
1

Bike3S: A Tool for Bike Sharing Systems Simulation

Alberto Fernández*, Holger Billhardt, Sascha Ossowski, Óscar Sánchez

CETINIA, University Rey Juan Carlos, Madrid, Spain

Tulipán s/n, 28933, Móstoles, Madrid, Spain {alberto.fernandez, holger.billhardt,

sascha.ossowski, oscar.sanchezsa}@urjc.es

ORCID Alberto Fernández: 0000-0002-8962-6856,

ORCID Holger Billhardt: 0000-0001-8298-4178

ORCID Sascha Ossowski: 0000-0003-2483-9508

Alberto Fernandez
The Version of Record of this manuscript has been published and is available in Journal of Simulation 14 (4), January 2020
https://www.tandfonline.com/doi/10.1080/17477778.2020.1718022

2

Bike3S: A Tool for Bike Sharing Systems Simulation

Vehicle sharing systems, such as bike, car or motorcycle sharing systems, are be-

coming increasingly popular in big cities as they provide a cheap and green

means of mobility. The effectiveness and efficiency, and thus, the quality of ser-

vice of such systems depends, among other factors, on different strategic and op-

erational management decisions and policies, like the dimension of the fleet or

the distribution of vehicles. In particular, the problem of agglutination of availa-

ble vehicles in certain areas whereas no vehicles are available in other areas is a

common problem that needs to be tackled by the operators of such sharing sys-

tems. Recently, research works have been focusing on adaptive strategies to re-

duce such imbalances, mainly through dynamic pricing policies. However, there

is no best operational management strategy for all types of bike sharing systems,

so it is of foremost importance to be able to anticipate and evaluate the potential

effects of such operational management strategies before they can be successfully

deployed in the wild. In this paper we present Bike3S, a simulator for a station-

based bike sharing system. The simulator performs semi-realistic simulations of

the operation of a bike sharing system in a given area of interest and allows for

evaluating and testing different management decisions and strategies. In particu-

lar, the simulator has been designed to test different station capacities, station dis-

tributions, and balancing strategies. The simulator carries out microscopic agent-

based simulations, where users of different types can be defined that act accord-

ing to their individual goals and objectives which influences the overall dynamics

of the whole system.

Keywords: Bike sharing, Agent-based simulation, Smart transportation, Smart

mobility, Multi-agent systems.

1 Introduction

Nowadays, in urban mobility there is a trend towards limiting the use of vehicles with

combustion engine, especially if they are used for private transportation. The aim is to

reduce their environmental impact as well as the occupation of public spaces. At the

same time, citizens are demanding flexible, individualised mobility solutions that adapt

to their specific needs at any moment, and that are aligned with their environmental,

3

health and cost concerns. As a result, there is a growing deployment of sustainable mo-

bility systems, with zero or low emissions and shared vehicles.

In this context, many big cities around the world are encouraging cycling mobil-

ity among their citizens, not only by improving the cycling infrastructure (bicycle lanes

etc.), but also by installing bike-sharing systems (BSS). Some BSS (e.g. BikeShare in

Seattle or DB Callabike in Munich) are free-floating systems that allow citizens to pick

up and return a bike at any location within a certain area in town, but most systems are

station-based, i.e. they rely on a set of rental stations with fixed locations. Several BSS

are quite sizeable, reaching about 20000 rental bicycles in Paris (Vélib) and more than

78000 in Hangzhou or 90000 inWuhan, China (Soriguera & Jiménez-Meroño, 2020).

Studies have shown that the adoption of new BSS depends strongly on the perception of

their efficiency and positive effects, individually and within the community.

Both the quality of service offered to the citizens, as well as the (economic and

environmental) cost of running a BSS depends strongly on taking proper management

decisions. This does not only include strategic choices regarding the positioning and di-

mensioning of rental stations, the selection of adequate bicycle models, etc., but also on

operational decisions. Resources in a BSS are limited, and not being able to find an

available bike at some stations, or not being able to return it to another one due to the

lack of free slots, are events that can severely deteriorate user experience in a BSS. ICT-

based solutions that allow users to reserve bicycles or free slots at some stations palliate

this problem, but proper bike balancing mechanisms are needed to attack the problem at

its core.

Several research works have been done so as to optimise the use of trucks to

keep the bike sharing fleet as balanced as possible, either statically (typically at night)

4

or dynamically (during operation) trying to match the expected demand with the availa-

ble resources.

Still, it is known that there is no best management strategy for all types of BSS,

so it is of foremost importance to be able to anticipate and evaluate the potential effects

of such operational management strategies in a particular BSS before they can be suc-

cessfully deployed in the wild. For this purpose, firstly, a particular BSS needs to be

modelled at sufficient level of detail, including the positions and size of rental stations,

a town cycling and street network, different user demand patterns, etc. And, secondly,

the action space of BSS users and their behavioural choices need to be realistically

modelled, in particular with regard to economic and social stimuli. To the best of our

knowledge, there are currently no BSS simulators that fully account for these requisites.

In this paper we present Bike3S1, a simulator for a station-based bike sharing

system. The simulator performs semi-realistic simulations of the operation of a bike

sharing system in a given area of interest and allows for evaluating and testing different

management decisions and strategies. In particular, the simulator has been designed to

test different stations capacities, station distributions, and balancing strategies. The

simulator carries out microscopic agent-based simulations, where users of different

types can be defined that act according to their individual goals and objectives which in-

fluences the overall dynamics of the whole system.

The rest of the paper is organised as follows. In Section 2 we discuss related

work on bicycle sharing systems simulation. Sections 3 focuses on station-based BSS

that we are particularly concerned with. Section 4 discusses the general architecture of

the Bike3S simulator and its different elements in detail. We evaluate our proposal in

1 https://github.com/gia-urjc/Bike3S-Simulator

5

Section 5, where we put forward different use cases, including the application of Bike3S

to BSS scenarios for the cities of Madrid and London. Section 6 summarises our work,

outlines the lessons we have learnt, and points to future lines of work.

2 Related works

Microscopic simulation has been successfully used in the transportation community for

many years. Specially, several well-known tools were created for traffic simulation,

such as SUMO (Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, 2012), MATSim

(Horni, Nagel & Axhausen, 2016) or PTV Vissim (Fellendorf, 1994).

The state of the art on simulating bike sharing systems is not as advanced as

those works on traffic simulation mentioned above. Nevertheless, the increase of popu-

larity of this kind of transportation means is provoking that the research community is

paying attention to this area.

Chemla et al. (2013) presented a discrete-events open-source simulator

(OADLIBSim) for evaluating their proposed algorithms for dynamic balancing. The

user behaviour for choosing stations combines walking and riding distances. If there are

no available bikes at a station the user may try in a different one up to a limited number

of times. The number of satisfied users is taken as a quality measure to compare differ-

ent balancing strategies. Unfortunately, the simulator is no longer available.

Caggiani, and Ottomanelli (2012) proposed a model and simulator with the goal

of optimising bikes repositioning and routes of carrier vehicles. In their model, a day is

divided into discrete time intervals. At each interval the O-D demand is considered, and

new states of stations are calculated. A user that fails to hire a bike (empty station) is re-

moved and, if the destination is full, she has to wait to return her bike.

6

Romero, Moura, Ibeas and Alonso (2015) combined the use of cars, buses and

bikes into an integrated transportation model. Their focus is on modelling users’ trans-

portation choices based on urban transportation infrastructures so as to analyse their ef-

fect on urban mobility. Our objective is more focused on bike sharing infrastructures,

mainly oriented towards balancing strategies.

