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Abstract 

This article presents an instructional framework for collaborative learning, called CIF and aimed at the analysis level 
of Bloom’s taxonomy, as well as a mobile collaborative tool called MoCAS that supports CIF. MoCAS is aimed at 
the domain of scope of identifiers in programming learning, which is a topic present in programming courses in 
engineering studies. The specification and development of MoCAS were explicitly driven by pedagogical goals and 
by the atomic actions declared in CIF as simple items of collaborative activities. Furthermore, CIF and MoCAS 
were evaluated in an actual educational context with respect to students’ performance and motivation. Students 
using CIF and MoCAS obtained statistically significant higher grades than students studying in an individual or 
collaborative basis but not using MoCAS. In addition, we measured statistically significant measures indicating that 
students instructed with CIF and MoCAS were more motivated than students instructed collaboratively but not using 
CIF or MoCAS. In addition to CIF and MoCAS, and the evaluation results, the experiences here reported exemplify 
several software engineering practices: the design of an educational system based on knowledge of the target 
domain (namely, Bloom’s taxonomy) and the evaluation of users’ satisfaction (mainly, students’ motivation). 
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1. Introduction 

Programming is one of the basic areas in engineering education [1] as well as a core area in the computing 
disciplines, including Computer Engineering [2] and Software Engineering [3]. Learning programming is a 
demanding task. Therefore, many efforts have been dedicated to teaching programming more effectively since the 
eighties [4]. Two of the mainstream areas of research have been innovative educational methods [5] and new 
learning tools [6]. However, it is uncommon to have these efforts driven by clear and explicit learning goals. 

Our hypothesis is that the use of explicit pedagogical goals increases the quality and effectiveness of learning tools. 
From the point of view of a software engineer, tool requirements can more easily be identified and consequently 
their specification can more easily be stated. From the point of view of an instructor, instructional activities can be 
checked for alignment with the educational goals supported by the system. We also need to take into consideration 
the instructional approach that the learning tool would support. There are a number of successful active learning 
approaches [7], such as problem-based learning [8] or collaborative learning [9]. Depending on the instructional 
approach, different instructional activities must be designed, scheduled and performed. 

In this article we present three contributions regarding collaborative learning tools (i.e. CSCL systems). Firstly, we 
specified a collaborative instructional framework called CIF in terms of the well-known Bloom’s taxonomy [10]. 
Bloom’s taxonomy establishes a hierarchy of six levels of increasing degree of student’s cognitive mastery, where 
every level assumes that the student has achieved certain degree of mastery in the lower levels. CIF was designed to 
support the analysis level of Bloom’s taxonomy. This level is especially appropriate for collaborative learning 
because it fits well with discussion activities. Lower levels in Bloom’s taxonomy, such as the comprehension level, 
fit better (but not necessarily) with individual activities. Higher levels in Bloom’s taxonomy, such as the synthesis or 



evaluation levels, imply a higher level of expertise from students. Secondly, MoCAS was built to support the 
collaborative activities identified in CIF in the domain of scope of identifiers in programming learning, which is a 
topic present in programming courses in engineering studies. MoCAS supports the use of personal computers and 
laptops but also mobile devices, in order to foster their adoption, use and acceptance by students. Finally, we 
conducted a comprehensive evaluation of MoCAS with respect to two criteria, namely educational efficiency and 
motivation of students, each one involving four groups of students. 

The structure of the article follows. In the second section we present the collaborative instruction framework CIF 
and in the third section we present the MoCAS tool. Section four describes the two evaluations conducted of 
MoCAS with respect to learning efficiency and motivation, with statistically significant positive results. Sections 
five and six analyze related tools and contain a brief discussion regarding software engineering, respectively. 
Finally, we summarize our conclusions in the seventh section. 

 

2. CIF – Collaborative Instructional Framework 

The Collaborative Instructional Framework (CIF) is a collaborative instructional method conceived to design 
learning activities aimed at the acquisition of analysis skills. In the first subsection we present CIF in its general 
formulation and in the second subsection we present its instantiation to instruct a specific topic of programming, 
namely scope of identifiers in procedural languages. 

