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Bike3S: A Tool for Bike Sharing Systems Simulation 

Vehicle sharing systems, such as bike, car or motorcycle sharing systems, are be-

coming increasingly popular in big cities as they provide a cheap and green 

means of mobility. The effectiveness and efficiency, and thus, the quality of ser-

vice of such systems depends, among other factors, on different strategic and op-

erational management decisions and policies, like the dimension of the fleet or 

the distribution of vehicles. In particular, the problem of agglutination of availa-

ble vehicles in certain areas whereas no vehicles are available in other areas is a 

common problem that needs to be tackled by the operators of such sharing sys-

tems. Recently, research works have been focusing on adaptive strategies to re-

duce such imbalances, mainly through dynamic pricing policies. However, there 

is no best operational management strategy for all types of bike sharing systems, 

so it is of foremost importance to be able to anticipate and evaluate the potential 

effects of such operational management strategies before they can be successfully 

deployed in the wild. In this paper we present Bike3S, a simulator for a station-

based bike sharing system. The simulator performs semi-realistic simulations of 

the operation of a bike sharing system in a given area of interest and allows for 

evaluating and testing different management decisions and strategies. In particu-

lar, the simulator has been designed to test different station capacities, station dis-

tributions, and balancing strategies.  The simulator carries out microscopic agent-

based simulations, where users of different types can be defined that act accord-

ing to their individual goals and objectives which influences the overall dynamics 

of the whole system.    

Keywords: Bike sharing, Agent-based simulation, Smart transportation, Smart 

mobility, Multi-agent systems. 

1 Introduction 

Nowadays, in urban mobility there is a trend towards limiting the use of vehicles with 

combustion engine, especially if they are used for private transportation. The aim is to 

reduce their environmental impact as well as the occupation of public spaces. At the 

same time, citizens are demanding flexible, individualised mobility solutions that adapt 

to their specific needs at any moment, and that are aligned with their environmental, 
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health and cost concerns. As a result, there is a growing deployment of sustainable mo-

bility systems, with zero or low emissions and shared vehicles.  

In this context, many big cities around the world are encouraging cycling mobil-

ity among their citizens, not only by improving the cycling infrastructure (bicycle lanes 

etc.), but also by installing bike-sharing systems (BSS). Some BSS (e.g. BikeShare in 

Seattle or DB Callabike in Munich) are free-floating systems that allow citizens to pick 

up and return a bike at any location within a certain area in town, but most systems are 

station-based, i.e. they rely on a set of rental stations with fixed locations. Several BSS 

are quite sizeable, reaching about 20000 rental bicycles in Paris (Vélib) and more than 

78000 in Hangzhou or 90000 inWuhan, China (Soriguera & Jiménez-Meroño, 2020). 

Studies have shown that the adoption of new BSS depends strongly on the perception of 

their efficiency and positive effects, individually and within the community. 

Both the quality of service offered to the citizens, as well as the (economic and 

environmental) cost of running a BSS depends strongly on taking proper management 

decisions. This does not only include strategic choices regarding the positioning and di-

mensioning of rental stations, the selection of adequate bicycle models, etc., but also on 

operational decisions. Resources in a BSS are limited, and not being able to find an 

available bike at some stations, or not being able to return it to another one due to the 

lack of free slots, are events that can severely deteriorate user experience in a BSS. ICT-

based solutions that allow users to reserve bicycles or free slots at some stations palliate 

this problem, but proper bike balancing mechanisms are needed to attack the problem at 

its core. 

Several research works have been done so as to optimise the use of trucks to 

keep the bike sharing fleet as balanced as possible, either statically (typically at night) 
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or dynamically (during operation) trying to match the expected demand with the availa-

ble resources. 

Still, it is known that there is no best management strategy for all types of BSS, 

so it is of foremost importance to be able to anticipate and evaluate the potential effects 

of such operational management strategies in a particular BSS before they can be suc-

cessfully deployed in the wild. For this purpose, firstly, a particular BSS needs to be 

modelled at sufficient level of detail, including the positions and size of rental stations, 

a town cycling and street network, different user demand patterns, etc. And, secondly, 

the action space of BSS users and their behavioural choices need to be realistically 

modelled, in particular with regard to economic and social stimuli. To the best of our 

knowledge, there are currently no BSS simulators that fully account for these requisites. 

In this paper we present Bike3S1, a simulator for a station-based bike sharing 

system. The simulator performs semi-realistic simulations of the operation of a bike 

sharing system in a given area of interest and allows for evaluating and testing different 

management decisions and strategies. In particular, the simulator has been designed to 

test different stations capacities, station distributions, and balancing strategies.  The 

simulator carries out microscopic agent-based simulations, where users of different 

types can be defined that act according to their individual goals and objectives which in-

fluences the overall dynamics of the whole system. 

The rest of the paper is organised as follows. In Section 2 we discuss related 

work on bicycle sharing systems simulation. Sections 3 focuses on station-based BSS 

that we are particularly concerned with. Section 4 discusses the general architecture of 

the Bike3S simulator and its different elements in detail. We evaluate our proposal in 

 
1 https://github.com/gia-urjc/Bike3S-Simulator 
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Section 5, where we put forward different use cases, including the application of Bike3S 

to BSS scenarios for the cities of Madrid and London. Section 6 summarises our work, 

outlines the lessons we have learnt, and points to future lines of work. 

2 Related works 

Microscopic simulation has been successfully used in the transportation community for 

many years. Specially, several well-known tools were created for traffic simulation, 

such as SUMO (Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, 2012), MATSim 

(Horni, Nagel & Axhausen, 2016) or PTV Vissim (Fellendorf, 1994). 

The state of the art on simulating bike sharing systems is not as advanced as 

those works on traffic simulation mentioned above. Nevertheless, the increase of popu-

larity of this kind of transportation means is provoking that the research community is 

paying attention to this area. 

Chemla et al. (2013) presented a discrete-events open-source simulator 

(OADLIBSim) for evaluating their proposed algorithms for dynamic balancing. The 

user behaviour for choosing stations combines walking and riding distances. If there are 

no available bikes at a station the user may try in a different one up to a limited number 

of times. The number of satisfied users is taken as a quality measure to compare differ-

ent balancing strategies. Unfortunately, the simulator is no longer available. 

Caggiani, and Ottomanelli (2012) proposed a model and simulator with the goal 

of optimising bikes repositioning and routes of carrier vehicles. In their model, a day is 

divided into discrete time intervals. At each interval the O-D demand is considered, and 

new states of stations are calculated. A user that fails to hire a bike (empty station) is re-

moved and, if the destination is full, she has to wait to return her bike.  
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Romero, Moura, Ibeas and Alonso (2015) combined the use of cars, buses and 

bikes into an integrated transportation model. Their focus is on modelling users’ trans-

portation choices based on urban transportation infrastructures so as to analyse their ef-

fect on urban mobility. Our objective is more focused on bike sharing infrastructures, 

mainly oriented towards balancing strategies. 