Soriguera, Casado and Jiménez (2018) developed a very complete simulation

model and tool with the goal of supporting the decisions regarding deploying a BSS.

The tool is based on Matlab. They include repositioning trucks and the possibility of us-

ing electric bikes. Users take and return bikes as near as possible to their locations (it is

assumed that users know about resource availability). This work is probably the closest

to ours. We keep electric bikes as part of our future lines. Our simulator is more general

leaving most of the users’ decisions (e.g. next station) up to the specific user implemen-

tation, as we will see later.

Dubernet and Axhausen (2014) created a multiagent simulation framework in

which they focus on modelling users’ behaviour, especially in reaction to changes in the

relocation strategy. Agents have daily plans, which can be updated according to the bike

sharing system state. The authors point out that agent capabilities can be easily ex-

tended.

Ji, Cherry, Han and Jordan (2014) developed a Monte Carlo simulation model to

evaluate the efficiency of an electric bike sharing systems. Their goal is to obtain the

number of e-bikes and batteries needed to meet the demand and recharge rates. They fo-

cus on trip generation, length and duration demand variables. Only round trips are con-

sidered in the model, although the authors state that it can be easily extended to one-

way trips. In general, the overlap between this simulation model and ours is not too big:

they do not deal with balancing strategies whereas the management of electric bikes is

7

part of our future work. Nevertheless, this model is a good reference for the future ex-

tension of our simulator.

Lin and Liang (2017) built a simulation model on top of the Arena2 simulation

software. Their goal is to obtain the optimal number of repositioning vehicles to mini-

mise users’ waiting time at stations (users wait at stations until a bike/slot is available,

they do not walk to another station). The initial state of stations, arrival rate, O-D proba-

bility matrix, rental time and waiting probability can be configured. However, the repo-

sitioning strategy is fixed.

Saltzman and Bradford (2016) proposed a simulation model to analyse how the

change of the initial state of the system affects the shortage of bikes or slots during its

operation. In their model, users wait up to one or two minutes in case they do not find a

bike, then they leave the system. They created a simulator with visual representation for

the city of San Francisco.

Gámez-Pérez, Arroyo and Puente-Rivera (2019) used a simulation model to

evaluate the performance of bike sharing systems in terms of number of trips and, dif-

ferently to other approaches, the environmental effect of cycling (CO2 emissions). Their

model includes variables such as socioeconomic growth, transportation infrastructure

and urban mobility patterns. Their approach is a rather long-term simulation (10 years)

aimed at a global analysis, so it targets a different application from ours.

Jian, Freund, Wiberg and Henderson (2016) proposed a method for optimising

the initial allocation of bikes and docks at the beginning of the day. Their approach is

based on a discrete-event simulation model (every minute). They randomly generate us-

ers at stations (time varying Poisson process) and trips according to an O-D probability

2 https://www.arenasimulation.com/

8

distribution matrix, as well as trip durations. If a user cannot take a bike because the sta-

tion is empty, she abandons the system, while she goes (at most three attempts) to the

nearest station in case of trying to return a bike at a full station.

One of the main uses of BSS simulators is often the evaluation of bike balancing

strategies, e.g., strategies to (re-)distribute bikes in the area in order to adapt to demand

variations. Traditionally, bike balancing has been done by trucks that transport bicycles

from some stations to others. Some research has focused on optimizing the static bal-

ancing problem (Chemla, Meunier, Pradeau, Calvo & Yahiaoui, 2013; Forma, Raviv &

Tzur, 2015), where the routes of trucks at night or off-peak periods are optimised. More

recently, the dynamic version of the problem has been considered, which involves pre-

dicting the demand at each station in the next period and optimizing the distribution of

bikes among stations so as to maximise the number of trips (i.e. reduce the number of

“no-service” situations) (Contardo, Morency, & Rousseau, 2012; O'Mahony, Shmoys,

2015; Schuijbroek, Hampshire, & Van Hoeve, 2017). While those approaches only con-

sider trucks as the means to rebalance the bike-sharing system, there are other ap-

proaches that try to incentivise bike users to contribute to system rebalancing (Chemla,

Meunier, Pradeau, Calvo & Yahiaoui, 2013; Fricker & Gast, 2012; Pfrommer, Warring-

ton, Schildbach & Morari, 2014; Waserhole & Jost, 2016). For this purpose, prices are

commonly used as incentives. For example, in the city of Madrid BiciMAD3 grants dis-

counts over the usual rental price if a user picks up a bike at a station that is almost full

with parked bicycles or if she returns it to a station with many empty slots. Experiments

with approaches that modify rental prices dynamically, based on the BSS load situation,

and with social stimuli to achieve voluntary travel behaviour change of BSS clients

3Public bike sharing system of Madrid (Spain): https://www.bicimad.com/

9

have also been reported (Chemla, Meunier, Pradeau, Calvo & Yahiaoui, 2013; Haider,

Nikolaev, Kang & Kwon, 2018; Pfrommer, Warrington, Schildbach & Morari, 2014).

In summary, most existing works on BSS simulation created simulators for eval-

uating their particular balancing approaches rather than general tools. Almost none of

the tools has a visual interface. They all use Poisson probability distributions for gener-

ating demand. User behaviour on empty/full stations varies among leaving, waiting or

going to another station, but usually only one of those criteria is used. By contrast, the

approach presented in this paper is flexible and admits all those different behaviours

within the same simulation. While most existing proposals generate demand at stations,

we are more general and allow specifying points of demand everywhere, which of

course includes docking stations.

In general, we present in this paper a BSS simulator that is highly configurable

with many parameters at different levels: global, user models, user generation, balanc-

ing strategies. User types and strategies can be easily extended by developers. In addi-

tion, it includes user interfaces for configuring, simulating and visualisation. To the best

of our knowledge, there are not any other BSS simulators as complete as the one pre-

sented in this paper.

3 Station-based Bike Sharing Systems

In this section we describe the general functioning of a station-based bike sharing sys-

tem. The description is inspired by the functioning of the BICIMAD system in the city

of Madrid in Spain. However, it is very general and fits many similar systems in other

cities.

A station-based bike sharing system consists of a set of docking stations distrib-

uted in an area of interest (typically a city) and a set of bikes that can be taken from or

10

returned to a station. Stations are at fixed positions and have a set of slots where bikes

can be plugged into. The number of operative slots of a station represents its capacity.

At a given moment, a station may have broken slots, or some slots may be occupied by

broken bikes. We do not deal with such cases. However, they could be easily modelled

as a decrease in the station’s capacity.

In general, when a user wants to use the system she would go to a station, take a

bike and return it after some time at another station. A user may go directly to a station

close to her position or she could consult some kind of information or recommendation

service to find the closest station. Furthermore, we assume that there is some kind of

registry of users (e.g., long-term contracts or occasional users) and also that there is

some type of payment involved in the use of the system. However, these aspects are not

included in our simulation tool.

Besides the possibility of simply taking an available bike at a station, we con-

sider that it is possible to reserve a bike (or a slot for returning a bike) at a station. Usu-

ally, systems that allow for reservations block the reserved bike (or slot) for a fixed

amount of time, such that no other user can use it. In the BICIMAD system in Madrid,

this reservation time is 20 minutes. Thus, any bike in the system would be either “in

use”, “available at a station” or “reserved at a station”. Regarding the empty slots, they

may be either “available for use” or “reserved”.