2.1. The CIF Collaborative Instructional Framework 

CIF provides a framework to design collaborative instructional activities aimed at the analysis level of Bloom’s 
taxonomy [10]. According to Bloom, at the analysis level “the student should be able to distinguish, classify and 
relate hypothesis and evidences of the information given, as well as decomposing a problem into its parts” [10]. The 
analysis level distinguishes 16 specific analysis goals clustered into 3 groups: 

 Analysis of elements. The simplest analysis tasks that can be addressed are the identification of elements about 
which information is given. This identification skill can be elaborated according to 3 goals. In this article, we 
focus on this group of goals, thus we enumerate them explicitly: (a) ability to recognize unstated assumptions, 
(b) ability to distinguish facts from hypothesis and from normative statements, and (c) ability to distinguish a 
conclusion from statements which support it. 

 Analysis of relationships between elements. This group consists of 8 goals, aimed at identifying the relationships 
between elements, the relevance of facts to validate an assessment, as well as the existence of cause-effect 
relationships between facts. 

 Analysis of organizational principles. It consists of 5 goals that intend to develop students’ skill to analyze the 
influence of an author’s opinion, of his/her background or of the state of the art on the facts presented to students 
in a task statement. 

The CIF instructional framework supports the 16 analysis goals of Bloom’s taxonomy by defining 16 guides, called 
Generic Cards (GC). A GC guides the instructor in designing, implementing and evaluating collaborative analysis 
activities. We identify a particular GC by referring to it by its corresponding number in the list of analysis goals 
given by Bloom, i.e. GCx, being x a natural number ranging from 1 to 16. 

Each GC consists of three sections: 

1. Task description. It states an intended pedagogical (analysis) goal. 

2. Activities. It consists of a set of collaborative activities, adequately arranged as a sequence in order to achieve 
the pedagogical goal. 

3. Evaluation. It suggests evaluation methods adequate to assess whether the pedagogical goal has been achieved. 

The instructor wishing to use CIF will first select the analysis goal to achieve and its associated GC. Then, the 
instructor must adapt the GC to the domain of study, resulting in a Domain Card (DC). Once a DC is created, the 
instructor will follow the detailed steps stated in the DC card for his/her instruction. Figure 1 illustrates this 
procedure. 

In order to make card instantiation easier, CIF defines a set of atomic actions that can be used to implement any kind 
of collaborative instruction in the class (see Table 1 for a subset). Consequently, the educational task described in a 



GC or DC can be performed by means of a sequence of atomic actions. In the next subsection we give an example 
of a DC for the domain of scope of identifiers. 

 

Figure 1.  Procedure for instructing with CIF 

 

Table 1. Atomic actions used in GC1 and DC1 

Code Description 
AA1 Form groups of students 
AA2 Deliver the problem statements to the groups 
AA3 Perform an action appropriate to the problem statement 
AA4 Exchange problem statements among the groups 
AA5 Display all the answers given by groups to the same problem statement  
AA6 Present and defend by each group its answers to the class 
AA7 Debate raising disagreements 
AA8 Discuss final answers 
AA9 Instructor’s mediation 

 

2.2. Cards for the analysis of scope of identifiers 

In the article we focus on the first pedagogical goal regarding the analysis level of Bloom’s taxonomy, namely “the 
ability to recognize unstated assumptions”. GC1 has been adapted to the topic of scope of identifiers in procedural 
languages, resulting in DC1. Therefore, DC1 is aimed at the “ability to distinguish and identify the scope of 
identifiers in a procedural programming language”. 

The structure of DC1 is shown in Table 2 (GC1 is not explicitly shown in another table because of its great 
similarity to DC1). Notice that some activities and their corresponding atomic actions have been grouped into larger 
activities. Strictly, we should separate them but this grouping will allow making the presentation of MoCAS easier 
in the next section. We do not include here the evaluation part of DC1 because we have focused on the task and 
activities sections of CIF, thus the evaluation section is not implemented in the current version of MoCAS. 
Guidelines about assessment of collaborative activities can be used as a basis for a future extension [11]. 



 

Table 2.  DC1 – Domain Card for objective 1 instantiated to the domain of identifier scope in a procedural 
programming language 

Task description 
Each exercise is a short program coded in Pascal, containing the main program and different subprograms with 
several identifiers. Several exercises are given to a class, so that each group is given two exercises and each 
exercise is solved by at least two groups. 
The aim of this task is to practice the ability to distinguish and identify the scope of identifiers occurring in the 
different parts of code. The students must create collaboratively a table declaring the scope of each identifier. 

Description of activities 
Atomic 
actions

1. Different groups of 4 students are formed. 
Each group is given a problem statement (i.e. to identify the scope of the identifiers contained in 
a given program). The statement contains a piece of source code in Pascal and a table area where 
the solution must be written (i.e. a scope table). 