Soriguera, Casado and Jiménez (2018) developed a very complete simulation 

model and tool with the goal of supporting the decisions regarding deploying a BSS. 

The tool is based on Matlab. They include repositioning trucks and the possibility of us-

ing electric bikes. Users take and return bikes as near as possible to their locations (it is 

assumed that users know about resource availability). This work is probably the closest 

to ours. We keep electric bikes as part of our future lines. Our simulator is more general 

leaving most of the users’ decisions (e.g. next station) up to the specific user implemen-

tation, as we will see later. 

Dubernet and Axhausen (2014) created a multiagent simulation framework in 

which they focus on modelling users’ behaviour, especially in reaction to changes in the 

relocation strategy. Agents have daily plans, which can be updated according to the bike 

sharing system state. The authors point out that agent capabilities can be easily ex-

tended. 

Ji, Cherry, Han and Jordan (2014) developed a Monte Carlo simulation model to 

evaluate the efficiency of an electric bike sharing systems. Their goal is to obtain the 

number of e-bikes and batteries needed to meet the demand and recharge rates. They fo-

cus on trip generation, length and duration demand variables. Only round trips are con-

sidered in the model, although the authors state that it can be easily extended to one-

way trips. In general, the overlap between this simulation model and ours is not too big: 

they do not deal with balancing strategies whereas the management of electric bikes is 
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part of our future work. Nevertheless, this model is a good reference for the future ex-

tension of our simulator. 

Lin and Liang (2017) built a simulation model on top of the Arena2 simulation 

software. Their goal is to obtain the optimal number of repositioning vehicles to mini-

mise users’ waiting time at stations (users wait at stations until a bike/slot is available, 

they do not walk to another station). The initial state of stations, arrival rate, O-D proba-

bility matrix, rental time and waiting probability can be configured. However, the repo-

sitioning strategy is fixed. 

Saltzman and Bradford (2016) proposed a simulation model to analyse how the 

change of the initial state of the system affects the shortage of bikes or slots during its 

operation. In their model, users wait up to one or two minutes in case they do not find a 

bike, then they leave the system. They created a simulator with visual representation for 

the city of San Francisco. 

Gámez-Pérez, Arroyo and Puente-Rivera (2019) used a simulation model to 

evaluate the performance of bike sharing systems in terms of number of trips and, dif-

ferently to other approaches, the environmental effect of cycling (CO2 emissions). Their 

model includes variables such as socioeconomic growth, transportation infrastructure 

and urban mobility patterns. Their approach is a rather long-term simulation (10 years) 

aimed at a global analysis, so it targets a different application from ours. 

Jian, Freund, Wiberg and Henderson (2016) proposed a method for optimising 

the initial allocation of bikes and docks at the beginning of the day. Their approach is 

based on a discrete-event simulation model (every minute). They randomly generate us-

ers at stations (time varying Poisson process) and trips according to an O-D probability 

 
2 https://www.arenasimulation.com/ 
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distribution matrix, as well as trip durations. If a user cannot take a bike because the sta-

tion is empty, she abandons the system, while she goes (at most three attempts) to the 

nearest station in case of trying to return a bike at a full station.  

One of the main uses of BSS simulators is often the evaluation of bike balancing 

strategies, e.g., strategies to (re-)distribute bikes in the area in order to adapt to demand 

variations. Traditionally, bike balancing has been done by trucks that transport bicycles 

from some stations to others. Some research has focused on optimizing the static bal-

ancing problem (Chemla, Meunier, Pradeau, Calvo & Yahiaoui, 2013; Forma, Raviv & 

Tzur, 2015), where the routes of trucks at night or off-peak periods are optimised. More 

recently, the dynamic version of the problem has been considered, which involves pre-

dicting the demand at each station in the next period and optimizing the distribution of 

bikes among stations so as to maximise the number of trips (i.e. reduce the number of 

“no-service” situations) (Contardo, Morency, & Rousseau, 2012; O'Mahony, Shmoys, 

2015; Schuijbroek, Hampshire, & Van Hoeve, 2017). While those approaches only con-

sider trucks as the means to rebalance the bike-sharing system, there are other ap-

proaches that try to incentivise bike users to contribute to system rebalancing (Chemla, 

Meunier, Pradeau, Calvo & Yahiaoui, 2013; Fricker & Gast, 2012; Pfrommer, Warring-

ton, Schildbach & Morari, 2014; Waserhole & Jost, 2016). For this purpose, prices are 

commonly used as incentives. For example, in the city of Madrid BiciMAD3 grants dis-

counts over the usual rental price if a user picks up a bike at a station that is almost full 

with parked bicycles or if she returns it to a station with many empty slots. Experiments 

with approaches that modify rental prices dynamically, based on the BSS load situation, 

and with social stimuli to achieve voluntary travel behaviour change of BSS clients 

 
3Public bike sharing system of Madrid (Spain): https://www.bicimad.com/ 
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have also been reported (Chemla, Meunier, Pradeau, Calvo & Yahiaoui, 2013; Haider, 

Nikolaev, Kang & Kwon, 2018; Pfrommer, Warrington, Schildbach & Morari, 2014). 

In summary, most existing works on BSS simulation created simulators for eval-

uating their particular balancing approaches rather than general tools. Almost none of 

the tools has a visual interface. They all use Poisson probability distributions for gener-

ating demand. User behaviour on empty/full stations varies among leaving, waiting or 

going to another station, but usually only one of those criteria is used. By contrast, the 

approach presented in this paper is flexible and admits all those different behaviours 

within the same simulation. While most existing proposals generate demand at stations, 

we are more general and allow specifying points of demand everywhere, which of 

course includes docking stations. 

In general, we present in this paper a BSS simulator that is highly configurable 

with many parameters at different levels: global, user models, user generation, balanc-

ing strategies. User types and strategies can be easily extended by developers. In addi-

tion, it includes user interfaces for configuring, simulating and visualisation. To the best 

of our knowledge, there are not any other BSS simulators as complete as the one pre-

sented in this paper. 

3 Station-based Bike Sharing Systems 

In this section we describe the general functioning of a station-based bike sharing sys-

tem. The description is inspired by the functioning of the BICIMAD system in the city 

of Madrid in Spain. However, it is very general and fits many similar systems in other 

cities. 

A station-based bike sharing system consists of a set of docking stations distrib-

uted in an area of interest (typically a city) and a set of bikes that can be taken from or 
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returned to a station. Stations are at fixed positions and have a set of slots where bikes 

can be plugged into. The number of operative slots of a station represents its capacity. 

