
Time Series Cluster Kernel for Learning Similarities
between Multivariate Time Series with Missing Data

Karl Øyvind Mikalsena,b,∗, Filippo Maria Bianchib,c, Cristina Soguero-Ruizb,d,
Robert Jenssenb,c

aDept. of Math. and Statistics, UiT The Arctic University of Norway, Tromsø, Norway
bUiT Machine Learning Group

cDept. of Physics and Technology, UiT, Tromsø, Norway
dDept. of Signal Theory and Comm., Telematics and Computing, Universidad Rey Juan

Carlos, Fuenlabrada, Spain

Abstract

Similarity-based approaches represent a promising direction for time series

analysis. However, many such methods rely on parameter tuning, and some

have shortcomings if the time series are multivariate (MTS), due to depen-

dencies between attributes, or the time series contain missing data. In this

paper, we address these challenges within the powerful context of kernel meth-

ods by proposing the robust time series cluster kernel (TCK). The approach

taken leverages the missing data handling properties of Gaussian mixture mod-

els (GMM) augmented with informative prior distributions. An ensemble learn-

ing approach is exploited to ensure robustness to parameters by combining the

clustering results of many GMM to form the final kernel.

We evaluate the TCK on synthetic and real data and compare to other

state-of-the-art techniques. The experimental results demonstrate that the TCK

is robust to parameter choices, provides competitive results for MTS without

missing data and outstanding results for missing data.

Keywords: Multivariate time series, Similarity measures, Kernel methods,

Missing data, Gaussian mixture models, Ensemble learning

∗Corresponding author at: Department of Mathematics and Statistics, Faculty of Science
and Technology, UiT – The Arctic University of Norway, N-9037 Tromsø, Norway

Email address: karl.o.mikalsen@uit.no (Karl Øyvind Mikalsen)

Preprint submitted to Pattern Recognition July 3, 2017

1. Introduction

Time series analysis is an important and mature research topic, especially in

the context of univariate time series (UTS) prediction [1, 2, 3, 4]. The field tack-

les real world problems in many different areas such as energy consumption [5],

climate studies [6], biology [7], medicine [8, 9, 10] and finance [11]. However, the

need for analysis of multivariate time series (MTS) [12] is growing in modern so-

ciety as data is increasingly collected simultaneously from multiple sources over

time, often plagued by severe missing data problems [13, 14]. These challenges

complicate analysis considerably, and represent open directions in time series

analysis research. The purpose of this paper is to answer such challenges, which

will be achieved within the context of the powerful kernel methods [15, 16] for

reasons that will be discussed below.

Time series analysis approaches can be broadly categorized into two families:

(i) representation methods, which provide high-level features for representing

properties of the time series at hand, and (ii) similarity measures, which yield a

meaningful similarity between different time series for further analysis [17, 18].

Classic representation methods are for instance Fourier transforms, wavelets,

singular value decomposition, symbolic aggregate approximation, and piecewise

aggregate approximation, [19, 20, 21, 22, 23]. Time series may also be repre-

sented through the parameters of model-based methods such as Gaussian mix-

ture models (GMM) [24, 25, 26], Markov models and hidden Markov models

(HMMs) [27, 28, 29], time series bitmaps [30] and variants of ARIMA [31, 32].

An advantage with parametric models is that they can be naturally extended

to the multivariate case. For detailed overviews on representation methods, we

refer the interested reader to [17, 18, 33].

Of particular interest to this paper are similarity-based approaches. Once

defined, such similarities between pairs of time series may be utilized in a wide

range of applications, such as classification, clustering, and anomaly detec-

tion [34]. Time series similarity measures include for example dynamic time

warping (DTW) [35], the longest common subsequence (LCSS) [36], the ex-

2

tended Frobenius norm (Eros) [37], and the Edit Distance with Real sequences

(EDR) [38], and represent state-of-the-art performance in UTS prediction [17].

However, many of these measures cannot straightforwardly be extended to MTS

such that they take relations between different attributes into account [55]. The

learned pattern similarity (LPS) is an exception, based on the identification

of segments-occurrence within the time series, which generalizes naturally to

MTS [39] by means of regression trees where a bag-of-words type compressed

representation is created, which in turn is used to compute the similarity.

A similarity measure that also is positive semi-definite (psd) is a kernel [16].

Kernel methods [16, 40, 41] have dominated machine learning and pattern recog-

nition over two decades and have been very successful in many fields [42, 43, 44].

A main reason for this success is the well understood theory behind such meth-

ods, wherein nonlinear data structures can be handled via an implicit or explicit

mapping to a reproducing kernel Hilbert space (RKHS) [45, 46] defined by the

choice of kernel. Prominent examples of kernel methods include the support vec-

tor machine (SVM) [47] and kernel principal component analysis (kPCA) [48].