AA1 
AA2 

2. Each group analyzes the source code contained in their problem. AA3 
3. Each group is given a second problem statement. 

Each group analyzes the source code contained in their second problem. 
AA4 
AA3 

4. Once each problem code has been analyzed by at least two groups, the answers are clustered and 
displayed to the class. 

AA5 

5. The different answers are presented by members of their corresponding groups, paying special 
attention to the elements where there is no consensus. 

AA6 

6. A debate about disagreements is held and moderated by the instructor. 
AA7 
AA8 
AA9 

 

CIF constitutes a collaborative learning framework that can be used without computer support. However, instructors 
and students may obtain the highest instructional benefits by using a CSCL system to support CIF; therefore we 
developed the MoCAS system. Actually, we have evaluated both uses of CIF (with and without MoCAS support), as 
we report in section 4. First, we describe MoCAS in section 3. 

3. The MoCAS system 
The Mobile Collaborative Argument Support (MoCAS) system is a collaborative system developed to support and 
conduct collaborative activities according to CIF. More specifically, MoCAS was designed to support the learning 
of the topic scope of identifiers in procedural programming languages, as stated in the DC1 defined in Subsection 
2.2. In its current state of implementation, MoCAS supports several procedural programming languages (Pascal, C 
and Java). MoCAS is supported in a number of computing devices, including personal computers, laptops and 
mobile devices. 

MoCAS is based on a client/server architecture. The server controls all the contributions done by each member of 
the group. Each client has a user interface adapted to the device constraints, supporting mobile devices, PCs and 
laptops. 

MoCAS was built under the Microsoft .Net Framework on the server site, and under the .Net Compact Framework 
on the mobile devices or .Net Framework on PCs with Windows Presentation Foundation to enrich the interface. 
The MySQL database engine was used to store information and, to promote further functionality, communication 
was based on WebServices by using SOAP protocol. 

The hardware requirements to use the tool are: (1) a personal computer running any Windows version to install the 
MoCAS server, (2) mobile devices running Windows Mobile o PCs and laptops running Windows to install MoCAS 
clients, and (3) a Wireless Access point to implement the wireless net. 

Figure 2 outlines the role of MoCAS in the collaborative instruction conceived by CIF. 



 

Figure 2.  Procedure for instructing with CIF supported by MoCAS for the domain of scope of identifiers 

MoCAS supports the complete instruction of the domain card DC1 (recall that it is aimed at learning the scope of 
identifiers in procedural programming languages). In this section, we present the main features of MoCAS by 
following the major steps in DC1 instruction. There are six steps corresponding to DC1 activities, as grouped in 
Table 2 above, plus a previous step for environment creation: 

0. Environment creation. This step must be performed in the instructor’s computer and consists of several smaller 
steps. First, the instructor must select or create a class. Second, he/she must up-load the list of students to 
MoCAS, either loading student by student or loading the whole class in one step (with a formatted text file). 
Third, the instructor must up-load the exercises to solve. Each exercise is just a piece of source code. Currently, 
MoCAS supports the languages Pascal, C and Java. Finally, the instructor assigns students and exercises to a 
class. 

1. Formation of groups of students and delivery of an exercise to each group. MoCAS automatically generates 
the groups in a given class by grouping every four students. The instructor relates, by drag-and-drop, students 
with the group and the problem statement they will have to solve. When students log in the system with the user 
and password given to them by the instructor, they can only select the exercise and group they have been 
assigned. 

2. Collaboration within groups. The students’ view of MoCAS is different from the instructor’s view. They may 
interact with their mobile devices or with their laptops or personal computers. In the former case, students have 
two tabs visible (see menu in Figures 3.a and 3.b, bottom); in the latter, they have all the information visible on 
the screen (see figure 4). In the following, we describe both interfaces in detail in order to obtain a more vivid 
impression of the tool. 

 
(a) 

 
(b) 



Figure 3. (a) MoCAS code tab. (b) MoCAS table tab, showing the confirm/disconfirm dialog 

 

The device interface consists of two tabs: 

a. Code tab (Figure 3.a). It contains the source code assigned to the student. Code lines are numbered to make 
referring to identifiers easier. Figure 3.a shows a part of an exercise that will be used along the article to 
illustrate MoCAS features. This exercise consists of four “blocks”, namely a main program named Prog1 
and three subprograms named P1, F1 and P2. 

b. Table tab (Figure 3.b). It constitutes a synchronous group desktop, i.e. it allows the members of a group to 
communicate synchronously using their desktops. The table tab hosts a table divided into two areas (Figure 
3.b, mark numbers 1 and 2). The left-hand side area displays in different rows the names of the blocks 
occurring in the exercise source code. Thus, Figure 3.b identifies the four blocks of our example, namely 
Prog1, P1, F1 and P2. The right-hand side area displays the items (i.e. identifiers) contributed by students. 
A student may either insert or delete his/her own items or vote the items proposed by his/her group mates. 
Let us review these three operations. 