At a given moment, a station may have broken slots, or some slots may be occupied by 

broken bikes. We do not deal with such cases. However, they could be easily modelled 

as a decrease in the station’s capacity.  

In general, when a user wants to use the system she would go to a station, take a 

bike and return it after some time at another station. A user may go directly to a station 

close to her position or she could consult some kind of information or recommendation 

service to find the closest station. Furthermore, we assume that there is some kind of 

registry of users (e.g., long-term contracts or occasional users) and also that there is 

some type of payment involved in the use of the system. However, these aspects are not 

included in our simulation tool.  

Besides the possibility of simply taking an available bike at a station, we con-

sider that it is possible to reserve a bike (or a slot for returning a bike) at a station. Usu-

ally, systems that allow for reservations block the reserved bike (or slot) for a fixed 

amount of time, such that no other user can use it. In the BICIMAD system in Madrid, 

this reservation time is 20 minutes. Thus, any bike in the system would be either “in 

use”, “available at a station” or “reserved at a station”. Regarding the empty slots, they 

may be either “available for use” or “reserved”.     

Depending on the situation of the infrastructure (e.g., the availability of bikes or 

slots), as well as on the users individual objectives, each user that enters the bike shar-

ing system follows a path from an initial state to an end state within the diagram pre-

sented in Fig. 1. The proposed user life cycle is general enough to encompass many dif-

ferent user models to be running in the same simulation. User models are characterised 
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by their behaviour in the three user decision nodes (hexagons in Fig. 1): “rental”, “after 

taking bike” and “return”. 

 

 

Fig. 1. User life cycle state diagram. Hexagons represent user decisions.  

 

A user appears in the system at some time and position with the intention to rent 

a bike. In general, users appear at any locations in the city, not necessarily at stations. 

After appearing, the user handles a “rental decision” with the following possible out-

comes: i) reserve a bike at some station, ii) go directly to some station in order to rent a 

bike, or iii) abandon the system. For reserving and/or finding stations, the user may use 

some available information or recommendation system.  If the user decided to reserve a 
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bike, she tries to do so (possibly using some application). If the reservation has been 

successful, the user goes to the station where she reserved a bike. If the reservation was 

not successful, the user again has to “decide” what to do. An active reservation may fin-

ish after some timeout period, without the user having reached the station. We assume 

that the user is informed about such a timeout (e.g., via an app) and thus, has to retake 

again her rental decision. In case a user arrives at a station (without a reservation), it 

may happen that there are no bikes available when the user arrives. In such a case, the 

user has to “decide” again what is her next step. After a failed reservation intent or after 

arriving at a station with no available bikes, a user may “wait and retry” after some 

time. That is, she may try to reserve again or may wait for an available bike at the same 

station.  Furthermore, as it can be seen in the figure, the user has always the choice to 

abandon the system without taking a bike. Usually, a user would abandon if she does 

not find a bike after trying in one or more stations, if there is no bike available at a sta-

tion closed to her current position, after waiting for availability for some time, etc.   

Once the user is able to take a bike (either with or without a reservation), she 

will “decide” whether to take some ride in the city or to go directly towards a destina-

tion point. In the second case, the user will directly take the “return decision” whereas 

in the first case she will decide on returning the bike after the ride has finished. In the 

“user return decision”, she will select a station to leave the bike (usually near her desti-

nation point) and decide to either reserve a slot at that station or to go there without a 

reservation. 

The reservation of slots is treated similarly as the reservation of bikes. The user 

re-decides if a reservation intent has not been successful and also if the reservation 

timeout has occurred. If the user goes directly to a station (without a reservation), it 

could be possible that, after arriving, there is no empty slot available. Also, in this case 
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the user has to reconsider its return decision. Again, if reserving a slot or returning a 

bike fails, the user may “wait and retry” again at the same station. Eventually, the user 

reaches a station with an available slot (with or without reservation) and can return the 

bike, walk to her final destination and leaves the system. It should be noted that a user 

cannot abandon the system when she still holds a bike, as it must be returned first. That 

means, we do not consider possible malicious behaviours of users. 

It should be noted that the “user rental decision” and the “user return decision” 

may be repeated during the live cycle of the user in the system. For example, suppose 

that a user appears and decides (“user rental decision”) to go to a station. If upon arrival 

the station is empty, then a “user rental decision” has to be made to decide the next ac-

tion (e.g. try in a different station, wait some time, etc.). Obviously, a user knows about 

past events (e.g., failed reservations, failed bike rentals, etc.) and, thus, may decide dif-

ferently in these decision processes in different situations (e.g. do not go to a station al-

ready visited to return a bike). 

4 Architecture 

In this section we describe the architecture of the Bike3S simulator, whose main build-

ing blocks are depicted in Fig. 2.  
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Fig. 2. Simulator architecture. 

 

The core of the simulator consists of the simulation engine that manages the us-

ers as well as the bike sharing system infrastructure.  

The bike sharing infrastructure represents the physical entities of the bike shar-

ing system, i.e. stations and bikes, in the simulator. It contains information about the lo-

cation of stations, number of available bikes and slots, etc. and of the bikes and slots 

(their current states). In the current version of the simulator, we do not distinguish 

among specific bikes and/or slots. However, it would be easy to extend the simulator in 

the future to account for characteristic like bike usage statistics, maintenance, load level 

(if electric), etc. The infrastructure is in charge of managing bike rentals and returns as 

well as bike and slot reservations.  

A simulation usually involves several users, possibly of different types. During 

the simulation, users interact with the infrastructure to take/return bikes or make reser-

vations of bikes or slots. In order to take their decisions, users may access external in-

formation or recommendation systems. In the figure we represent three kinds of external 
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services: (i) fleet manager refers to the operator of the system who is able to accomplish 

actions that would modify something in the infrastructure, moving bikes with trucks or 

changing fares, for example; (ii) information services provide (objective) information to 

users about the current state of the fleet, such as the number of bikes in a station, closest 

station with available bikes, distance to a station, etc.; and (iii) recommendation services 

provide more processed information, which may include suggestions or requests to go 

to specific stations because it is better to keep the bike fleet balanced.  

The external services can be integrated in the simulator. In particular, it is possi-

ble to define and integrate different recommendation services and/or fleet managers 

with different behaviours.   

The initial simulation setup is accomplished through a Configuration module 

that is in charge of specifying global simulation parameters, the initial situation of sta-

tions, and the generation of users. During a simulation, the simulation engine stores the 

necessary information for all the events that have occurred in external files (Simulation 

History). These files can be used later to visualise the simulation in a graphic interface 

(Visualization) or to analyse the performance of simulated system with the Data Analy-

sis module.  