However, many similarities (or equivalently dissimilarities) are non-metric

as they do not satisfy the triangle-inequality, and in addition most of them are

not psd and therefore not suited for kernel methods [49, 50]. Attempts have

been made to design kernels from non-metric distances such as DTW, of which

the global alignment kernel (GAK) is an example [51]. There are also promising

works on deriving kernels from parametric models, such as the probability prod-

uct kernel [52], Fisher kernel [53], and reservoir based kernels [54]. Common to

all these methods is however a strong dependence on a correct hyperparameter

tuning, which is difficult to obtain in an unsupervised setting. Moreover, many

of these methods cannot naturally be extended to deal with MTS, as they only

capture the similarities between individual attributes and do not model the de-

pendencies between multiple attributes [55]. Equally important, these methods

are not designed to handle missing data, an important limitation in many ex-

isting scenarios, such as clinical data where MTS originating from Electronic

Health Records (EHRs) often contain missing data [8, 9, 10, 56].

3

Figure 1: Schematic depiction of the procedure used to compute the TCK.

In this work, we propose a new kernel for computing similarities between

MTS that is able to handle missing data without having to resort to imputation

methods [57]. We denote this new measure as the time series cluster kernel

(TCK). Importantly, the novel kernel is robust and designed in an unsupervised

manner, in the sense that no critical hyperparameter choices have to be made

by the user. The approach taken is to leverage the missing data handling prop-

erties of GMM modeling following the idea of [24], where robustness to sparsely

sampled data is ensured by extending the GMM using informative prior dis-

tributions. However, we are not fitting a single parametric model, but rather

exploiting an ensemble learning approach [58] wherein robustness to hyperpa-

rameters is ensured by joining the clustering results of many GMM to form the

final kernel. This is to some degree analogous to the approaches taken in [59] and

[60]. More specifically, each GMM is initialized with different numbers of mix-

ture components and random initial conditions and is fit to a randomly chosen

subsample of the data, attributes and time segment, through an embarrassingly

parallel procedure. This also increases the robustness against noise. The poste-

rior assignments provided by each model are combined to form a kernel matrix,

i.e. a psd similarity matrix. This opens the door to clustering, classification,

etc., of MTS within the framework of kernel methods, benefiting from the vast

body of work in that field. The procedure is summarized in Fig. 1.

In the experimental section we illustrate some of the potentials of the TCK

by applying it to classification, clustering, dimensionality reduction and visu-

4

alization tasks. In addition to the widely used DTW, we compare to GAK

and LPS. The latter inherits the decision tree approach to handle missing data,

is similar in spirit to the TCK in the sense of being based on an ensemble

strategy [39], and is considered the state-of-the-art for MTS. As an additional

contribution, we show in Appendix A that the LPS is in fact a kernel itself,

a result that to the authors best knowledge has not been proven before. The

experimental results demonstrate that TCK is very robust to hyperparameter

choices, provides competitive results for MTS without missing data and out-

standing results for MTS with missing data. This we believe provides a useful

tool across a variety of applied domains in MTS analysis, where missing data

may be problematic.

The remainder of the paper is organized as follows. In Section 2 we present

related works, whereas in Section 3, we give the background needed for building

the proposed method. In Section 4 we provide the details of the TCK, whereas

in Section 5 we evaluate it on synthetic and real data and compare to LPS and

DTW. Section 6 contains conclusions and future work.

2. Related work

While several (dis)similarity measures have been defined over the years to

compare time series, many of those measures are not psd and hence not suit-

able for kernel approaches. In this section we review some of the main kernels

functions that have been proposed for time series data.

The simplest possible approach is to treat the time series as vectors and

apply well-known kernels such as a linear or radial basis kernel [15]. While

this approach works well in some circumstances, time dependencies and the

relationships among multiple attributes in the MTS are not explicitly modeled.

DTW [35] is one of the most commonly used similarity measures for UTS

and has become the state-of-the-art in many practical applications [61, 62, 63].

Several formulations have been proposed to extend DTW to the multidimen-

sional setting [64, 55]. Since DTW does not satisfy the triangle inequality, it is

5

not negative definite and, therefore, one cannot obtain a psd kernel by apply-

ing an exponential function to it [65]. Such an indefinite kernel may lead to a

non-convex optimization problem (e.g., in an SVM), which hinders the appli-

cability of the model [49]. Several approaches have been proposed to limit this

drawback at the cost of more complex and costly computations. In [66, 67] ad

hoc spectral transformations were employed to obtain a psd matrix. Cuturi et

al. [51] designed a DTW-based kernel using global alignments (GAK). Marteau

and Gibet proposed an approach that combines DTW and edit distances with

a recursive regularizing term [50].