Firstly, a student may insert an item by following three steps: 
1. He/she selects a block where to insert an item (Figure 3.b, mark number 1). 
2. He/she selects an identifier from a list (available in a dropdown text box with all the identifiers and 

the line numbers where they are declared). For example “(009)y” means that the identifier y is 
declared in line 009. 

3. He/she presses the Add button. The new identifier is inserted into the row of the selected block, 
meaning that this block is within the scope of the identifier. 

Secondly, a student may delete an item by clicking over the item and selecting the delete operation in 
the contextual menu. The student may only delete his/her contributed items. 

Finally, a student may vote the items contributed by other members of the same group as confirming or 
disconfirming. Voting can also be done by clicking over the item and selecting in the contextual menu the 
corresponding option (either to confirm or to disconfirm). The contextual menu also shows, for each item, 
who contributed it and the number of confirming or disconfirming votes received. This information can be 
used by any student to consider if deleting a contributed item (if most members of his/her group disagree 
with that insertion) or to reinforce subjective evidence about the correctness of the contribution. 

During inter-group discussion, the instructor may supervise the groups in the class and may even insert 
his/her own identifiers to promote additional discussion. The instructor may even project his/her 
contributions to the class for a class discussion. 

 
Due to their greater screen size, the laptop or personal computer interfaces display (in different areas) the same 
information as the mobile device interface hosted in two tabs. Figure 4 shows, marked with numbers 1, 2, 3 and 
4, the same contents as shown above for the code tab, the two tables and the contextual menu. Some minor 
enhancements are provided. In particular, items have been tagged with icons to make the identification of 
contributions easier (see Figure 4, mark number 3). A single person icon denotes that it is an own contribution, 
and a three-people icon denotes that it was contributed by another group member. 

The laptop or personal computer interfaces also provide several new tabs to the student: 

a. Theory tab (see Figure 4, mark number 5). The student may consult concepts about scope of identifiers in a 
standard format (e.g. HTML). The theory is loaded by the instructor when he/she creates an exercise. 

b. Solution, group evaluation and classroom evaluation tabs. These tabs are used to show extra information to 
the students when the learning task is over. The solution tab (Figure 4, mark number 6) shows an automatic 
correction done of the class solution (explained in more detail in steps 4 and 6, as well as in Figures 5 and 
6). The solution can be projected to the class. The group evaluation and classroom evaluation tabs (see 
Figure 4, mark numbers 7 and 8) present simple reports about the hits and misses of the student’s group and 
of the whole class. 

 



 

Figure 4. MoCAS interface for students in a laptop 

3. Repetition of the analysis task with another exercise. This step is optional, at the instructor’s discretion. Once 
all the groups have created a solution to the first given exercise, the instructor may assign a second exercise to 
the class just by dragging and dropping a new piece of source code. He/she asks the students to login again in 
MoCAS and select the new exercise. This step is similar to step 1, and step 2 must be performed again (i.e. 
collaborate within groups). 

4. Creation of a class solution. When time scheduled for problem solving is over, students stop interacting with 
their computing devices. The instructor selects the adequate class (see Figure 5, mark number 1) and exercise 
(Figure 5, mark number 2), obtaining a display of the source code (Figure 5, mark number 3) and a summary of 
the solutions proposed by all the groups. In the column entitled “procedures” we find the program blocks (see 
Figure 5, mark number 4), and in the column entitled “solution” we find a summary of the solutions proposed by 
all the groups (see Figure 5, mark number 5). This summary constitutes a collaborative “class solution” to the 
exercise, which is projected to the class using MoCAS and a projector. It has the same tabular format as the 
solution displayed to each student for group work, composed of block names, identifiers and code lines proposed 
for each block. Thus, the occurrence of “(003)a” in the first row of Figure 5, means that identifier a declared in 
line 003 of the source code has Prog2 within its scope. 