The general architecture decouples the simulation itself from the Configuration, 

Visualization and Data Analysis modules. The connection between these modules is ac-

complished with files in the Json4 format. This allows for an easy creation of other mod-

ules that could be integrated into the architecture.  

 
4 JavaScript Object Notation (JSON) is a lightweight data-interchange format. https://json.org/ 
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The simulation core (backend) has been implemented in Java. For the user inter-

faces (frontend) we used Electron and Typescript, while Angular was used for the visu-

alization component. 

4.1 Simulation Engine 

There are two main approaches to implement agent-based simulators: i) continuous sim-

ulation, and ii) event-based simulation. In continuous simulation, a fixed time-step is 

defined, and the system executes the agents’ actions (if any) and updates the state of the 

environment accordingly at each time step. In many steps there might not be no action 

nor any changes with respect to the previous state. On the other hand, in event-based 

simulation, the state of the environment is only updated at the precise time some event 

occurs. The different simulated entities may fire new events, which are processed by the 

simulator in sequential order.   

In our case, we follow an event-based approach, where the events correspond to 

the different states of the live cycle of users in the system (as shown in Fig. 1). 

Table 1 shows a brief explanation of each event type. Although not detailed 

there, each event type has different parameters: at least the time instant, and the user in-

volved. Some events have additional parameters (involved station, reservation, …), de-

pending on the event type. 
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Table 1.Event types. 

Event type Description 
User Appears Represents the user appearance in the system.  

User Decides Rental The user takes the “user rental decision”, deciding to 
abandon, go directly to a station or to try a reservation.  

User Arrives at Station 
(to rent) 

The user arrives at a station to rent a bike. It is not sure 
that the user will be able to take a bike: it depends on if 
the station has bikes available 

User Tries to Reserve 
Bike  

A user tries to make a reservation of a bike at a station. 
The reservation intent may be successful or unsuccessful. 
If unsuccessful, the user again takes the “user rental deci-
sion”. If the reservation was successful, the user has a 
reservation. 

User Has Bike Reser-
vation 

If a user has a bike reservation, she walks towards the 
corresponding station. The reservation may finish with a 
timeout before the user arrives at the destination station. 

Bike Reservation 
Timeout 

A bike reservation has expired before the user arrived at 
the station. The user will have to take again the “user 
rental decision”.  

User Takes Bike 

The user takes a bike from the station and performs the 
“user decision after taking bike”. There are two options: 
either to take a ride or to decide to go to some station to 
return the bike. 

User Finishes Ride The user has cycled somewhere and now has decided 
that she wants to go to a station to return the bike. 

User Decides Return 

This event corresponds to the “user return decision”. 
There are two options: try to reserve a slot at the desired 
return station or to go directly to the desired return sta-
tion.   

User Arrives at Station 
(to return bike) 

The user arrives at a station to return the bike. As the sta-
tion may have no available slots, it is not sure the user 
will be able to return her bike there. In this case, she 
would have to take again the  “user return decision”. 

User Tries to Reserve 
Slot  

A user tries to reserve a slot at a station. The reservation 
intent may be successful or unsuccessful. If unsuccessful, 
the user again takes the “user return decision”. If the res-
ervation was successful, the user has a slot reservation. 

User Has Slot Reserva-
tion 

If a user has a slot reservation, she cycles towards the 
corresponding station. The reservation may finish with a 
timeout before the user arrives at the destination station. 

Slot Reservation 
Timeout 

The slot reservation has finished before the user arrives 
at the station.  

User Returns Bike The user returns the bike at the station and walks to her 
final destination.  

User Arrives at Desti-
nation  

The user has reached her destination and leaves the sys-
tem. 

User Leaves System The user leaves the system. 
Fleet manager - Take 
Bike from Station 

A bike is taken from a station (may be issued by the fleet 
manager). 
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Fleet manager - Add 
Bike to Station 

A bike is added to a station (may be issued by the fleet 
manager). 

Fleet manager - Check 
Situation 

The fleet manager checks the situation of the infrastruc-
ture and may decide to introduce modifications or may 
issue managing events. 

 

The simulation engine operation is based on a priority queue of events (ordered 

by the time instant they happen). Initially, for each user to be simulated an event of type 

“User Appears” is created with the time and location indicated in the users’ configura-

tion file. Then, the events are processed in order. The execution of events may require 

some decisions to be made by the user, and usually creates and inserts new events into 

the queue.  

The last three events can be issued by the fleet operator. “Take Bike From Sta-

tion” and “Add Bike To Station” allows a fleet operator to take bikes from the system 

(e.g., for repairing), adding new bikes to the system, or moving bikes from one station 

to another, e.g. to implement rebalancing strategies that are carried out with trucks (as it 

is done in many real world bike-sharing systems). “Check Situation” is an event that 

passes the control to the implemented fleet manager and allows it to analyse the current 

state of the system, to introduce modifications and to issue new managing events. When 

checking the situation, a fleet manager can issue a new “Check Situation” event at some 

point in the future. This allows for a periodic monitorization of the system. 

Movements of users in the system are simulated using an external routes server5. 

However, the simulator does not update continuously the position of the users. Instead, 

a new event would be created with the time at which the user would arrive at its destina-

tion. Fig. 3 shows an example, where there are several events that must occur at times 

100, 120, 340, 710, 800 and so on. We simplified the information shown in the queue. 

 
5 We use OpenStreetMap (OSM): https://www.openstreetmap.org 
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The next event to be processed is EV(UserAppears, user1,t=100, pos1) states that user1 

appears at instant t=100 in pos1. When this event is processed, user1 takes the “user 

rental decision”. Let´s suppose she decides to go directly to station 55.  After the deci-

sion, the route and arrival time are calculated, and the corresponding arrival event is in-

serted into the queue (User Arrives at Station (to rent)). In the example, it takes the user 

ten minutes (600 sec.) to reach station 55.  

 

 

Fig. 3. Event processing example. 

In case a user decides to reserve a bike, the event processor calculates if the es-

tablished maximum reservation time (a system configuration parameter) would expire 

before the user arrives at the corresponding station. If that was the case, the Bike Reser-

vation Timeout event would be inserted into the queue instead of a Users Takes Bike 

event. 

4.2 User Management 

Users are the principle simulated entities. In fact, a simulation consists of simulating a 

set of users’ behaviours in the system, since the moment they appear until they leave. 

As mentioned before, the simulation engine controls the flow of user events that may 

occur by processing the event queue. Most events require some decisions that have to be 

taken by the corresponding user (e.g., select a station, decide to reserve, …). In real life 
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different users have different behaviour models and react differently under similar cir-

cumstances. For example, some people may not mind walking 500 meters to get a bike 

while others may only be willing to walk less than 300m. We allow this by using the 

notion of user types, which represent implementations of different user models. 