Conversely, there exists a class of (probabilistic) kernels operating on the

configurations of a given parametric model, where the idea is to leverage the

way distributions capture similarity. For instance, the Fisher kernel assumes an

underlying generative model to explain all observed data [53]. The Fisher kernel

maps each time series x into a feature vector Ux, which is the gradient of the

log-likelihood of the generative model fit on the dataset. The kernel is defined

as K(xi, xj) = UTxi
I−1Uxj

, where I is the fisher information matrix. Another

example is the probability product kernel [52], which is evaluated by means of

the Bhattacharyya distance in the probability space. A further representative

is the marginalized kernel [68], designed to deal with objects generated from

latent variable models. Given two visible variables, x and x′ and two hidden

variables, h and h′, at first, a joint kernel Kz(z, z
′) is defined over the two

combined variables z = (x, h) and z′ = (x′, h′). Then, a marginalized kernel for

visible data is derived from the expectation with respect to hidden variables:

K(x, x′) =
∑
h

∑
h′ p(h|x)p(h′|x′)Kz(z, z

′). The posterior distributions are in

general unknown and are estimated by fitting a parametric model on the data.

In several cases, the assumption of a single parametric model underlying all

the data may be too strong. Additionally, finding the most suitable parametric

model is a crucial and often difficult task, which must be repeated every time

a new dataset is processed. This issue is addressed by the autoregressive kernel

[59], which evaluates the similarity of two time series on the corresponding

likelihood profiles of a vector autoregressive model of a given order, across all

6

possible parameter settings, controlled by a prior. The kernel is then evaluated

as the dot product in the parameter space of such profiles, used as sequence

representations. The reservoir based kernels [54], map the time series into a

high dimensional, dynamical feature space, where a linear readout is trained to

discriminate each signal. These kernels fit reservoir models sharing the same

fixed reservoir topology to all time series. Since the reservoir provides a rich

pool of dynamical features, it is considered to be “generic” and, contrarily to

kernels based on a single parametric model, it is able to represent a wide variety

of dynamics for different datasets.

The methodology we propose is related to this last class of kernels. In

order to create the TCK, we fuse the framework of representing time series via

parametric models with similarity and kernel based methods. More specifically,

the TCK leverages an ensemble of multiple models that, while they share the

same parametric form, are trained on different subset of data, each time with

different, randomly chosen initial conditions.

3. Background

In this section we provide a brief background on kernels, introduce the no-

tation adopted in the remainder of the paper and provide the frameworks that

our method builds on. More specifically, we introduce the diagonal covariance

GMM for MTS with missing data, the extended GMM framework with empirical

priors and the related procedure to estimate the parameters of this model.

3.1. Background on kernels

Thorough overviews on kernels can be found in [47, 15, 65, 16]. Here we

briefly review some basic definitions and properties, following [47].

Definition 1. Let X be a non-empty set. A function k : X ×X → R is a kernel

if there exists a R-Hilbert space H and a map Φ : X → H such that ∀x, y ∈ X ,

k(x, y) = 〈Φ(x),Φ(y)〉H.

7

From this definition it can be shown that a kernel is symmetric and

psd, meaning that ∀n ≥ 1, ∀(a1, . . . , an) ∈ Rn, ∀(x1, . . . , xn) ∈ Xn,∑
i,j aiajK(xi, xj) ≥ 0. Of major importance in kernel methods are also the

concepts of reproducing kernels and reproducing kernel Hilbert spaces (RKHS),

described by the following definition.

Definition 2. Let X be a non-empty set, H a Hilbert space and k : X ×X → R

a function. k is a reproducing kernel, and H a RKHS, if ∀x ∈ X , ∀f ∈ H,

k(·, x) ∈ H and 〈f, k(·, x)〉H = f(x) (reproducing property).

These concepts are highly connected to kernels. In fact reproducing ker-

nels are kernels, and every kernel is associated with a unique RKHS (Moore-

Aronszajn theorem), and vice-versa. Moreover, the representer theorem states

that every function in an RKHS that optimizes an empirical risk function can

be expressed as a linear combination of kernels centered at the training points.

These properties have very useful implications, e.g. in an SVM, since an infinite

dimensional empirical risk minimization problem can be simplified to a finite

dimensional problem and the solution is included in the linear span of the kernel

function evaluated at the training points.

3.2. MTS with missing data

We define a UTS, x, as a sequence of real numbers ordered in time, x =

{x(t) ∈ R | t = 1, 2, . . . , T}. The independent time variable, t, is without loss

of generality assumed to be discrete and the number of observations in the

sequence, T , is the length of the UTS.

A MTS X is defined as a (finite) sequence of UTS, X = {xv ∈ RT | v =

1, 2, . . . , V }, where each attribute, xv, is a UTS of length T . The number of

UTS, V , is the dimension of X. The length T of the UTS xv is also the length of

the MTS X. Hence, a V –dimensional MTS, X, of length T can be represented

as a matrix in RV×T .

Given a dataset of N MTS, we denote X(n) the n-th MTS. An incompletely

observed MTS is described by the pair (X(n), R(n)), where R(n) is a binary MTS

8

with entry r
(n)
v (t) = 0 if the realization x

(n)
v (t) is missing and r

(n)
v (t) = 1 if it is

observed.

3.3. Diagonal covariance GMM for MTS with missing data

A GMM is a mixture of G components, with each component belonging

to a normal distribution. Hence, the components are described by the mixing

coefficients θg, means µg and covariances Σg. The mixing coefficients θg satisfy

0 ≤ θg ≤ 1 and
∑G
g=1 θg = 1.