Depending on the situation of the infrastructure (e.g., the availability of bikes or

slots), as well as on the users individual objectives, each user that enters the bike shar-

ing system follows a path from an initial state to an end state within the diagram pre-

sented in Fig. 1. The proposed user life cycle is general enough to encompass many dif-

ferent user models to be running in the same simulation. User models are characterised

11

by their behaviour in the three user decision nodes (hexagons in Fig. 1): “rental”, “after

taking bike” and “return”.

Fig. 1. User life cycle state diagram. Hexagons represent user decisions.

A user appears in the system at some time and position with the intention to rent

a bike. In general, users appear at any locations in the city, not necessarily at stations.

After appearing, the user handles a “rental decision” with the following possible out-

comes: i) reserve a bike at some station, ii) go directly to some station in order to rent a

bike, or iii) abandon the system. For reserving and/or finding stations, the user may use

some available information or recommendation system. If the user decided to reserve a

12

bike, she tries to do so (possibly using some application). If the reservation has been

successful, the user goes to the station where she reserved a bike. If the reservation was

not successful, the user again has to “decide” what to do. An active reservation may fin-

ish after some timeout period, without the user having reached the station. We assume

that the user is informed about such a timeout (e.g., via an app) and thus, has to retake

again her rental decision. In case a user arrives at a station (without a reservation), it

may happen that there are no bikes available when the user arrives. In such a case, the

user has to “decide” again what is her next step. After a failed reservation intent or after

arriving at a station with no available bikes, a user may “wait and retry” after some

time. That is, she may try to reserve again or may wait for an available bike at the same

station. Furthermore, as it can be seen in the figure, the user has always the choice to

abandon the system without taking a bike. Usually, a user would abandon if she does

not find a bike after trying in one or more stations, if there is no bike available at a sta-

tion closed to her current position, after waiting for availability for some time, etc.

Once the user is able to take a bike (either with or without a reservation), she

will “decide” whether to take some ride in the city or to go directly towards a destina-

tion point. In the second case, the user will directly take the “return decision” whereas

in the first case she will decide on returning the bike after the ride has finished. In the

“user return decision”, she will select a station to leave the bike (usually near her desti-

nation point) and decide to either reserve a slot at that station or to go there without a

reservation.

The reservation of slots is treated similarly as the reservation of bikes. The user

re-decides if a reservation intent has not been successful and also if the reservation

timeout has occurred. If the user goes directly to a station (without a reservation), it

could be possible that, after arriving, there is no empty slot available. Also, in this case

13

the user has to reconsider its return decision. Again, if reserving a slot or returning a

bike fails, the user may “wait and retry” again at the same station. Eventually, the user

reaches a station with an available slot (with or without reservation) and can return the

bike, walk to her final destination and leaves the system. It should be noted that a user

cannot abandon the system when she still holds a bike, as it must be returned first. That

means, we do not consider possible malicious behaviours of users.

It should be noted that the “user rental decision” and the “user return decision”

may be repeated during the live cycle of the user in the system. For example, suppose

that a user appears and decides (“user rental decision”) to go to a station. If upon arrival

the station is empty, then a “user rental decision” has to be made to decide the next ac-

tion (e.g. try in a different station, wait some time, etc.). Obviously, a user knows about

past events (e.g., failed reservations, failed bike rentals, etc.) and, thus, may decide dif-

ferently in these decision processes in different situations (e.g. do not go to a station al-

ready visited to return a bike).

4 Architecture

In this section we describe the architecture of the Bike3S simulator, whose main build-

ing blocks are depicted in Fig. 2.

14

Fig. 2. Simulator architecture.

The core of the simulator consists of the simulation engine that manages the us-

ers as well as the bike sharing system infrastructure.

The bike sharing infrastructure represents the physical entities of the bike shar-

ing system, i.e. stations and bikes, in the simulator. It contains information about the lo-

cation of stations, number of available bikes and slots, etc. and of the bikes and slots

(their current states). In the current version of the simulator, we do not distinguish

among specific bikes and/or slots. However, it would be easy to extend the simulator in

the future to account for characteristic like bike usage statistics, maintenance, load level

(if electric), etc. The infrastructure is in charge of managing bike rentals and returns as

well as bike and slot reservations.

A simulation usually involves several users, possibly of different types. During

the simulation, users interact with the infrastructure to take/return bikes or make reser-

vations of bikes or slots. In order to take their decisions, users may access external in-

formation or recommendation systems. In the figure we represent three kinds of external

3

INFRASTRUCTURE

SIMULATION ENGINE

CO
NF

IG
UR

AT
IO

N

USERs· · ·

VISUALISATION DATA ANALYSIS

Fleet Manager

Recommendation
Services

SIMULATION
HISTORY

Information Services

15

services: (i) fleet manager refers to the operator of the system who is able to accomplish

actions that would modify something in the infrastructure, moving bikes with trucks or

changing fares, for example; (ii) information services provide (objective) information to

users about the current state of the fleet, such as the number of bikes in a station, closest

station with available bikes, distance to a station, etc.; and (iii) recommendation services

provide more processed information, which may include suggestions or requests to go

to specific stations because it is better to keep the bike fleet balanced.

The external services can be integrated in the simulator. In particular, it is possi-

ble to define and integrate different recommendation services and/or fleet managers

with different behaviours.

The initial simulation setup is accomplished through a Configuration module

that is in charge of specifying global simulation parameters, the initial situation of sta-

tions, and the generation of users. During a simulation, the simulation engine stores the

necessary information for all the events that have occurred in external files (Simulation

History). These files can be used later to visualise the simulation in a graphic interface

(Visualization) or to analyse the performance of simulated system with the Data Analy-

sis module.

The general architecture decouples the simulation itself from the Configuration,

Visualization and Data Analysis modules. The connection between these modules is ac-

complished with files in the Json4 format. This allows for an easy creation of other mod-

ules that could be integrated into the architecture.

4 JavaScript Object Notation (JSON) is a lightweight data-interchange format. https://json.org/

16

The simulation core (backend) has been implemented in Java. For the user inter-

faces (frontend) we used Electron and Typescript, while Angular was used for the visu-

alization component.

4.1 Simulation Engine

There are two main approaches to implement agent-based simulators: i) continuous sim-

ulation, and ii) event-based simulation. In continuous simulation, a fixed time-step is

defined, and the system executes the agents’ actions (if any) and updates the state of the

environment accordingly at each time step. In many steps there might not be no action

nor any changes with respect to the previous state. On the other hand, in event-based

simulation, the state of the environment is only updated at the precise time some event

occurs. The different simulated entities may fire new events, which are processed by the

simulator in sequential order.

In our case, we follow an event-based approach, where the events correspond to

the different states of the live cycle of users in the system (as shown in Fig. 1).

Table 1 shows a brief explanation of each event type. Although not detailed

there, each event type has different parameters: at least the time instant, and the user in-

volved. Some events have additional parameters (involved station, reservation, …), de-

pending on the event type.

17

Table 1.Event types.

Event type Description
User Appears Represents the user appearance in the system.

User Decides Rental The user takes the “user rental decision”, deciding to
abandon, go directly to a station or to try a reservation.