 

Figure 5. Class solution 

The degree of global consensus about each identifier proposal is highlighted by displaying the group names that 
proposed it. If all the groups agree about a proposal, no group is indicated. Otherwise, at the right of the 
proposal, the names of the groups that suggested the identifier appear enclosed in parenthesis. For example, 
“(008)d-(G1G3)” means that identifier d declared in line 008 was only proposed by groups G1 and G3 (see 
Figure 5). Moreover, a coloring convention allows knowing the degree of consensus among the groups about 
each identifier proposal: black denotes total or almost total agreement (higher than 75%), green denotes partial 
agreement (50% to 74%) and red denotes low agreement (lower than 50%). 

A discussion can be held in the classroom about the proposals (probably about those colored in red or in green) 
in a trial to make explicit misunderstandings and to obtain universal agreement. The instructor should guide and 
coordinate the discussion so that each group will justify their proposals to the rest of the class. 

5. Presentation of the collaborative group solutions to the whole class. When collaborative problem solving 
within groups is over, every group has to present and defend their solution to the whole class by using the 
merged solution displayed by MoCAS. Figure 5 is shown in class by means of a projector and every group 
explains their contribution to the merged solution, paying special attention to the items with no total agreement. 

6. Comparison of the class solution with the automatic solution generated by MoCAS. After the in-class 
discussion, the class solution is compared with the solution automatically generated by MoCAS. By clicking the 
solution button (see Figure 5), the automatic solution is displayed (Figure 6, mark number 2), and the class 
solution is updated with two pieces of additional information: missing proposals are displayed and colored in 
blue and wrong proposals are crossed (Figure 6, mark number 1). The instructor may then clarify any doubt 
about these missing or wrong proposals to fix the concepts misunderstood. 



 

Figure 6. Automatic solution compared with the class solution 

 

4. Evaluation 

In this section, we present the evaluations conducted of the use of CIF and MoCAS for learning the concept of scope 
of identifiers in procedural programming languages. MoCAS was evaluated twice, the first time with respect to 
educational effectiveness [12] and the second one with respect to motivation [13]. In the first subsection, we present 
the experimental design used for both evaluations, given that most features are in common. In the following two 
subsections, we summarize the results obtained in their respective evaluations. 

4.1. Experimental design 

The participants were students enrolled in a course on introduction to programming (CS1) at our university. Four 
different enrolment groups were used in both evaluations: Degree in Computer Science (two groups from two 
campuses), Degree in Software Engineering and Degree in Computer Engineering. Each group was instructed in the 
topic using a different pedagogical methodology. We formed three different control groups: E1-Ind (traditional 
instruction), E2-Col (collaborative instruction) and E3-CIF (collaborative instruction guided by CIF). The 
experimental group was E4-CIF-M (collaborative instruction guided by CIF and supported by MoCAS). 

The evaluation was conducted in a two-hours session. For groups E1-Ind, E2-Col and E3-CIF, the session was held 
at the classroom and no equipment was required, but the session for group E4-CIF-M was held at a computer 
laboratory. Participation was mandatory (in general, attendance to all the course activities was mandatory). 
However, they were informed that participation would be rewarded with 0.15 points in the final grade of the course 
(over a scale of 10 points). 

Figure 7 summarizes the procedure followed in the two evaluations. Students had to fill in a pre-test at the beginning 
of the session and a post-test at the end; these tests were intended to measure students’ educational gain. After the 
pre-test, each instructor explained scope concepts using PowerPoint and a projector. In addition, participants in the 
second evaluation had to fill in a motivation questionnaire at the end of the session. 



 

Figure 7. Evaluation procedure carried out in the four teaching approaches. 

 

The treatment given to the different groups varied: 

 E1-Ind. The class was based on a traditional lecture format. Students individually solved several exercises 
proposed by the instructor. At the end of the class, the instructor solved the exercises on the blackboard and 
discussed the different issues arisen. 

 E2-Col. The class was conducted using a collaborative approach. The instructor formed groups of 4 students, 
being random the assignment of students to groups. Each group solved collaboratively several exercises. Finally, 
a voluntary group wrote their solutions on the blackboard, and the rest of students and the instructor discussed 
their correctness. 

 E3-CIF. The class was instructed using the CIF methodology. The group formation phase was similar to E2-Col. 
Only one statement was delivered due to the time restriction of two hours. The instructor delivered the problem 
statement on paper and projected the source code to the class. Each group worked independently and built a 
scope table. Some groups wrote their respective scope table on the blackboard, presented it to the class and 
argued about its correctness. Students and the instructor discussed those proposals. Finally, the instructor 
explained the mistakes committed and made comments on the different issues that had arisen. 