We formulate the GMM in terms of a latent random variable Z, represented

as a G-dimensional one-hot vector, whose marginal distribution is given by

p(Z | Θ) =
G∏
g=1

θ
Zg
g . The conditional distribution for the MTS X, given Z, is a

multivariate normal distribution, p(X |Zg = 1, Θ) = N (X | µg,Σg) . Hence, the

GMM can be described by its probability density function (pdf), given by

p(X) =
∑
Z

p(Z)p(X | Z, Θ) =

G∑
g=1

θgN (X | µg,Σg) . (1)

The GMM described by Eq. (1) holds for completely observed data and a gen-

eral covariance. However, in the diagonal covariance GMM considered in this

work, the following assumptions are made. The MTS are characterized by time-

dependent means, expressed by µg = {µgv ∈ RT | v = 1, ..., V }, where µgv is a

UTS, whereas the covariances are constrained to be constant over time. Accord-

ingly, the covariance matrix is Σg = diag{σ2
g1, ..., σ

2
gV }, being σ2

gv the variance

of attribute v. Moreover, the data is assumed to be missing at random (MAR),

i.e. the missing elements are only dependent on the observed values.

Under these assumptions, missing data can be analytically integrated away,

such that imputation is not needed [69], and the pdf for the incompletely ob-

served MTS (X,R) is given by

p(X |R, Θ) =

G∑
g=1

θg

V∏
v=1

T∏
t=1

N (xv(t) | µgv(t), σgv)rv(t) (2)

9

The conditional probability of Z given X, can be found using Bayes’ theorem,

πg ≡ P (Zg = 1 |X, R, Θ) =
θg
∏V
v=1

∏T
t=1N (xv(t) | µgv(t), σgv)rv(t)∑G

g=1 θg
∏V
v=1

∏T
t=1N (xv(t) | µgv(t), σgv)rv(t)

.

(3)

θg can be thought of as the prior probability of X belonging to component g,

and therefore Eq. (3) describes the corresponding posterior probability.

To fit a GMM to a dataset, one needs to learn the parameters Θ =

{θg, µg, σg}Gg=1. The standard way to do this is to perform maximum likelihood

expectation maximization (EM) [70]. However, to be able to deal with large

amounts of missing data, one can introduce informative priors for the parame-

ters and estimate them using maximum a posteriori expectation maximization

(MAP-EM) [24]. This ensures each cluster mean to be smooth over time and

clusters containing few time series, to have parameters similar to the mean and

covariance computed over the whole dataset. We summarize this procedure in

the next subsection (see Ref. [24] for details).

3.4. MAP-EM diagonal covariance GMM augmented with empirical prior

To enforce smoothness, a kernel-based Gaussian prior is defined for the

mean, P (µgv) = N (µgv |mv, Sv) . mv are the empirical means and the prior

covariance matrices, Sv, are defined as Sv = svK, where sv are empirical

standard deviations and K is a kernel matrix, whose elements are Ktt′ =

b0 exp(−a0(t− t′)2), t, t′ = 1, . . . , T. a0, b0 are user-defined hyperparameters.

An inverse Gamma distribution prior is put on the standard deviation σgv,

P (σgv) ∝ σ−N0
gv exp

(
−N0sv

2σ2
gv

)
, where N0 is a user-defined hyperparameter. We

denote Ω = {a0, b0, N0} the set of hyperparameters. Estimates of parameters Θ

are found using MAP-EM [71, 72], according to Algorithm 1.

4. Time series cluster kernel (TCK)

Methods based on GMM, in conjunction with EM, have been successfully

applied in different contexts, such as density estimation and clustering [73]. As

10

Algorithm 1 MAP-EM diagonal covariance GMM

Input Dataset {(X(n), R(n))}Nn=1, hyperparameters Ω and number of mixtures G.
1: Initialize the parameters Θ.
2: E-step. For each MTS X(n), evaluate the posterior probabilities using current

parameter estimates, π
(n)
g = P (Zg = 1 |X(n), R(n), Θ).

3: M-step. Update parameters using the current posteriors

θg = N−1∑N
n=1 π

(n)
g

σ2
gv =

(
N0 +

N∑
n=1

T∑
t=1

r(n)
v (t) π(n)

g

)−1(
N0s

2
v +

N∑
n=1

T∑
t=1

r(n)
v (t) π(n)

g

(
x(n)
v (t)− µgv(t)

)2)

µgv =

(
S−1
v + σ−2

gv

N∑
n=1

π
(n)
g diag(r

(n)
v)

)−1(
S−1
v mv + σ−2

gv

N∑
n=1

π
(n)
g diag(r

(n)
v) x

(n)
v

)
4: Repeat step 2-3 until convergence.