User Arrives at Station
(to rent)

The user arrives at a station to rent a bike. It is not sure
that the user will be able to take a bike: it depends on if
the station has bikes available

User Tries to Reserve
Bike

A user tries to make a reservation of a bike at a station.
The reservation intent may be successful or unsuccessful.
If unsuccessful, the user again takes the “user rental deci-
sion”. If the reservation was successful, the user has a
reservation.

User Has Bike Reser-
vation

If a user has a bike reservation, she walks towards the
corresponding station. The reservation may finish with a
timeout before the user arrives at the destination station.

Bike Reservation
Timeout

A bike reservation has expired before the user arrived at
the station. The user will have to take again the “user
rental decision”.

User Takes Bike

The user takes a bike from the station and performs the
“user decision after taking bike”. There are two options:
either to take a ride or to decide to go to some station to
return the bike.

User Finishes Ride The user has cycled somewhere and now has decided
that she wants to go to a station to return the bike.

User Decides Return

This event corresponds to the “user return decision”.
There are two options: try to reserve a slot at the desired
return station or to go directly to the desired return sta-
tion.

User Arrives at Station
(to return bike)

The user arrives at a station to return the bike. As the sta-
tion may have no available slots, it is not sure the user
will be able to return her bike there. In this case, she
would have to take again the “user return decision”.

User Tries to Reserve
Slot

A user tries to reserve a slot at a station. The reservation
intent may be successful or unsuccessful. If unsuccessful,
the user again takes the “user return decision”. If the res-
ervation was successful, the user has a slot reservation.

User Has Slot Reserva-
tion

If a user has a slot reservation, she cycles towards the
corresponding station. The reservation may finish with a
timeout before the user arrives at the destination station.

Slot Reservation
Timeout

The slot reservation has finished before the user arrives
at the station.

User Returns Bike The user returns the bike at the station and walks to her
final destination.

User Arrives at Desti-
nation

The user has reached her destination and leaves the sys-
tem.

User Leaves System The user leaves the system.
Fleet manager - Take
Bike from Station

A bike is taken from a station (may be issued by the fleet
manager).

18

Fleet manager - Add
Bike to Station

A bike is added to a station (may be issued by the fleet
manager).

Fleet manager - Check
Situation

The fleet manager checks the situation of the infrastruc-
ture and may decide to introduce modifications or may
issue managing events.

The simulation engine operation is based on a priority queue of events (ordered

by the time instant they happen). Initially, for each user to be simulated an event of type

“User Appears” is created with the time and location indicated in the users’ configura-

tion file. Then, the events are processed in order. The execution of events may require

some decisions to be made by the user, and usually creates and inserts new events into

the queue.

The last three events can be issued by the fleet operator. “Take Bike From Sta-

tion” and “Add Bike To Station” allows a fleet operator to take bikes from the system

(e.g., for repairing), adding new bikes to the system, or moving bikes from one station

to another, e.g. to implement rebalancing strategies that are carried out with trucks (as it

is done in many real world bike-sharing systems). “Check Situation” is an event that

passes the control to the implemented fleet manager and allows it to analyse the current

state of the system, to introduce modifications and to issue new managing events. When

checking the situation, a fleet manager can issue a new “Check Situation” event at some

point in the future. This allows for a periodic monitorization of the system.

Movements of users in the system are simulated using an external routes server5.

However, the simulator does not update continuously the position of the users. Instead,

a new event would be created with the time at which the user would arrive at its destina-

tion. Fig. 3 shows an example, where there are several events that must occur at times

100, 120, 340, 710, 800 and so on. We simplified the information shown in the queue.

5 We use OpenStreetMap (OSM): https://www.openstreetmap.org

19

The next event to be processed is EV(UserAppears, user1,t=100, pos1) states that user1

appears at instant t=100 in pos1. When this event is processed, user1 takes the “user

rental decision”. Let´s suppose she decides to go directly to station 55. After the deci-

sion, the route and arrival time are calculated, and the corresponding arrival event is in-

serted into the queue (User Arrives at Station (to rent)). In the example, it takes the user

ten minutes (600 sec.) to reach station 55.

Fig. 3. Event processing example.

In case a user decides to reserve a bike, the event processor calculates if the es-

tablished maximum reservation time (a system configuration parameter) would expire

before the user arrives at the corresponding station. If that was the case, the Bike Reser-

vation Timeout event would be inserted into the queue instead of a Users Takes Bike

event.

4.2 User Management

Users are the principle simulated entities. In fact, a simulation consists of simulating a

set of users’ behaviours in the system, since the moment they appear until they leave.

As mentioned before, the simulation engine controls the flow of user events that may

occur by processing the event queue. Most events require some decisions that have to be

taken by the corresponding user (e.g., select a station, decide to reserve, …). In real life

Event Processor

UApp
t=120
pos2

UApp
t=100
pos1

UApp
t=710
pos5

UArrR
t=340
st41

UArrR
t=700
st55

EV(UApp, user1, t=100, pos1) EV(UArrivesRent,user1, t=700, st55)

UArr
t=800
st33

EV(type, time, parameters)

...

20

different users have different behaviour models and react differently under similar cir-

cumstances. For example, some people may not mind walking 500 meters to get a bike

while others may only be willing to walk less than 300m. We allow this by using the

notion of user types, which represent implementations of different user models.

Each user type must provide an implementation of the following user decision

methods that the simulation engine may invoke, and which correspond to the different

decisions presented in Fig. 1 but contextualised to the situation that has led to the need

for a user decision (e.g., a failed bike rental, etc.):

• decideAfterAppearning

• decideAfterFailedRental

• decideAfterFailedBikeReservation

• decideAfterBikeReservationTimeout

• decideAfterGettingBike

• decideAfterFailedReturn

• decideAfterFinishingRide

• decideAfterFailedSlotReservation

• decideAfterSlotReservationTimeout

In practice, we define an abstract type User which specifies the abstract decision

methods and also provides a basic set of user parameters and default values:

• position: indicates the geographical position where a user appears

• destinationPlace: the final destination the user wants to go to

• intermediatePosition: specifies a geographical location in the region of interest.

If this parameter is not null, the user decides to “go for a ride” after getting a

21

bike. In this case, the user would go with the bike to the specified position. After

arriving there, she would decide to return the bike close to the destination place.

• timeInstant: the instant (second from simulation start) where the user appears

• walkingVelocity: the walking velocity of the user (default 1.4 m/s (Mohler,

Thompson, Creem-Regehr, Pick & Warren, 2007; Levine & Norenzayan, 1999))

• cyclingVelocity: the cycling velocity of the user (default 4.0 m/s)

Besides these parameters, different user types can specify additional parameters,

like the maximum number of rentals (or reservation) a user would try until she aban-

dons the system, or the maximum distance she is willing to walk to find a bike.

An interesting issue is how users choose stations to rent or to return a bike. In

particular, a user type may use a specific information or recommendation system for

this task. This allows us to test and evaluate different recommendation strategies, e.g.,

for obtaining a better balancing of the bikes in the global system.

Currently, we have implemented the following user types:

• Uninformed. This user tries to take/return bikes just from the nearest station. She

does not have information about availability of bikes/slots, so it may happen that

there are no bikes/slots available when the user arrives at the station.

• Informed. It is an informed user that knows the state of the fleet and always se-

lects the closest station with bikes or the closest station to its destination point

that has available slots, when returning a bike. It may happen that the user can

not rent a bike when arriving at a station, because other users have taken all

available bikes before.