 E4-CIF-M. Group formation was supported by MoCAS and students started a MoCAS session using their 
mobile devices (in the educational effectiveness experiment) or their PCs (in the motivation experiment). Only 
one statement was delivered due to the time restriction of two hours. The instructor demonstrated how to use 
MoCAS over the projector and explained the problem statement. Then, students in each group used MoCAS to 
make their proposals of scope table, and to argue and achieve consensus about it. When students had 
collaboratively elaborated their groups’ scope table, the tables were projected by MoCAS on the blackboard 
through the projector. The automatic solution generated by MoCAS was also displayed, including the 
highlighting of different parts. A member of each group presented and defended their proposal to the class. The 
instructor and the students discussed those proposals. Finally, the instructor explained with the assistance of 
MoCAS the mistakes committed and made comments on the different issues that had arisen. 

4.2. Evaluation of learning efficiency 

This evaluation was held in the academic year 2010-11. The population was formed by 215 students. The dependent 
variable “learning efficiency” was intended to measure the level of knowledge acquired by a student on the topic 
under study, and was defined as the difference between his/her score in the post-test and in the pre-test.  The pre-test 
and the post-test were made out of multiple-choice questions with three possible answers each one. The pre-test 
consisted of 12 questions, and the post-test consisted of 11 questions. The questions in both tests were different. 

The learning efficiency mean measured for the four groups (E1-Ind, E2-Col, E3-CIF and E4-CIF-M) was 1.24, 2.04, 
3.36 and 4.29, respectively [12]. Therefore, the third and fourth groups, both based on the CIF instructional 
framework (E3-CIF and E4-CIF-M), obtained the highest knowledge increases. We determined whether these 



results were statistically significant with a p-value=0.0083 (due to the correction of Bonferroni, p-value=0.05/6): 

 E3-CIF obtained higher grades than E1-Ind, not being statistically significant but close to (p=0.015). 

 E4-CIF-M obtained higher grades than E1-Ind and E2-Col, being these results statistically significant (p=0.003 
and p=0.000, respectively). 

In summary, we may claim higher learning efficiency for the joint use of CIF and MoCAS with respect to other 
instructional methods. 

4.3. Evaluation of motivation 

This evaluation was held in the academic year 2011-12. The population was formed by 139 students. Students were 
given an EMSI motivation questionnaire to fill in at the end of the session. This questionnaire is based on self-
determination theory [13], [15]. There are several dimensions of motivation depending on the level of self-
determination, ranging through a continuum from higher to lower self-determination: 

1. Intrinsic motivation refers to doing something because it is inherently interesting or enjoyable. 

2. Extrinsic motivation via identified regulation occurs when the behavior is considered important for the subject’s 
goals and values. 

3. Extrinsic motivation via external regulation refers to doing something because it leads to a separable outcome, 
e.g. to obtain a reward or to avoid a punishment. 

4. Amotivation occurs when individuals do not perceive the contingencies between the behavior and its 
consequences, and behavior has not intrinsic or extrinsic motivators. 

The motivation mean measured for the four groups (E1-Ind, E2-Col, E3-CIF and E4-CIF-M) was 4.11, 3.70, 4.15 
and 4.94, respectively [13]. Therefore, students in E1-Ind exhibited the lowest motivation while students in E4-CIF-
M exhibited the highest. We determined whether these results were statistically significant and we obtained that 
students instructed with E4-CIF-M were statistically more motivated than those instructed with E2-Col (p<0.0083). 

We also wanted to know the results with respect to the four dimensions of motivation, obtaining the following 
statistically significant results: 

 Students instructed with E3-CIF and especially E4-CIF-M exhibited higher intrinsic motivation than the other 
two groups. 

 Students instructed with E4-CIF-M exhibited higher extrinsic motivation via identified regulation than the other 
groups. 

 Students instructed with E1-Ind exhibited higher extrinsic motivation via external regulation that students 
instructed collaboratively without the use of CIF, E2-Col. 

 Students instructed with E4-CIF-M exhibited higher amotivation than groups E2-Col and E3-CIF. 

In summary, our results suggest that the joint use of CIF and MoCAS are associated with higher levels of intrinsic 
and extrinsic motivation. This positive result may contribute to higher performance of students. However, it is also, 
unexpectedly, associated with amotivation. We felt unable to give an explanation without having available more 
founded data, thus it is an open issue for the future. 