Output Posteriors Π(n) ≡
(
π
(n)
1 , . . . , π

(n)
G

)T
and mixture parameters Θ.

a major drawback, these methods often require to solve a non-convex optimiza-

tion problem, whose outcome depends on the initial conditions [72, 74]. The

model described in the previous section depends on initialization of parameters

Θ and the chosen number of clusters G [24]. Moreover, three different hyper-

parameters, a0, b0, N0, have to be set. In particular, modeling the covariance

in time is difficult; choosing a too small hyperparameter a0 leads to a degener-

ate covariance matrix that cannot be inverted. On the other hand, a too large

value would basically remove the covariance such that the prior knowledge is

not incorporated. Furthermore, a single GMM provides a limited descriptive

flexibility, due to its parametric nature.

Ensemble learning has been adopted both in classification, where classi-

fiers are combined through e.g. bagging or boosting [75, 76], and cluster-

ing [77, 78, 79]. Typically, in ensemble clustering one integrates the outcomes

of the same algorithm as it processes different data subsets, being configured

with different parameters or initial conditions, in order to capture local and

global structures in the underlying data [78, 80] and to provide a more stable

and robust final clustering result. Hence, the idea is to combine the results of

many weaker models to deliver an estimator with statistical, computational and

representational advantages [58], which are lower variance, lower sensitivity to

11

local optima and a broader span of representable functions, respectively.

We propose an ensemble approach that combines multiple GMM, whose

diversity is ensured by training the models on subsamples of data, attributes

and time segments, using different numbers of mixture components and random

initialization of Θ and hyperparameters. Thus, we generate a model robust to

parameters and noise, also capable of capturing different levels of granularity in

the data. To ensure robustness to missing data, we use the diagonal covariance

GMM augmented with the informative priors described in the previous section

as base models in the ensemble.

Potentially, we could have followed the idea of [81] to create a density func-

tion from an ensemble of GMM. Even though several methods rely on density es-

timation [73], we aim on deriving a similarity measure, which provides a general-

purpose data representation, fundamental in many applications in time-series

analysis, such as classification, clustering, outlier detection and dimensionality

reduction [34].

Moreover, we ensure the similarity measure to be psd, i.e. a kernel. Specif-

ically, the linear span of posterior distributions πg, formed as G-vectors, with

ordinary inner product, constitutes a Hilbert space. We explicitly let the fea-

ture map Φ be these posteriors. Hence, the TCK is an inner product between

two distributions and therefore forms a linear kernel in the space of posterior

distributions. Given an ensemble of GMM, we create the TCK using the fact

that the sum of kernels is also a kernel.

4.1. Method details

To build the TCK kernel matrix, we first fit different diagonal covariance

GMM to the MTS dataset. To ensure diversity, each GMM model uses a number

of components from the interval [2, C]. For each number of components, we

apply Q different random initial conditions and hyperparameters. We let Q =

{q = (q1, q2) | q1 = 1, . . . Q, q2 = 2, . . . , C} be the index set keeping track of

initial conditions and hyperparameters (q1), and the number of components (q2).

Moreover, each model is trained on a random subset of MTS, accounting only a

12

random subset of variables V, with cardinality |V| ≤ V , over a randomly chosen

time segment T , |T | ≤ T . The inner products of the posterior distributions from

each mixture component are then added up to build the TCK kernel matrix,

according to the ensemble strategy [82]. Algorithm 2 describes the details of

the method.

Algorithm 2 TCK kernel. Training phase.

Input Training data {(X(n), R(n))}Nn=1 , Q initializations, C maximal number of mix-
ture components.

1: Initialize kernel matrix K = 0N×N .
2: for q ∈ Q do

3: Compute posteriors Π(n)(q) ≡
(
π
(n)
1 , . . . , π

(n)
q2

)T
, n = 1, . . . , N , by applying

Algorithm 1 with q2 clusters and by randomly selecting,

i. hyperparameters Ω(q),

ii. a time segment T (q) of length Tmin ≤ |T (q)| ≤ Tmax,

iii. a subset of attributes, V(q) ⊂ (1, . . . , V), with cardinality Vmin ≤ |V(q)| ≤
Vmax,

iv. a subset of MTS, η(q) ⊂ (1, . . . , N), with cardinality Nmin ≤ |η(q)| ≤ N ,

v. initialization of the mixture parameters Θ(q).

4: Update kernel matrix, Knm = Knm + Π(n)(q)T Π(m)(q), n, m = 1, . . . , N .
5: end for
Output K TCK kernel matrix, time segments T (q), subsets of attributes V(q), sub-

sets of MTS η(q), GMM parameters Θ(q) and posteriors Π(n)(q).

In order to be able to compute similarities with MTS not available at the

training phase, one needs to store the time segments T (q), subsets of attributes

V(q), GMM parameters Θ(q) and posteriors Π(n)(q). Then, the TCK for such

out-of-sample MTS is evaluated according to Algorithm 3.

4.2. Parameters and robustness

The maximal number of mixture components in the GMM, C, should be set

high enough to capture the local structure in the data. On the other hand, it

should be set reasonably lower than the number of MTS in the dataset in order

to be able to estimate the parameters of the GMM. Intuitively, a high number of

realizations Q improves the robustness of the ensemble of clusterings. However,

more realizations comes at the expense of an increased computational cost. In

13

Algorithm 3 TCK kernel. Test phase.