Each user type must provide an implementation of the following user decision 

methods that the simulation engine may invoke, and which correspond to the different 

decisions presented in Fig. 1 but contextualised to the situation that has led to the need 

for a user decision (e.g., a failed bike rental, etc.): 

• decideAfterAppearning 

• decideAfterFailedRental 

• decideAfterFailedBikeReservation 

• decideAfterBikeReservationTimeout 

• decideAfterGettingBike 

• decideAfterFailedReturn 

• decideAfterFinishingRide 

• decideAfterFailedSlotReservation 

• decideAfterSlotReservationTimeout 

In practice, we define an abstract type User which specifies the abstract decision 

methods and also provides a basic set of user parameters and default values:  

• position: indicates the geographical position where a user appears 

• destinationPlace: the final destination the user wants to go to 

• intermediatePosition: specifies a geographical location in the region of interest. 

If this parameter is not null, the user decides to “go for a ride” after getting a 
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bike. In this case, the user would go with the bike to the specified position. After 

arriving there, she would decide to return the bike close to the destination place. 

• timeInstant: the instant (second from simulation start) where the user appears 

• walkingVelocity: the walking velocity of the user (default 1.4 m/s (Mohler, 

Thompson, Creem-Regehr, Pick & Warren, 2007; Levine & Norenzayan, 1999)) 

• cyclingVelocity: the cycling velocity of the user (default 4.0 m/s) 

Besides these parameters, different user types can specify additional parameters, 

like the maximum number of rentals (or reservation) a user would try until she aban-

dons the system, or the maximum distance she is willing to walk to find a bike.  

An interesting issue is how users choose stations to rent or to return a bike. In 

particular, a user type may use a specific information or recommendation system for 

this task. This allows us to test and evaluate different recommendation strategies, e.g., 

for obtaining a better balancing of the bikes in the global system. 

Currently, we have implemented the following user types: 

• Uninformed. This user tries to take/return bikes just from the nearest station. She 

does not have information about availability of bikes/slots, so it may happen that 

there are no bikes/slots available when the user arrives at the station. 

• Informed. It is an informed user that knows the state of the fleet and always se-

lects the closest station with bikes or the closest station to its destination point 

that has available slots, when returning a bike. It may happen that the user can 

not rent a bike when arriving at a station, because other users have taken all 

available bikes before. 
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• Obedient. It contacts a particular recommender system and always follows its 

suggestions. This user is adequate for testing different recommendation strate-

gies. 

• Informed-R. It is like Informed but making reservations before going to stations. 

• Obedient-R. It is like Obedient but making reservations before going to stations. 

All these user types have additional parameters: 

• minRentalAttempts: specifies the number of rental attempts the user would try 

before abandon the system without renting a bike, 

• maxDistanceToRentBike: specifies the maximum distance a user is willing to 

walk to rent a bike. For instance, an Informed user would abandon if there is no 

station with an available bike within this distance. 

 

The implementation of new user types in the simulator is fairly easy. Any new 

user simply has to extend the abstract User class. Furthermore, we use reflection6 to 

specify the user types of a particular simulation. Thus, no additional changes in the sim-

ulator are necessary. 

 
6 Java reflection allows to explore object characteristics (e.g. class name, methods, instances of 

a class, annotations …) and to perform operations (invoke methods, create instances, etc.) at 

runtime. In our case, using reflection, it is possible to implement different user, recommen-

dation system and fleet manager types and to load them into the simulator without modifying 

any other source code.  
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4.3 Experiment Configuration 

Simulation experiments are configured by providing three types of configuration param-

eters: Stations, Users and Global, as shown in Fig. 4. These configuration parameters 

are stored in json files.  

 

 

 

Fig. 4. Experiment configuration and generated files 

Stations.  

It contains information about the stations in the system, including physical location, ca-

pacity and initial number of bikes. 

Global.  

Specifies the global parameters of a simulation experiment. They include the following 

fields: 

• reservation time: the time before a reservation expires 

• total simulation time: the total duration of the simulation (in seconds) 
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• random seed: (optional) it can be used to generate the same sequence of random 

values.  

• bounding box: of the underlying area of interest (geographical coordinates of 

top-left and bottom-right corners) 

• debug mode: true or false, specifies whether or not debug information is gener-

ated 

• start date time: (optional) a reference date and time for which the simulation is 

taking place. This information is useful if the balancing strategy uses expected 

demand. 

• graph manager type: specifies the file graph manager used for calculating 

routes. Currently we only implement the use of OSM to calculate routes and 

times. It contains a typeName and a set of parameters. 

• recommendation system type: (optional) is the type of recommendation system 

used by users that make use of such a system. It contains a typeName and a set 

of parameters. 

• fleet manager type: (optional) is the repositioning system used in the simulation. 

It contains a typeName and a set of parameters. 

• demand manager type: (optional) is the type of expected demand management 

system available for the recommendation and fleet manager systems. It contains 

a typeName and a set of parameters. 

With regard to the recommendation system type and fleet manager type, similar 

to user types, different recommendation systems and fleet managers can be imple-

mented. Again, we use reflection to select the particular implementation of a recom-

mendation system and fleet manager in the simulator, based on the value of the field 
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typeName in the configuration file. Parameters of a particular implementation are speci-

fied in the parameters set. 

Each recommendation system has to extend the abstract class Recommendation-

System that implements some auxiliary methods and defines the abstract methods: rec-

ommendStationToRentBike and recommendStationToReturnBike. Each implementation 

of a recommendation system has to implement these two methods that should return an 

ordered list of stations which are recommended to a specific user (at a given time and 

position) for renting/returning a bike. Each fleet manager implementation has to extend 

the abstract class FleetManager and has to implement the methods initialActions and 

checkSituation. The first method is called right at the beginning of any simulation and 

allows a fleet manager to setup initial managing events in the event queue, for example, 

to monitor the system at certain time intervals. The second method is called from any 

“Fleet manager - Check Situation” event and represents the specific implementation of 

a monitoring activity.   

Users.  

Specifies the list of all users that are generated during the simulation. Each user is speci-

fied through the parameters described in section 4.2 (position, destinationPlace, inter-

mediatePosition, timeInstant, walkingVelocity and cyclingVelocity), as well as its us-

erType (which corresponds to an implementation of a particular user model) and any 

other parameters that are specific to the particular userType implementation. 