22

• Obedient. It contacts a particular recommender system and always follows its

suggestions. This user is adequate for testing different recommendation strate-

gies.

• Informed-R. It is like Informed but making reservations before going to stations.

• Obedient-R. It is like Obedient but making reservations before going to stations.

All these user types have additional parameters:

• minRentalAttempts: specifies the number of rental attempts the user would try

before abandon the system without renting a bike,

• maxDistanceToRentBike: specifies the maximum distance a user is willing to

walk to rent a bike. For instance, an Informed user would abandon if there is no

station with an available bike within this distance.

The implementation of new user types in the simulator is fairly easy. Any new

user simply has to extend the abstract User class. Furthermore, we use reflection6 to

specify the user types of a particular simulation. Thus, no additional changes in the sim-

ulator are necessary.

6 Java reflection allows to explore object characteristics (e.g. class name, methods, instances of

a class, annotations …) and to perform operations (invoke methods, create instances, etc.) at

runtime. In our case, using reflection, it is possible to implement different user, recommen-

dation system and fleet manager types and to load them into the simulator without modifying

any other source code.

23

4.3 Experiment Configuration

Simulation experiments are configured by providing three types of configuration param-

eters: Stations, Users and Global, as shown in Fig. 4. These configuration parameters

are stored in json files.

Fig. 4. Experiment configuration and generated files

Stations.

It contains information about the stations in the system, including physical location, ca-

pacity and initial number of bikes.

Global.

Specifies the global parameters of a simulation experiment. They include the following

fields:

• reservation time: the time before a reservation expires

• total simulation time: the total duration of the simulation (in seconds)

USER
GENERATION

SIMULATION

VISUALISATION

DATA
ANALYSIS

Users

Stations

Global

Entry
points

History

.csv

24

• random seed: (optional) it can be used to generate the same sequence of random

values.

• bounding box: of the underlying area of interest (geographical coordinates of

top-left and bottom-right corners)

• debug mode: true or false, specifies whether or not debug information is gener-

ated

• start date time: (optional) a reference date and time for which the simulation is

taking place. This information is useful if the balancing strategy uses expected

demand.

• graph manager type: specifies the file graph manager used for calculating

routes. Currently we only implement the use of OSM to calculate routes and

times. It contains a typeName and a set of parameters.

• recommendation system type: (optional) is the type of recommendation system

used by users that make use of such a system. It contains a typeName and a set

of parameters.

• fleet manager type: (optional) is the repositioning system used in the simulation.

It contains a typeName and a set of parameters.

• demand manager type: (optional) is the type of expected demand management

system available for the recommendation and fleet manager systems. It contains

a typeName and a set of parameters.

With regard to the recommendation system type and fleet manager type, similar

to user types, different recommendation systems and fleet managers can be imple-

mented. Again, we use reflection to select the particular implementation of a recom-

mendation system and fleet manager in the simulator, based on the value of the field

25

typeName in the configuration file. Parameters of a particular implementation are speci-

fied in the parameters set.

Each recommendation system has to extend the abstract class Recommendation-

System that implements some auxiliary methods and defines the abstract methods: rec-

ommendStationToRentBike and recommendStationToReturnBike. Each implementation

of a recommendation system has to implement these two methods that should return an

ordered list of stations which are recommended to a specific user (at a given time and

position) for renting/returning a bike. Each fleet manager implementation has to extend

the abstract class FleetManager and has to implement the methods initialActions and

checkSituation. The first method is called right at the beginning of any simulation and

allows a fleet manager to setup initial managing events in the event queue, for example,

to monitor the system at certain time intervals. The second method is called from any

“Fleet manager - Check Situation” event and represents the specific implementation of

a monitoring activity.

Users.

Specifies the list of all users that are generated during the simulation. Each user is speci-

fied through the parameters described in section 4.2 (position, destinationPlace, inter-

mediatePosition, timeInstant, walkingVelocity and cyclingVelocity), as well as its us-

erType (which corresponds to an implementation of a particular user model) and any

other parameters that are specific to the particular userType implementation.

All three configuration files can be generated manually or via a user interface

(see Fig. 5). With respect to the Users configuration, we also implemented a User Gen-

erator tool for generating users randomly by specifying a set of Entry Points. Each en-

26

try point either represents a single user or a “user generator”, allowing to generate ran-

dom user trips between an origin and destination area. In the latter case, users are gener-

ated with random values for the fields: position, destinationPlace, timeInstant, walk-

ingVelocity and cyclingVelocity. The timeInstant is generated from a starting time with a

Poisson distribution with a parameter λ (where λ represents appearance rate in users/h).

The Poisson distribution is a discrete probability distribution that represents events oc-

curring at time intervals and independent of the time of the last event. It has been used

by others to model user arrivals at a bike sharing system, e.g. (Chemla et al. 2013). With

regard to the position and destinationPlace fields, each of those values is generated ran-

domly within a circle with a specified radius from a defined origin location and destina-

tion location, respectively (both radius may be different). In this way and using different

entry points, it is possible to generate (randomized) user trips that correspond to a typi-

cal origin/destination matrix, where origin and destination are areas or fixed locations.

The user generator creates a User configuration file, which can then be used as input to

the simulator.

27

Fig. 5. Snapshot of the configuration interface. Big red circles represent entry points,

with their origin location. Small circles are stations, with the number of available bikes

in them. The ratio of available bikes and free slots is shown in red and green, respec-

tively. The left-hand side shows the details of one entry point.

4.4 Visualisation

The aim of the visualisation module is to display the produced history data of the simu-

lation in a graphical and appealing way (see a snapshot in Fig. 6). This includes render-

ing geographic data on a map and presenting the current state of the system at each mo-

ment.

The visualization essentially acts as a reproducer of a set of recorded data where

the entities are displayed on a map with additional status information. In particular, the

situations of all stations and all users that are currently in the system is presented. The

reproduction is done in a playback mode simulating real-time. Internally, the visualiza-

28

tion module processes the data of the events that have taken place (as stored in the his-

tory files) and updates the situation of the entities in simulated real-time. In contrast to

the simulation engine, here, the movements of the users (either when walking or when

cycling) are simulated, that is the position of the users is continuously updated. The

standard visualisation speed is “real-time” but the speed can be increased or decreased

(+/- icons). It is also possible to rewind the playback (e.g., with a negative speed factor).

To render the map and to simulate movements, data from OpenStreetMap is

used. The actual entities (users and stations) are displayed by interactive markers that

provide additional information of the current state of each entity. As we mentioned be-

fore, our simulation tool is event based and, thus, does not track the actual movements

of users (just the events of starting or ending a movement). However, the visualisation

module does show the movements of users by translating the route data (available in the

simulation history) to positions at each particular instant.

29

Fig. 6. Snapshot of the visualization interface. Bike and person symbols represent users

riding or walking, respectively. Numbers on top of the symbols are identifiers.

4.5 Data analysis

In this section we describe the quality metrics our simulator generates to evaluate the

performance of a BSS. More extended explanations can be found in (Fernández et al.,

2018).

We use the following notations to define the metrics: N is the total number of users, (i.e.

total bike demand), Successful hires (SH) is the total number of bike rentals, Failed

hires (FH) represents the total number of attempts to hire a bike that failed due to una-

vailability, Successful returns (SR) and Failed returns (FR) represent the same numbers

for bike returns. Based on these measures, we calculate the following metrics:

• Demand satisfaction (DS): ratio of users who were able to hire a bike (either at

first trial or not), including those who booked a bike in advance. This is one of

the most common metrics used to evaluates BSS (e.g. (Chemla et al., 2013))

DS = SH / N

 With regard to bike returns, we do not define a similar measure since we assume

that all users that have taken a bike must return it to some station.