Input Test set
{

(X∗(m), R∗(m))
}M
m=1

, time segments T (q), subsets of attributes V(q),

subsets of MTS η(q), GMM parameters Θ(q) and posteriors Π(n)(q).
1: Initialize kernel matrix K∗ = 0N×M .
2: for q ∈ Q do
3: Compute posteriors Π∗(m)(q), m = 1, . . . ,M by applying Eq. (3) with mixture

parameters Θ(q).
4: Update kernel matrix, K∗

nm = K∗
nm + Π(n)(q)T Π∗(m)(q), n = 1, . . . , N , m =

1, . . . ,M .
5: end for
Output K∗ TCK test kernel matrix

the end of next section we show experimentally that it is not critical to correctly

tune these two hyperparameters as they just have to be set high enough.

Through empirical evaluations we have seen that none the other hyperparam-

eters are critical. We set default hyperparameters as follows. The hyperparame-

ters are sampled according to a uniform distribution from pre-defined intervals.

Specifically, we let a0 ∈ (0.001, 1), b0 ∈ (0.005, 0.2) and N0 ∈ (0.001, 0.2). The

subsets of attributes are selected randomly by sampling according to a uniform

distribution from {2, . . . , Vmax}. The lower bound is set to two, since we want

to allow the algorithm to learn possible inter-dependencies between at least two

attributes. The time segments are sampled from {1, . . . , T} and the length of

the segments are allowed to vary between Tmin and Tmax. In order to be able

to capture some trends in the data we set Tmin = 6. We let the minimal size of

the subset of MTS be 80 percent of the dataset.

We do acknowledge that for long MTS the proposed method becomes com-

putationally demanding, as the complexity scales as O(T 3). Moreover, there

is a potential issue in Eq. (3) since multiplying together very small numbers

both in the nominator and denominator could yield to numerically unstable ex-

pressions close to 0/0. While there is no theoretical problem, since the normal

distribution is never exactly zero, the posterior for some outliers could have a

value close to the numerical precision. In fact, since the posterior assignments

are numbers lower than 1, the value of their product can be small if V and T are

large. We address this issue by putting upper thresholds on the length of the

14

time segments, Tmax, and number of attributes, Vmax, which is justified by the

fact that the TCK is learned using an ensemble strategy. Moreover, to avoid

problems for outliers we put a lower bound on the value for the conditional

distribution for xv(t) at N (3 | 0, 1). In fact, it is very unlikely that a data point

generated from a normal distribution is more than three standard deviations

away from the mean.

4.3. Algorithmic complexity

Training complexity. The computational complexity of the EM procedure is

dominated by the update of the mean, whose cost is O(2T 3 + NV T 2). Hence,

for G components and I iterations, the total cost is O
(
IG(2T 3 +NV T 2)

)
.

The computation of the TCK kernel involves both the MAP-EM estimation

and the kernel matrix generation for each q ∈ Q, whose cost is upper-bounded

by O
(
N2C

)
. The cost of a single evaluation q is therefore bounded by

O
(
N2C + IC(2T 3

max +NVmaxT
2
max)

)
. We underline that the effective com-

putational time can be reduced substantially through parallelization, since each

instance q ∈ Q can be evaluated independently. As we can see, the cost has

a quadratic dependence on N , which becomes the dominating term in large

datasets. We note that in spectral methods the eigen-decomposition costs

O(N3) with a consequent complexity higher than TCK for large N .

Testing complexity. For a test MTS one has to evaluate |Q| posteriors, with

a complexity bounded by O(CVmaxTmax). The complexity of computing the

similarity with the N training MTS is bounded by O (NC). Hence, for each

q ∈ Q, the testing complexity is O(NC +CVmaxTmax). Note that also the test

phase is embarrassingly parallelizable.

4.4. Properties

In this section we demonstrate that TCK is a proper kernel and we discuss

some of its properties. We let X = RV×T be the space of V -variate MTS of

length T and K : X × X → R be the TCK.

15

Theorem 1. K is a kernel.

Proof. According to the definition of TCK, we have K(X(n), X(m)) =∑
q∈Q kq(X

(n), X(m)), where kq(X
(n), X(m)) = Π(n)(q)TΠ(m)(q). Since the sum

of kernels is a kernel, it is sufficient to demonstrate that kq is a kernel. We define

Hq = {f =
∑N
n=1 αnΠ(n)(q)

∣∣ N ∈ N, X(1), . . . , X(N) ∈ X , α1, . . . , αN ∈ R}.

Since Hq is the linear span of posterior probability distributions, it is closed

under addition and scalar multiplication and therefore a vector space. Further-

more, we define an inner product in Hq as the ordinary dot-product in Rq2 ,

〈f, f ′〉Hq = fT f ′.

Lemma 1. Hq with 〈·, ·〉Hq
is a Hilbert space.