All three configuration files can be generated manually or via a user interface 

(see Fig. 5). With respect to the Users configuration, we also implemented a User Gen-

erator tool for generating users randomly by specifying a set of Entry Points. Each en-
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try point either represents a single user or a “user generator”, allowing to generate ran-

dom user trips between an origin and destination area. In the latter case, users are gener-

ated with random values for the fields: position, destinationPlace, timeInstant, walk-

ingVelocity and cyclingVelocity. The timeInstant is generated from a starting time with a 

Poisson distribution with a parameter λ (where λ represents appearance rate in users/h). 

The Poisson distribution is a discrete probability distribution that represents events oc-

curring at time intervals and independent of the time of the last event. It has been used 

by others to model user arrivals at a bike sharing system, e.g. (Chemla et al. 2013). With 

regard to the position and destinationPlace fields, each of those values is generated ran-

domly within a circle with a specified radius from a defined origin location and destina-

tion location, respectively (both radius may be different). In this way and using different 

entry points, it is possible to generate (randomized) user trips that correspond to a typi-

cal origin/destination matrix, where origin and destination are areas or fixed locations. 

The user generator creates a User configuration file, which can then be used as input to 

the simulator.  
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Fig. 5. Snapshot of the configuration interface. Big red circles represent entry points, 

with their origin location. Small circles are stations, with the number of available bikes 

in them. The ratio of available bikes and free slots is shown in red and green, respec-

tively. The left-hand side shows the details of one entry point. 

4.4 Visualisation 

The aim of the visualisation module is to display the produced history data of the simu-

lation in a graphical and appealing way (see a snapshot in Fig. 6). This includes render-

ing geographic data on a map and presenting the current state of the system at each mo-

ment.  

The visualization essentially acts as a reproducer of a set of recorded data where 

the entities are displayed on a map with additional status information. In particular, the 

situations of all stations and all users that are currently in the system is presented. The 

reproduction is done in a playback mode simulating real-time. Internally, the visualiza-
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tion module processes the data of the events that have taken place (as stored in the his-

tory files) and updates the situation of the entities in simulated real-time. In contrast to 

the simulation engine, here, the movements of the users (either when walking or when 

cycling) are simulated, that is the position of the users is continuously updated. The 

standard visualisation speed is “real-time” but the speed can be increased or decreased 

(+/- icons). It is also possible to rewind the playback (e.g., with a negative speed factor). 

To render the map and to simulate movements, data from OpenStreetMap is 

used. The actual entities (users and stations) are displayed by interactive markers that 

provide additional information of the current state of each entity. As we mentioned be-

fore, our simulation tool is event based and, thus, does not track the actual movements 

of users (just the events of starting or ending a movement). However, the visualisation 

module does show the movements of users by translating the route data (available in the 

simulation history) to positions at each particular instant.   
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Fig. 6. Snapshot of the visualization interface. Bike and person symbols represent users 

riding or walking, respectively. Numbers on top of the symbols are identifiers. 

4.5 Data analysis 

In this section we describe the quality metrics our simulator generates to evaluate the 

performance of a BSS. More extended explanations can be found in (Fernández et al., 

2018).  

We use the following notations to define the metrics: N is the total number of users, (i.e. 

total bike demand), Successful hires (SH) is the total number of bike rentals, Failed 

hires (FH) represents the total number of attempts to hire a bike that failed due to una-

vailability, Successful returns (SR) and Failed returns (FR) represent the same numbers 

for bike returns. Based on these measures, we calculate the following metrics: 

• Demand satisfaction (DS): ratio of users who were able to hire a bike (either at 

first trial or not), including those who booked a bike in advance. This is one of 

the most common metrics used to evaluates BSS (e.g. (Chemla et al., 2013)) 

DS = SH / N 

  With regard to bike returns, we do not define a similar measure since we assume 

that all users that have taken a bike must return it to some station. 

• Hire efficiency (HE): ratio between the number of rentals and the total rental at-

tempts of those users who hired a bike (FHh). 

HE = SH / (SH+FHh) 

• Return efficiency (RE): ratio between the number of returns and the total return 

attempts: 



30 

RE = SR / (SH+FR) 

• Average Empty Time (AET): is the average time a station is empty, which means 

it is potentially denying a service. This metric is useful when users have access 

to information about bike availability before making their decision (in real life, 

e.g. via an app). In those cases, they may go to the nearest station with available 

bikes.  

• Average Deviation (AD) with regards to a balanced situation. Here a station is 

considered balanced if the number of available bikes is half its capacity (thus 

keeping half empty slots). For each station the average deviation is calculated as 

the average absolute error. This metric is the average of all stations. AD might 

be a useful metric for assessing balancing strategies that try to keep each station 

at half occupancy.  This assumes, by default, that the optimal inventory level is 

half the station's capacity. Clearly, this may be suboptimal, as the optimal inven-

tory level depends on the demand context (i.e. unbalance demand level) and on 

the repositioning strategies used. For example, a nearly full station may be "bal-

anced" if much more requests than returns are expected in the next operating pe-

riod.  

• Users’ time in the system. It is the time users spend in the system. The total time 

(TT) is the sum of walking time to origin station (Tos), cycling travel time to re-

turn station (Trs) and walking time to final user destination (Tfd): 

TT = Tos + Trs + Tfd 

Note that Tos and Trs include walking or cycling (respectively) from station to 

station if no available bike/slot is found. 
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All these measures are generated by the data analyser and are written to files in 

csv format so they can be imported into more powerful data analysis tools for further 

analysis. 

5 Evaluation 

In the sequel we present, first, a validation of the Bike3S simulation tool where we ana-

lysed a real case scenario. Afterwards, we present three examples to show the possibili-

ties of our simulation tool for evaluating management decisions or strategies, especially 

balancing strategies:  a simulation of “designed scenarios” in the city of Madrid and 

simulations with real data in the cities of Madrid and London. However, in this paper, 

our research is not focused on adequate balancing strategies. We just implemented a set 

of rather simple strategies as examples.  

5.1 Real-case validation  

In order to evaluate the correct operation of the Bike2S simulator, we tried to replicate 

the operation of BiciMAD, the public bike sharing system in Madrid (Spain), for several 

different days with real data. This system covers an area of about 5x5 km square of cen-

tral Madrid and counts currently on 174 active stations and about 1800 bikes (at Sep-

tember 2019). The capacity of the stations is between 12 and 30, but most stations have 

24 slots. There are publicly available data of the usage of the BiciMAD system, in par-

ticular: 

• Data of the trips including, for each trip, time of taking a bike, origin station, 

destination station, travel time and the approximate route. However, in order to 

anonymise the data, only the day and hour of the pick-up time of each trip are 
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given (without minutes). Each trip includes a user type, with possible values rep-

resenting regular or occasional users, BiciMad staff or unidentifiable users.  

• Situation of the stations: including the number of available bikes and slots and 

whether or not a station was active. We recompiled this information during July 

2018 from the official BiciMAD API at an interval of 5 minutes.   