• Hire efficiency (HE): ratio between the number of rentals and the total rental at-

tempts of those users who hired a bike (FHh).

HE = SH / (SH+FHh)

• Return efficiency (RE): ratio between the number of returns and the total return

attempts:

30

RE = SR / (SH+FR)

• Average Empty Time (AET): is the average time a station is empty, which means

it is potentially denying a service. This metric is useful when users have access

to information about bike availability before making their decision (in real life,

e.g. via an app). In those cases, they may go to the nearest station with available

bikes.

• Average Deviation (AD) with regards to a balanced situation. Here a station is

considered balanced if the number of available bikes is half its capacity (thus

keeping half empty slots). For each station the average deviation is calculated as

the average absolute error. This metric is the average of all stations. AD might

be a useful metric for assessing balancing strategies that try to keep each station

at half occupancy. This assumes, by default, that the optimal inventory level is

half the station's capacity. Clearly, this may be suboptimal, as the optimal inven-

tory level depends on the demand context (i.e. unbalance demand level) and on

the repositioning strategies used. For example, a nearly full station may be "bal-

anced" if much more requests than returns are expected in the next operating pe-

riod.

• Users’ time in the system. It is the time users spend in the system. The total time

(TT) is the sum of walking time to origin station (Tos), cycling travel time to re-

turn station (Trs) and walking time to final user destination (Tfd):

TT = Tos + Trs + Tfd

Note that Tos and Trs include walking or cycling (respectively) from station to

station if no available bike/slot is found.

31

All these measures are generated by the data analyser and are written to files in

csv format so they can be imported into more powerful data analysis tools for further

analysis.

5 Evaluation

In the sequel we present, first, a validation of the Bike3S simulation tool where we ana-

lysed a real case scenario. Afterwards, we present three examples to show the possibili-

ties of our simulation tool for evaluating management decisions or strategies, especially

balancing strategies: a simulation of “designed scenarios” in the city of Madrid and

simulations with real data in the cities of Madrid and London. However, in this paper,

our research is not focused on adequate balancing strategies. We just implemented a set

of rather simple strategies as examples.

5.1 Real-case validation

In order to evaluate the correct operation of the Bike2S simulator, we tried to replicate

the operation of BiciMAD, the public bike sharing system in Madrid (Spain), for several

different days with real data. This system covers an area of about 5x5 km square of cen-

tral Madrid and counts currently on 174 active stations and about 1800 bikes (at Sep-

tember 2019). The capacity of the stations is between 12 and 30, but most stations have

24 slots. There are publicly available data of the usage of the BiciMAD system, in par-

ticular:

• Data of the trips including, for each trip, time of taking a bike, origin station,

destination station, travel time and the approximate route. However, in order to

anonymise the data, only the day and hour of the pick-up time of each trip are

32

given (without minutes). Each trip includes a user type, with possible values rep-

resenting regular or occasional users, BiciMad staff or unidentifiable users.

• Situation of the stations: including the number of available bikes and slots and

whether or not a station was active. We recompiled this information during July

2018 from the official BiciMAD API at an interval of 5 minutes.

In order to replicate a real-world scenario, we extracted the user data for a 24-

hour period (in particular, from 7:00 on the 20th of July 2018 to 7:00 on the 21st of July

2018). There have been 12296 real user trips (corresponding to regular and occasional

users) that started in this interval and 849 movements of bikes with trucks (trips be-

tween different stations carried out by BiciMAD staff). We used the user trip data to

generate the simulated users for our simulator. Given the data of a real user trip, we nei-

ther know from the data at which position a real user decided to go to a station nor

where her final destination is. Therefore, and in order to reflect the real situation as

good as possible, we used the coordinates of the station on which a user unplugged

/plugged a bike as the appearance and destination locations of the simulated user. The

walking velocity is set to a default value of 1.4 m/s and the cycling velocity is obtained

from the distance between the origin /destination stations and the user travel time. Fi-

nally, the instant of appearance of the simulated user is generated randomly within the

hour of the appearance given in the real data (with a uniform distribution), since we do

not know the exact minute or even second of appearance. We used the Uninformed user

type that would just go to the closest station to get a bike (in this case the station where

they appeared) and would leave the system if there were no bikes available at this sta-

tion (they do not retry at the same or another station). Regarding bike returning, the us-

ers would go directly to the station closest to their destination and if there was no slot

available, they would go to the next closest station to try there.

33

In order to replicate the movement of bikes with trucks, we implemented a sim-

ple fleet manager that issues the corresponding “Take Bike from Station” and “Add Bike

to Station” events for the 849 real movements. Also here, we do not know the exact

time of a movement (only the hour in which it takes place). In this case we specified a

time 30 minutes after the initial corresponding hour.

For specifying the initial station configuration in the simulated scenario, we used

the official (real) data at the initial time (20th of July 2018 at 7:00). There have been 169

active stations with 1796 bikes.

We analysed the performance of the simulated system in two ways: a) without

bike movements with trucks, and b) with the 849 bike movements with trucks. Table 2

summarizes the results.

Table 2. Experiments results for Madrid.

UserType # abandoned DS RE TT (min) real TT (min)

Without truck movements 496 0.959 0.886 15.63 14.75

With truck movements 162 0.987 0.993 14.78 14.75

As it can be seen in the table, the simulation results do not perfectly match the

real-world scenario. In the case where the bike movements with trucks are also simu-

lated (the case closer to reality), there are 162 users (about 1.3%) that did not find a bike

at the station where they appeared (and the users abandoned the system). This gives a

demand satisfaction (DS) of 0.987. Regarding the returns, there have been 80 failed re-

turn attempts (0.7%; return efficiency (RE) 0.993); e.g., in 80 cases a user did not find

an empty slot and had to go to another station to try to return the bike. Finally, the aver-

age time (TT) employed in the simulated user trips is 14.78 minutes where it has been

14.75 minutes in the “real world” (real TT). We measure this time only for the users

34

that did not abandon. Since in this case we respect the real-world cycling velocities in

the simulation, this small difference is only due to the users that could not return their

bikes at the expected stations and had to spend extra time to cycle to another station.

The difference between the simulated and the real scenario is clearly due to the

fact that with the available data, we do not know the exact appearance time of users

(just the hour) and thus, establish the appearance time randomly within the correspond-

ing hour. In an oversized system (e.g., with always enough available bikes and slots at

each station) the approach we took to randomize the appearance time of users should

not have any influence in the results. However, in the case of the BiciMAD system, it is

quite common that a station becomes empty or totally occupied. Analysing the real oc-

cupation situation of the stations for the simulated period and at an interval of 5

minutes, it turns out that 4,8 % of the 48503 different measures (every 5 minutes during

24 hours for 169 stations) a station is empty and at 1% it is fully occupied. In such a sit-

uation, even very small differences in the appearance times of users will lead to bike

rental or return failures. In this sense, we consider that the abandon rate of 1.3% and the

return fail rate of 0.7% are due to these differences and rather confirm the correct func-

tioning of the simulator.