Proof. Hq is equipped with the ordinary dot product, has finite dimension q2

and therefore is isometric to Rq2 .

Lemma 2. kq is a kernel.

Proof. Let Φq : X → Hq be the mapping given by X → Π(q). It follows

that 〈Φq(X(n)),Φq(X
(m))〉Hq

= 〈Π(q)(n),Π(q)(m)〉Hq
= (Π(q)(n))TΠ(q)(m) =

kq(X
(n), X(m)).

Now, let H be the Hilbert space defined via direct sum, H =
⊕
q∈Q
Hq. H

consists of the set of all ordered tuples Π(n) = (Π(n)(1),Π(n)(2), . . . ,Π(n)(|Q|)).

An induced inner product on H is 〈Π(n),Π(m)〉H =
∑
q∈Q〈Π(n)(q),Π(m)(q)〉Hq .

If we let Φ : X → H be the mapping given by X(n) → Π(n), it fol-

lows that 〈Φ(X(n)),Φ(X(m))〉H = 〈Π(n),Π(m)〉H =
∑
q∈Q kq(X

(n), X(m)) =

K(X(n), X(m)).

This result and its proof unveil important properties of TCK. (i) K is sym-

metric and psd; (ii) the feature map Φ is provided explicitly; (iii) K is a linear

kernel in the Hilbert space of posterior probability distributions H; (iv) the

16

induced distance d, given by

d2(X(n), X(m)) = 〈Φ(X(n))− Φ(X(m)),Φ(X(m))− Φ(X(m))〉H

= K(X(n), X(n))− 2K(X(n), X(m)) +K(X(m), X(m))

is a pseudo-metric as it satisfies the triangle inequality, takes non-negative val-

ues, but, in theory, it can vanish for X(n) 6= X(m).

5. Experiments and results

The proposed kernel is very general and can be used as input in many learn-

ing algorithms. It is beyond the scope of this paper to illustrate all properties

and possible applications for TCK. Therefore we restricted ourselves to classifi-

cation, with and without missing data, dimensionality reduction and visualiza-

tion. We applied the proposed method to one synthetic and several benchmark

datasets. The TCK was compared to three other similarity measures, DTW,

LPS and the fast global alignment kernel (GAK) [51]. DTW was extended to the

multivariate case using both the independent (DTW i) and dependent (DTW

d) version [64]. To evaluate the robustness of the similarity measures, they

were trained unsupervisedly also in classification experiments, without tuning

hyperparameters by cross-validation. In any case, cross-validation is not trivial

in multivariate DTW, as the best window size based on individual attributes is

not well defined [39].

For the classification task, to not introduce any additional, unnecessary pa-

rameters, we chose to use a nearest-neighbor (1NN) classifier. This is a standard

choice in time series classification literature [83]. Even though the proposed

method provides a kernel, by doing so, it is easier to compare the different

properties of the similarity measures directly to each other. Performance was

measured in terms of classification accuracy on a test set.

To perform dimensionality reduction we applied kPCA using the two largest

eigenvalues of the kernel matrices. The different kernels were visually assessed

by plotting the resulting mappings with the class information color-coded.

17

The TCK was implemented in R and Matlab, and the code is made pub-

licly available at [94]. In the experiments we used the same parameters on all

datasets. We let C = 40 and Q = 30. For the rest of the parameters we used

the default values discussed in Section 4.2. The only exception is for datasets

with less than 100 MTS, in that case we let the maximal number of mixtures

be C = 10. The hyperparameter dependency is discussed more thoroughly in

the end of this section.

For the LPS we used the Matlab implementation provided by Baydogan [84].

We set the number of trees to 200 and number of segments to 5. Since many of

the time series we considered were short, we set the minimal segment length to

15 percent of the length of MTS in the dataset. The remaining hyperparameters

were set to default. For the DTW we used the R package dtw [85]. The GAK

was run using the Matlab Mex implementation provided by Cuturi [93]. In

accordance with [93] we set the bandwidth σ to two times the median distance

of the MTS in the training set, scaled by the square root of the median length

of the MTS. The triangular parameter was set to 0.2 times the median length.

In contrast to the TCK and LPS, the DTW and GAK do not naturally deal

with missing data and therefore we imputed the overall mean for each attribute

and time interval.

5.1. Synthetic example: Vector autoregressive model

We first applied TCK in a controlled experiment, where we generated a

synthetic MTS dataset with two classes from a first-order vector autoregressive

model, VAR(1) [4], given by

x1(t)

x2(t)

 =

α1

α2

+

ρx 0

0 ρy

x1(t− 1)

x2(t− 1)

+

ξ1(t)

ξ2(t)

 (4)

To make x1(t) and x2(t) correlated with corr(x1(t), x2(t)) = ρ, we chose the

noise term s.t., corr (ξ1(t), ξ2(t)) = ρ (1−ρxρy) [(1−ρ2x)(1−ρ2y)]−1. For the first

class, we generated 100 two-variate MTS of length 50 for the training and 100

for the test, from the VAR(1)-model with parameters ρ = ρx = ρy = 0.8

18

TCK GMM TCKUTS TCKρ=0

CA 0.990 0.910 0.775 0.800

ARI 0.961 0.671 0.299 0.357

Table 1: Clustering perfor-
mance, measured in terms
of CA and ARI, on simu-
lated VAR(1) datasets for
TCK and GMM.