In order to replicate a real-world scenario, we extracted the user data for a 24-

hour period (in particular, from 7:00 on the 20th of July 2018 to 7:00 on the 21st of July 

2018). There have been 12296 real user trips (corresponding to regular and occasional 

users) that started in this interval and 849 movements of bikes with trucks (trips be-

tween different stations carried out by BiciMAD staff). We used the user trip data to 

generate the simulated users for our simulator. Given the data of a real user trip, we nei-

ther know from the data at which position a real user decided to go to a station nor 

where her final destination is. Therefore, and in order to reflect the real situation as 

good as possible, we used the coordinates of the station on which a user unplugged 

/plugged a bike as the appearance and destination locations of the simulated user. The 

walking velocity is set to a default value of 1.4 m/s and the cycling velocity is obtained 

from the distance between the origin /destination stations and the user travel time. Fi-

nally, the instant of appearance of the simulated user is generated randomly within the 

hour of the appearance given in the real data (with a uniform distribution), since we do 

not know the exact minute or even second of appearance. We used the Uninformed user 

type that would just go to the closest station to get a bike (in this case the station where 

they appeared) and would leave the system if there were no bikes available at this sta-

tion (they do not retry at the same or another station). Regarding bike returning, the us-

ers would go directly to the station closest to their destination and if there was no slot 

available, they would go to the next closest station to try there.  
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In order to replicate the movement of bikes with trucks, we implemented a sim-

ple fleet manager that issues the corresponding “Take Bike from Station” and “Add Bike 

to Station” events for the 849 real movements. Also here, we do not know the exact 

time of a movement (only the hour in which it takes place). In this case we specified a 

time 30 minutes after the initial corresponding hour.    

For specifying the initial station configuration in the simulated scenario, we used 

the official (real) data at the initial time (20th of July 2018 at 7:00). There have been 169 

active stations with 1796 bikes. 

We analysed the performance of the simulated system in two ways: a) without 

bike movements with trucks, and b) with the 849 bike movements with trucks. Table 2 

summarizes the results.  

Table 2. Experiments results for Madrid.  

UserType # abandoned DS RE TT (min) real TT (min) 

Without truck movements 496 0.959 0.886 15.63 14.75 

With truck movements 162 0.987 0.993 14.78 14.75 

 

As it can be seen in the table, the simulation results do not perfectly match the 

real-world scenario. In the case where the bike movements with trucks are also simu-

lated (the case closer to reality), there are 162 users (about 1.3%) that did not find a bike 

at the station where they appeared (and the users abandoned the system). This gives a 

demand satisfaction (DS) of 0.987. Regarding the returns, there have been 80 failed re-

turn attempts (0.7%; return efficiency (RE) 0.993); e.g., in 80 cases a user did not find 

an empty slot and had to go to another station to try to return the bike. Finally, the aver-

age time (TT) employed in the simulated user trips is 14.78 minutes where it has been 

14.75 minutes in the “real world” (real TT). We measure this time only for the users 
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that did not abandon. Since in this case we respect the real-world cycling velocities in 

the simulation, this small difference is only due to the users that could not return their 

bikes at the expected stations and had to spend extra time to cycle to another station.   

The difference between the simulated and the real scenario is clearly due to the 

fact that with the available data, we do not know the exact appearance time of users 

(just the hour) and thus, establish the appearance time randomly within the correspond-

ing hour. In an oversized system (e.g., with always enough available bikes and slots at 

each station) the approach we took to randomize the appearance time of users should 

not have any influence in the results. However, in the case of the BiciMAD system, it is 

quite common that a station becomes empty or totally occupied. Analysing the real oc-

cupation situation of the stations for the simulated period and at an interval of 5 

minutes, it turns out that 4,8 % of the 48503 different measures (every 5 minutes during 

24 hours for 169 stations) a station is empty and at 1% it is fully occupied. In such a sit-

uation, even very small differences in the appearance times of users will lead to bike 

rental or return failures. In this sense, we consider that the abandon rate of 1.3% and the 

return fail rate of 0.7% are due to these differences and rather confirm the correct func-

tioning of the simulator.   

Also, the differences in the results when including/not including the bike move-

ments with trucks provide evidence for evaluation. A clear increase in rental failure and 

much higher in return failure can be observed if we omit the movements of bikes from 

one station to another through trucks. This clearly shows that such operational actions in 

general do have a positive effect on balancing the availability of bikes (and slots) in 

bike-sharing systems. 
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5.2 Designed scenarios  

With this set of experiments, we show the possibility to create and evaluate artificial 

scenarios. We chose a 3km square map of central Madrid and set 20 stations in real lo-

cations of the current bike-sharing system BiciMAD. We gave them a capacity of 20 

bikes and, initially, each station was set up with 10 available bikes (thus, also with 10 

empty slots). We set five entry points, whose locations are shown in Fig. 5. At each en-

try point the appearance radius is set to 200m, i.e. users generated by an entry point ap-

pear at a random location within a distance of 200m from that entry point. Users’ desti-

nations are randomly chosen in the whole area. We set a maximum of two failed at-

tempts to rent or reserve a bike before leaving the system without using it and a maxi-

mum distance of 600 meters a user would be willing to walk in order to find a bike. 

Walking and cycling velocity was set to 1.4 and 6 meters per second, respectively. 

With this set of parameters, we analyse the performance of the system with dif-

ferent user types for increasing demand data (increasing number of users). We carried 

out experiments where the generation ratio of users at each entry point was 10, 20, 40, 

60, 80, 120 and 150 users per hour. We evaluated the following types of users (pre-

sented in section 4.2): Uninformed, Informed, Informed-R and three types of Obedient 

users: i) Obedient-AvR, where users use a recommendation system that recommends the 

station with the most available resources (bikes or slots, respectively), ii) Obedient-

AvR/Dist where the station with the best ratio between the available resources at that 

station and the distance of the user to the station is recommended, and iii)  Obedient-