 

5. Related work 
There are a myriad of systems designed to enhance the learning of programming [6]. In the particular domain of 
scope of identifiers, we remark the problet developed by Amruth Kumar [16]. According to Kumar, a problet is a 
tutor system that combines problem generation, automatic correction, grading and feedback to the student; restricted 
forms of visualization also are common. In the cited article, Kumar presents a tutor aimed at learning scope of 
identifiers, describes the design decisions adopted and presents an evaluation of educational effectiveness, where 
students obtained a statistically significant enhancement in their performance. Nevertheless, problets is not a 
collaborative tool. 

To the best of our knowledge, there are no other tools specifically designed for learning scope of identifiers. There 
are some experiences in applying to the programming domain CSCL systems designed for other domains (e.g. 
DOMOSIM-TPC [17]). Other experiences report on the use of general-purpose CSCL systems in programming 



engineering courses (CollaborativeWeb [18]). Nevertheless, their use poses extra effort to programming instructors. 
Therefore, it is more adequate to compare MoCAS with systems developed for programming education. 

We may classify programming learning CSCL tools into two categories: general CSCL programming learning tools 
and CSCL programming learning tools aimed at learning programming concepts. General programming learning 
tools are used by students to write source code. We can highlight two general programming learning tools: SICODE 
and COLE-Programming. SICODE [19] is a web collaborative system for learning Java which is focused on 
detecting, classifying and monitoring compilation errors. The system supports collaborative edition of source code 
files using the CVS version control tool, and provides a tool for arguing and discussing among students by using text 
messages. COLE-Programming [20] is an Eclipse plug-in derived from COALA [21] which integrates collaborative 
tools (i.e. a chat, a forum and a voting system). The tool is a distributed system aimed at algorithm courses, where 
students may write source code and the instructor may write annotations on it. The chat and the forum can be used 
by students to argue and discuss collaboratively and they allow students to publish compilation errors.  

A second type of tools comprises CSCL tools for learning programming concepts. We may highlight three tools: 
JeCo, SICAS-COL and HabiPro. JeCo [22] integrates two previously existing tools: the program animation tool 
Jeliot 3 for Java coding and the collaborative story telling tool Woven Stories. JeCo recognizes when a section of 
text contains Java code that students can animate by clicking over it using the right-hand side mouse button. 
Students can simultaneously watch the same visualization and discuss about it. SICAS-COL [23] is a tool resulting 
from integrating SICAS and PlanEdit. It is organized into three workspaces: individual work, group discussion and 
sharing of results. When a student is in his/her individual workspace, he/she can create, modify or visualize 
solutions. In the discussion space, students can discuss a solution and propose alternatives. The results workspace is 
used to store solutions proposed and other documents related to the given problem. HabiPro [24] is an adaptive 
system intended to assist students in developing programming skills like observing, reflecting and organizing. 
HabiPro supports collaborative discussion using a chat and it provides awareness through list of users (it shows the 
name and a photo of users).        

If we compare MoCAS with these tools, we come to the following conclusions:  

1. There is only one additional tool (i.e. a problet) aimed at the same domain (scope of identifiers) as MoCAS. 
However, it is not a collaborative tool. 

2. Other CSCL tools were developed for PCs, making face-to-face interaction difficult. Besides, they are mostly 
centered on visualizations, not covering other specific programming learning aspects. 

3. Other CSCL tools are not a part of an instructional framework, thus it depends on the instructor’ skills to take 
advantage of them. 

4. MoCAS is the only tool developed for both desktop PCs and mobile devices. 

5. MoCAS is the only tool that has been used to evaluate students’ educational efficiency and motivation. 

 

6. Discussion 
We may highlight two issues of our work in relation to software engineering practices, namely the design and 
evaluation of MoCAS. Requirements gathering, specification and design are key steps in the construction of 
software tools. General methodologies used for these tasks require knowledge of the target domain. Bloom’s 
taxonomy provides the knowledge of and terminology about the target domain of education. Actually, Bloom’s 
taxonomy is a framework commonly used in computing education [25]. It has also been used as a framework to 
analyze and design educational software aimed at specific levels of Bloom’s taxonomy [26], e.g. GreedEx is an 
experimentation tool aimed at the comprehension, analysis and evaluation levels [27]. Consequently, the CIF 
framework gives strong assistance to the designer of CSCL systems aimed at the analysis level of Bloom’s 
taxonomy. He/she must instantiate GCs into corresponding DCs for the target domain and the resulting DCs can be 
used as partial specifications of the intended tools. This design approach was actually used to design and construct 
MoCAS. 