Also, the differences in the results when including/not including the bike move-

ments with trucks provide evidence for evaluation. A clear increase in rental failure and

much higher in return failure can be observed if we omit the movements of bikes from

one station to another through trucks. This clearly shows that such operational actions in

general do have a positive effect on balancing the availability of bikes (and slots) in

bike-sharing systems.

35

5.2 Designed scenarios

With this set of experiments, we show the possibility to create and evaluate artificial

scenarios. We chose a 3km square map of central Madrid and set 20 stations in real lo-

cations of the current bike-sharing system BiciMAD. We gave them a capacity of 20

bikes and, initially, each station was set up with 10 available bikes (thus, also with 10

empty slots). We set five entry points, whose locations are shown in Fig. 5. At each en-

try point the appearance radius is set to 200m, i.e. users generated by an entry point ap-

pear at a random location within a distance of 200m from that entry point. Users’ desti-

nations are randomly chosen in the whole area. We set a maximum of two failed at-

tempts to rent or reserve a bike before leaving the system without using it and a maxi-

mum distance of 600 meters a user would be willing to walk in order to find a bike.

Walking and cycling velocity was set to 1.4 and 6 meters per second, respectively.

With this set of parameters, we analyse the performance of the system with dif-

ferent user types for increasing demand data (increasing number of users). We carried

out experiments where the generation ratio of users at each entry point was 10, 20, 40,

60, 80, 120 and 150 users per hour. We evaluated the following types of users (pre-

sented in section 4.2): Uninformed, Informed, Informed-R and three types of Obedient

users: i) Obedient-AvR, where users use a recommendation system that recommends the

station with the most available resources (bikes or slots, respectively), ii) Obedient-

AvR/Dist where the station with the best ratio between the available resources at that

station and the distance of the user to the station is recommended, and iii) Obedient-

AvR-R, like Obedient-AvR but users always reserve bikes or slots at the recommended

stations. In all cases, the recommendation of a station is limited to stations within 600

meters of the user position when asking for a station to rent a bike and within 600 me-

ters from the destination location when users ask for a station to leave the bike.

36

Fig. 7 to Fig. 12 show the evolution of the performance of the different user

types with increasing demand and for the different metrics defined in section 4.5. As ex-

pected, the performance with Uninformed users is the worst of all cases. Obedient users

outperform Informed users in the efficiency measures since the use of a balancing strat-

egy reduces the number of times that stations get empty. However, Obedient-AvR de-

creases significantly in demand satisfaction and hire efficiency with higher demands. In

fact, it behaves even worse than the simple Informed strategy. This is because many us-

ers that appear at almost the same moment and in similar regions will be sent to the

same best station and will find that there is no bike left when they arrive (only the firsts

will get them). Possible improvements to that strategy could be recommending different

stations to different users (e.g. with a probability proportional to the number of available

resources) or taking into account that the users who received recommendations will

likely follow them, so the “virtual” number of available resources is different. Return

efficiency is very high in almost all cases. This is due to the fact that users’ destinations

are not concentrated in specific locations as with appearances as well as that some users

abandoned the system without hiring. Furthermore, Obedient-AvR present quite bad to-

tal time values which is due to the fact that users are send to stations that are rather far

away. Both problems are mitigated with the Obedient-AvR/Dist type. With regard to

reservations, it can be observed that users that make reservations have generally a

higher chance to get a bike.

37

Fig. 7. Abandoned execution results. λh is the appearance rate per entry point in users

per hour. This metric is equivalent to Demand Satisfaction but is easier to see. In-

formed-R coincides with Obedient-AvR-R.

Fig. 8. Hire Efficiency execution results. Informed-R and Obedient-AvR-R coincide.

38

Fig. 9. Return Efficiency execution results. Informed-R and Obedient-AvR-R coincide.

Fig. 10. Total Time execution results.

39

Fig. 11. Average Deviation execution results.

Fig. 12. Average Empty Time execution results.

5.3 Real scenario simulation for evaluating balancing strategies. Madrid

and London.

In this set of experiments, we used real data from Madrid and London. The goal is to

present scenarios with different real infrastructures (number, location and size of sta-

tions) and use patterns.

In the first experiments, we used again data from BiciMAD. In particular, in this

case, we used the data of the 25th of June 2018, a day with a fairly high usage of the

system with 13104 user trips. In order to simulate the trips in a more realistic way we

40

randomly generated appearance time in minutes within the specified hour (with a uni-

form distribution). In addition, we also randomly generated the appearance and destina-

tion location of users with a uniform distribution within a radius of 200 meters from the

real origin and destination station, respectively. All the stations (173 active stations at

this day) were initialised with a ratio bikes/empty slots of 0.5. We set a maximum of

three failed attempts to rent or reserve a bike before a user would abandon the system

without using it. Furthermore, we specified a maximum radius of 600 meters as the dis-

tance a user is willing to walk in order to find a bike. If she does not find a bike at this

distance, she will also abandon the system. The walking velocity of all users has been

set to 1.4 meters per second and the cycling velocity has been obtained from the infor-

mation of the real route information.

We analysed the performance of the following user types (as explained in sec-

tion 4.2): Uninformed, Informed, Obedient/AvR. and Obedient-AvR/Dist.

Table 2 shows the results of the experiments. The efficiency data (DS, HE and

RE) are very high in general, especially for users that decide based on recommenda-

tions. This is normal because the historical data used in the simulation only contain suc-

cessful hires. Despite this fact, those values are not always 1 since we had to randomly

distribute users within each hour and close location as explained before, so the data are

not exactly the same as the historical records. Uninformed users get the lowest perfor-

mance in demand satisfaction (DS) and efficiency (HE and RE). That is due to the fact

that users go to their nearest station without even checking whether there are bikes

available. The other user behaviours present a better performance. If users follow the

recommendation strategy to go always to the station with the most resources, the results

present the best values in average empty time and deviation. The reason is that these

41

metrics analyse station status and this strategy tends to keep individual stations as bal-

anced as possible. However, the performance from the users’ perspective, i.e. the time

users spend in the system, is much worse. If the recommendation is done by taking into

account both, the distance a user would have to walk to a station as well as the available

resources, then a reasonable balance of bikes at station is obtained, and users have a

fairly low total time in the system.

Table 3. Experiments results for Madrid. Bold numbers indicate the best obtained result

for each metric.

UserType # abandoned DS HE RE TT (min) AD AET (min)

Uninformed 200 0.98 0.93 0.80 14.6 5.3 83.2

Informed 83 0.99 0.98 0.94 14.0 5.4 91.5

Obedient-AvR 0 1.00 1.00 1.00 21.7 1.9 0.4

Obedient-AvR/Dist 18 1.00 1.00 0.99 13.8 4.3 28.6

The experiments using real data from London cover an area of about 20x10 km

square. The system includes 783 stations and 20178 bikes. The capacity of each station

varies from 10 to 62 slots. We used the data of the 30th of May 2018, which included

31736 trips. The rest of parameters and decisions are the same as in the previous experi-

ment. The results obtained (Table 4) are in line with the ones from Madrid.

42

Table 4. Experiments results for London. Bold numbers indicate the best obtained result

for each metric.

UserType # abandoned DS HE RE TT (min) AD AET (min)

Uninformed 488 0.98 0.98 0.83 22.4 6.3 12.0

Informed 60 1.00 0.98 0.93 22.2 6.6 16.3

Obedient-AvR 0 1.00 1.00 1.00 30.4 3.6 0.0

Obedient-AvR/Dist 0 1.00 1.00 0.99 22.4 5.7 1.2

6 Conclusion

In this paper we have described Bike3S, a station-based bike sharing system simulator.