AvR-R, like Obedient-AvR but users always reserve bikes or slots at the recommended 

stations. In all cases, the recommendation of a station is limited to stations within 600 

meters of the user position when asking for a station to rent a bike and within 600 me-

ters from the destination location when users ask for a station to leave the bike.   
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Fig. 7 to Fig. 12 show the evolution of the performance of the different user 

types with increasing demand and for the different metrics defined in section 4.5. As ex-

pected, the performance with Uninformed users is the worst of all cases. Obedient users 

outperform Informed users in the efficiency measures since the use of a balancing strat-

egy reduces the number of times that stations get empty. However, Obedient-AvR de-

creases significantly in demand satisfaction and hire efficiency with higher demands. In 

fact, it behaves even worse than the simple Informed strategy. This is because many us-

ers that appear at almost the same moment and in similar regions will be sent to the 

same best station and will find that there is no bike left when they arrive (only the firsts 

will get them). Possible improvements to that strategy could be recommending different 

stations to different users (e.g. with a probability proportional to the number of available 

resources) or taking into account that the users who received recommendations will 

likely follow them, so the “virtual” number of available resources is different. Return 

efficiency is very high in almost all cases. This is due to the fact that users’ destinations 

are not concentrated in specific locations as with appearances as well as that some users 

abandoned the system without hiring. Furthermore, Obedient-AvR present quite bad to-

tal time values which is due to the fact that users are send to stations that are rather far 

away. Both problems are mitigated with the Obedient-AvR/Dist type. With regard to 

reservations, it can be observed that users that make reservations have generally a 

higher chance to get a bike.  
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Fig. 7. Abandoned execution results. λh is the appearance rate per entry point in users 

per hour. This metric is equivalent to Demand Satisfaction but is easier to see. In-

formed-R coincides with Obedient-AvR-R. 

  

 

Fig. 8. Hire Efficiency execution results. Informed-R and Obedient-AvR-R coincide. 

 



38 

 

 

Fig. 9. Return Efficiency execution results. Informed-R and Obedient-AvR-R coincide. 

 

 

 

Fig. 10. Total Time execution results. 
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Fig. 11. Average Deviation execution results. 

 

Fig. 12. Average Empty Time execution results. 

5.3 Real scenario simulation for evaluating balancing strategies. Madrid 

and London. 

In this set of experiments, we used real data from Madrid and London. The goal is to 

present scenarios with different real infrastructures (number, location and size of sta-

tions) and use patterns. 

In the first experiments, we used again data from BiciMAD. In particular, in this 

case, we used the data of the 25th of June 2018, a day with a fairly high usage of the 

system with 13104 user trips. In order to simulate the trips in a more realistic way we 
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randomly generated appearance time in minutes within the specified hour (with a uni-

form distribution). In addition, we also randomly generated the appearance and destina-

tion location of users with a uniform distribution within a radius of 200 meters from the 

real origin and destination station, respectively. All the stations (173 active stations at 

this day) were initialised with a ratio bikes/empty slots of 0.5. We set a maximum of 

three failed attempts to rent or reserve a bike before a user would abandon the system 

without using it. Furthermore, we specified a maximum radius of 600 meters as the dis-

tance a user is willing to walk in order to find a bike. If she does not find a bike at this 

distance, she will also abandon the system. The walking velocity of all users has been 

set to 1.4 meters per second and the cycling velocity has been obtained from the infor-

mation of the real route information. 

We analysed the performance of the following user types (as explained in sec-

tion 4.2): Uninformed, Informed, Obedient/AvR. and Obedient-AvR/Dist.  

Table 2 shows the results of the experiments. The efficiency data (DS, HE and 

RE) are very high in general, especially for users that decide based on recommenda-

tions. This is normal because the historical data used in the simulation only contain suc-

cessful hires. Despite this fact, those values are not always 1 since we had to randomly 

distribute users within each hour and close location as explained before, so the data are 

not exactly the same as the historical records. Uninformed users get the lowest perfor-

mance in demand satisfaction (DS) and efficiency (HE and RE). That is due to the fact 

that users go to their nearest station without even checking whether there are bikes 

available. The other user behaviours present a better performance. If users follow the 

recommendation strategy to go always to the station with the most resources, the results 

present the best values in average empty time and deviation. The reason is that these 
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metrics analyse station status and this strategy tends to keep individual stations as bal-

anced as possible. However, the performance from the users’ perspective, i.e. the time 

users spend in the system, is much worse. If the recommendation is done by taking into 

account both, the distance a user would have to walk to a station as well as the available 

resources, then a reasonable balance of bikes at station is obtained, and users have a 

fairly low total time in the system. 

 

Table 3. Experiments results for Madrid. Bold numbers indicate the best obtained result 

for each metric. 

UserType # abandoned DS HE RE TT (min) AD AET (min) 

Uninformed 200 0.98 0.93 0.80 14.6 5.3 83.2 

Informed 83 0.99 0.98 0.94 14.0 5.4 91.5 

Obedient-AvR 0 1.00 1.00 1.00 21.7 1.9 0.4 

Obedient-AvR/Dist 18 1.00 1.00 0.99 13.8 4.3 28.6 

 

 

The experiments using real data from London cover an area of about 20x10 km 

square. The system includes 783 stations and 20178 bikes. The capacity of each station 

varies from 10 to 62 slots. We used the data of the 30th of May 2018, which included 

31736 trips. The rest of parameters and decisions are the same as in the previous experi-

ment. The results obtained (Table 4) are in line with the ones from Madrid. 
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Table 4. Experiments results for London. Bold numbers indicate the best obtained result 

for each metric. 

UserType # abandoned DS HE RE TT (min) AD AET (min) 

Uninformed 488 0.98 0.98 0.83 22.4 6.3 12.0 

Informed 60 1.00 0.98 0.93 22.2 6.6 16.3 

Obedient-AvR 0 1.00 1.00 1.00 30.4 3.6 0.0 

Obedient-AvR/Dist 0 1.00 1.00 0.99 22.4 5.7 1.2 

6 Conclusion 

In this paper we have described Bike3S, a station-based bike sharing system simulator. 

The objective of Bike3S is to analyse the behaviour of a BSS given an infrastructure 

(stations and bikes) and expected demand in different points of the area of interest. In 

addition, the simulator can be used to evaluate balancing strategies. Bike3S is highly 

customisable to account for different user behaviours, infrastructure and experiment 

configurations. We presented a validation of the tool with real data from the BSS Bi-

ciMad in Madrid as well as several use cases to show the type of experiments that can 

be carried out and the results that can be obtained. 

The modular design of Bike3S allowed us to separate the configuration and user 

generation from the simulation execution, and the latter from the visualisation and anal-

ysis. Thus, the simulator can generate users or load them from a file. Likewise, the visu-

alisation interface or data analysis tool can load previously stored simulation histories. 

One of the main characteristics of Bike3S is its capability to be easily extended with 

new user types and balancing strategies. 

We are currently working on designing incentive-based balancing strategies, 

which are evaluated using Bike3S. Some preliminary works can be found in (Fernández 

et al., 2018). 
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In the future, we plan to extend the simulator in several lines. One is including fares to 

hire bikes into the infrastructure, so that discount-based incentives or dynamic pricing 

balancing strategies can be implemented. Another extension includes considering elec-

tric bicycles, which implies managing battery load levels, discharge/load times, deci-

sions on which bikes to hire, etc. 
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