CIF has similarities to the activity theory, a framework often used for user interface design and construction [28], in 
particular CSCL systems [29]. We do not have space here to present activity theory in detail, but we may briefly 
introduce some key concepts. The theory distinguishes three hierarchical levels of abstraction, called activity, action 
and operation. An activity is a part of our dairy behavior and it is guided by a motive. An activity is composed of a 



set of steps, called actions, which can be characterized by goals. Finally, an action is accomplished by a set of 
operations, which can be performed if certain conditions are satisfied. 

It is straightforward to notice some resemblance between CIF and the activity theory. A CIF generic (or concrete) 
card defines a “task” and decomposes it into a sequence of “activities”, each one accomplished by a sequence of 
“atomic actions”. However, we must be careful because terminology can be misleading in a comparison between the 
activity theory and CIF. A CIF task corresponds to an action in the activity theory because an educational goal is 
stated. CIF activities correspond to actions of finer granularity. Finally, an atomic action is usually an operation and, 
in some cases, a very specific, domain-dependent activity. A consequence of this hierarchy is that we were able to 
elaborate a list of atomic actions common in collaborative settings, thus providing a shared language to developers 
and instructors. Furthermore, most atomic actions are close to operations in an interactive system. Consequently, the 
design of the actual interactive functions supported by the CSCL system is easier, as was the case for MoCAS 
development. 

As stated in the first paragraph, a second issue of interest to the software engineering community regarding MoCAS 
is its evaluation. There are different factors that can be evaluated in a software product, e.g. conformance to the user 
needs or usability. Usability always is an important concern and it should never be neglected. We conducted 
usability evaluations by experts [30], i.e. by instructors. In addition, personal interviews were carried out with 
students about their personal perception regarding the use of MoCAS. The answers of both kinds of users guided us 
through a number of MoCAS prototypes where we were able to add extra GUI functionality and to improve the user 
interface of platforms supported by MoCAS. However, the most important issue for an educational tool is 
educational effectiveness. Once usability was assured, we were in a better position to evaluate its educational 
effectiveness [31]. As we showed above, we obtained statistically significant learning improvements in students 
using MoCAS (and therefore CIF) with respect to students not using either CIF or MoCAS. 

User satisfaction is an important issue in the development and design of interactive systems. Its instantiation in 
educational settings is students’ motivation. Thus, we also conducted an evaluation of students’ motivation 
regarding the proposed activity. We obtained statistically significant motivation improvements in students using 
MoCAS (and therefore CIF) with respect to students receiving collaborative instruction but non-based on CIF. The 
results obtained here are more complex to interpret. Students using MoCAS exhibited higher intrinsic and extrinsic 
motivation via identified regulation than other students. However, we also measured higher amotivation in students 
using MoCAS than the other groups being instructed collaboratively without using MoCAS. These mixed results 
deserve deeper studies in order to be able to explain them and act accordingly. 

 

7. Conclusion 
We have given a comprehensive presentation of a mobile collaborative tool called MoCAS aimed at supporting the 
instruction of scope of identifiers. We may highlight three contributions. Firstly, we present a novel collaborative 
instructional framework, called CIF, intended to assist in specifying collaborative activities. CIF is aimed at the 
analysis level of Bloom’s taxonomy because this level is especially adequate for collaborative learning. Secondly, 
the specification and development of MoCAS were explicitly driven by pedagogical goals and atomic actions 
declared in the CIF instructional framework. MoCAS is a multimodal tool developed for mobile devices, laptops 
and personal computers, thus facilitates face-to-face interaction among students. Furthermore, few systems are 
aimed at the domain of scope of identifiers in procedural programming languages. Thirdly, we present two 
evaluations of CIF and MoCAS, resulting in higher educational efficiency and higher motivation. Note that both 
evaluations compared four instructional approaches, which is an uncommon procedure for these evaluations. 

Based on the results obtained and our previous experience with other tools, we may conclude that the use of explicit 
pedagogical goals and a clear instructional approach to the design of learning tools seems to constitute a solid 
approach to technology development in educational contexts. The main drawback of MoCAS, however, is its tight 
link to a narrow domain, namely scope of identifiers in programming languages. However, most of its functions can 
be stated in terms independent from the domain. In a trial to remedy this drawback, we have analyzed the atomic 
actions contained in DC1 and we have identified all the functions of MoCAS that are domain-independent. A CSCL 
domain-independent tool aimed at supporting CS1 is under development. An open challenge will be the adoption by 
instructors of such a generic, analysis-oriented CSCL tool. 
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