elements
of agreements.

Furthermore, (weak) constraints on agreement and
agreement processes (often also called norms) need to be
defined and represented in a declarative manner, so au-
tonomous agents can decide as to whether they will adopt
them, determine as to how far they are applicable in a certain
situation, dynamically generate priorities among conflicting
norms depending on the context, etc. In addition, trust and
reputation models are necessary for keeping track of
whether the agreements reached, and their executions, re-
spect the requirements put forward by norms and organi-
zational constraints. So, norms and trust can be conceived as
a priori and a posteriori approaches, respectively, to support
the security in relation to the coordination process. How to
find seamless and effective means of integrating the different
distributed and decentralized algorithms outlined in this
paper in such a framework is still an open issue that we will
treat in our future work.

The presented distributed and decentralized coordina-
tion methods for dynamic task assignment may be applied to
semiautonomous and autonomous vehicles and are a nec-
essary part of reaching full vehicle fleet autonomy. They may
not fix the mobility concerns, but they will definitely im-
prove them as they are directly related to giving a higher
control both to an individual driver (or to an autonomous
vehicle) and to a customer (rider). Intrinsically, these
methods aid in changing the hierarchical tree structure of
the transportation networks to a more horizontal one. In-
direct benefits of such coordination methods, among others,
include higher efficiency, smaller carbon footprints, and less
traffic jams. In the long run, they will facilitate more
decentralized, autonomous, and transparent open vehicle
fleets, but above all, they will further the task allocation
efficiency and fair rewards and benefits of vehicles, drivers,
customers, and riders proportional to their participation in
large and open fleets.
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