The objective of Bike3S is to analyse the behaviour of a BSS given an infrastructure

(stations and bikes) and expected demand in different points of the area of interest. In

addition, the simulator can be used to evaluate balancing strategies. Bike3S is highly

customisable to account for different user behaviours, infrastructure and experiment

configurations. We presented a validation of the tool with real data from the BSS Bi-

ciMad in Madrid as well as several use cases to show the type of experiments that can

be carried out and the results that can be obtained.

The modular design of Bike3S allowed us to separate the configuration and user

generation from the simulation execution, and the latter from the visualisation and anal-

ysis. Thus, the simulator can generate users or load them from a file. Likewise, the visu-

alisation interface or data analysis tool can load previously stored simulation histories.

One of the main characteristics of Bike3S is its capability to be easily extended with

new user types and balancing strategies.

We are currently working on designing incentive-based balancing strategies,

which are evaluated using Bike3S. Some preliminary works can be found in (Fernández

et al., 2018).

43

In the future, we plan to extend the simulator in several lines. One is including fares to

hire bikes into the infrastructure, so that discount-based incentives or dynamic pricing

balancing strategies can be implemented. Another extension includes considering elec-

tric bicycles, which implies managing battery load levels, discharge/load times, deci-

sions on which bikes to hire, etc.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Economy and Com-

petitiveness, and the Spanish Ministry of Science, Innovation and Universities, co-

funded by EU FEDER Funds, through grants TIN2015-65515-C4-4-R (SURF) and

RTI2018-095390-B-C33 (InEDGEMobility).

References

Caggiani, L., & Ottomanelli, M. (2012). A modular soft computing based method for

vehicles repositioning in bike-sharing systems, Procedia - Social and Behav-

ioral Sciences, 54, 675-684.

Chemla, D., Meunier, F., Pradeau, T., Calvo, R. W., Yahiaoui, H. (2013). Self-service

bike sharing systems: Simulation, repositioning, pricing. https://hal.archives-ou-

vertes.fr/hal-00824078.

Contardo, C., Morency, C. & Rousseau, L. M. (2012). Balancing a dynamic public

bike-sharing system. Technical Report CIRRELT, vol. 4.

Dubernet, T. & Axhausen, K.W. (2014). A Multiagent Simulation Framework for Eval-

uating Bike Redistribution Systems in Bike Sharing Schemes. Arbeitsberichte

Verkehrs- und Raumplanung 1010. ETH Zurich.

Erdoğan, G., Battarra, M., Calvo, R.W. (2015). An exact algorithm for the static re-

balancing problem arising in bicycle sharing systems. European Journal of Op-

erational Research 245(3), 667–679.

Fernández, A., Billhardt, H., Timón, S., Ruiz, C., Sánchez, O. & Bernabé, I. (2018).

Balancing Strategies for Bike Sharing Systems. In: Lujak M. (eds) Agreement

Technologies (AT 2018). LNCS, vol 11327. pp. 208–222. Springer, Cham

44

Fellendorf, M. (1994). Vissim: A microscopic simulation tool to evaluate actuated sig-

nal control including bus priority. In: 64th Institute of Transportation Engineers

Annual Meeting (pp. 1– 9). Springer.

Forma I. A., Raviv, T. & Tzur, M. (2015). A 3-step math heuristic for the static reposi-

tioning problem in bike-sharing systems. Transportation Research Part B:

Methodological 71, 230–47.

Fricker, C. & Gast, N. (2012). Incentives and regulations in bike-sharing systems with

stations of finite capacity. arXiv preprint arXiv:12011178.

Gámez-Pérez, K., Arroyo, P. & Puente-Rivera, E. (2019). System Dynamics Simulation

to Explore the Impact of a Bike Sharing System. Evidence from Mexico. Eco-

cience. International Journal 1(1), 60-72.

Haider, Z., Nikolaev, A., Kang, J. E. & Kwon, C. (2018). Inventory rebalancing through

pricing in public bike sharing systems, European Journal of Operational Re-

search 270(1), 103-117.

Horni, A., Nagel, K. & Axhausen, K. (Ed.). (2016). Multi-Agent Transport Simulation

MATSim. Ubiquity Press, London.

Ji, S., Cherry, C. R., Han, L. D. & Jordan, D. A. (2014). Electric bike sharing: simula-

tion of user demand and system availability. Journal of Cleaner Production 85,

250-257

Jian, N., Freund, D., Wiberg, H. M. & Henderson, S. G. (2016) Simulation optimization

for a large-scale bike-sharing system. Winter Simulation Conference (WSC) pp.

602-613.

Krajzewicz, D., Erdmann, J., Behrisch, M., & Bieker, L. (2012). Recent development

and applications of SUMO - Simulation of Urban MObility. International Jour-

nal On Advances in Systems and Measurements, 5(3&4), 128–138.

Levine, R. V. & Norenzayan, A. (1999). The Pace of Life in 31 Countries. Journal of

Cross-Cultural Psychology. 30 (2), 178–205.

Lin Y-K. & Liang, F. (2017). Simulation for Balancing Bike-Sharing Systems. Interna-

tional Journal of Modeling and Optimization 7(1), 24–27.

Mohler, B. J., Thompson, W. B., Creem-Regehr, S. H., Pick, H. L. Jr. & Warren W. H.

Jr. (2007). Visual flow influences gait transition speed and preferred walking

speed. Experimental Brain Research, 181 (2), 221–228.

45

O'Mahony, E. & Shmoys, D. B. (2015). Data analysis and optimization for (citi)bike

sharing. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial In-

telligence (AAAI'15) (pp. 687–694). AAAI Press.

Pal, A., Zhang, Y. (2017). Free-floating bike sharing: Solving real-life large-scale static

rebalancing problems. Transportation Research Part C: Emerging Technologies

80, 92–116.

Pfrommer, J., Warrington, J., Schildbach & G., Morari, M. (2014). Dynamic vehicle re-

distribution and online price incentives in shared mobility systems. IEEE Trans-

actions on Intelligent Transportation Systems 15(4), 1567–1578.

Romero, J. P., Moura, J. L., Ibeas, A. & Alonso, B. (2015). A simulation tool for bicy-

cle sharing systems in multimodal networks. Transportation Planning and Tech-

nology, 38(6), 646-663.

Saltzman, R. M. & Bradford, R. M. (2016). Simulating a More Efficient Bike Sharing

System. Journal of Supply Chain and Operations Management 14(2), 36–47.

Schuijbroek, J., Hampshire, R. C. & Van Hoeve, W. J. (2017). Inventory rebalancing

and vehicle routing in bike sharing systems. European Journal of Operational

Research 257(3), 992–1004.

Soriguera, F. & Jiménez-Meroño, E. (2020). A continuous approximation model for the

optimal design of public bike-sharing systems. Sustainable Cities and Society 52

101826

Soriguera, F., Casado, V. & Jiménez, E. (2018). A simulation model for public bike-

sharing systems. In CIT2018. Proceedings of the XIII Conference on Transport

Engineering. Transportation Research Procedia 33. 139–146.

Waserhole, A., & Jost, V. (2016). Pricing in vehicle sharing systems: optimization in

queuing networks with product forms. EURO J. Transportation and Logistics, 5,

293-320.