and E[(x1(t), x2(t))T] = (0.5,−0.5)T . Analogously, the MTS of the sec-

ond class were generated using parameters ρ = −0.8, ρx = ρy = 0.6 and

E[(x1(t), x2(t))T] = (0, 0)T . On these synthetic data, in addition to dimen-

sionality reduction and classification with and without missing data, we also

performed spectral clustering on the TCK matrix in order to be able to compare

TCK directly to a single diagonal covariance GMM optimized using MAP-EM.

Clustering. Clustering performance was measured in terms of adjusted rand in-

dex (ARI) [86] and clustering accuracy (CA). CA is the maximum bipartite

matching (map) between cluster labels (li) and ground-truth labels (yi), de-

fined as CA = N−1
∑N
i=1 δ(yi,map(li)), where δ(·, ·) is the Kronecker delta and

map(·) is computed with the Hungarian algorithm [87].

The single GMM was run with a0 = 0.1, b0 = 0.1 and N0 = 0.01. Tab. 1

show that spectral clustering on the TCK achieves a considerable improvement

compared to GMM clustering and verify the efficacy of the ensemble and the

kernel approach with respect to a single GMM. Additionally, we evaluated TCK

by concatenating the MTS as a long vector and thereby treating the MTS

as an UTS (TCKUTS) and on a different VAR(1) dataset with the attributes

uncorrelated (TCKρ=0). The superior performance of TCK with respect to these

two approaches illustrates that, in addition to accounting for similarities within

the same attribute, TCK also leverages interaction effects between different

attributes in the MTS to improve clustering results.

Dimensionality reduction and visualization. To evaluate the effectiveness of

TCK as a kernel, we compared kPCA with TCK and kPCA with a linear kernel

(ordinary PCA). Fig. 2 shows that TCK maps the MTS on a line, where the two

classes are well separated. On the other hand, PCA projects one class into a

19

TCK Lin. Kernel
Figure 2: Pro-
jection of the
VAR(1) dataset
to two dimen-
sions using
kPCA with
the TCK and
a linear kernel.
The different
colors indicate
the true labels
of the MTS.

compact blob in the middle, whereas the other class is spread out. Learned rep-

resentations like these can be exploited by learning algorithms such as an SVM.

In this case, a linear classifier will perform well on the TCK representation,

whereas for the other representation a non-linear method is required.

Classification with missing data. To investigate the TCK capability of dealing

with missing data in a classification task, we removed values from the synthetic

dataset according to three missingness patterns: missing completely at random

(MCAR), missing at random (MAR) and missing not at random (MNAR) [69].

To simulate MCAR, we uniformly sampled the elements to be removed. Specif-

ically, we discarded a ratio pMCAR of the values in the dataset, varying from

0 to 0.5. To simulate MAR, we let xi(t) have a probability pMAR of being

missing, given that xj(t) > 0.5, i 6= j. Similarly, for MNAR we let xi(t) have

a probability pMNAR of being missing, given that xi(t) > 0.5. We varied the

probabilities from 0 to 0.5 to obtain different fractions of missing data.

For each missingness pattern, we evaluated the performance of a 1NN clas-

sifier configured with TCK, LPS, DTW (d), DTW (i) and GAK. Classification

accuracies are reported in Fig. 3. First of all, we see that in absence of missing

data, the performance of TCK and LPS are approximately equal, whereas the

two versions of DTW and GAK yield a lower accuracy. Then, we notice that the

accuracy for the TCK is quite stable as the amount of missing data increases,

for all types of missingness patterns. For example, in the case of MCAR, when

the amount of missing data increases from 0 to 50%, accuracy decreases to from

20

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

TCK
LPS
DTW(d)

DTW(i)
GAK

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

TCK
LPS
DTW(d)

DTW(i)
GAK

0 0.1 0.2 0.3 0.4 0.5

0.8

0.9

1

TCK
LPS
DTW(d)

DTW(i)
GAK

Figure 3: Classification accuracy on simulated VAR(1) dataset of the 1NN-classifier configured
with a (dis)similarity matrix obtained using LPS, DTW (d), DTW (i), GAK and TCK. We
report results for three different types of missingness, with an increasing percentage of missing
values.

0.995 to 0.958. Likewise, when pMNAR increases from 0 to 0.5, accuracy de-

creases from 0.995 to 0.953. This indicates that our method, in some cases,

also works well for data that are MNAR. On the other hand, we notice that

for MCAR and MAR data, the accuracy obtained with LPS decreases much

faster than for TCK. GAK seems to be sensitive to all three types of missing

data. Performance also diminishes quite fast in the DTW variants, but we also

observe a peculiar behavior as the accuracy starts to increase again when the

missing ratio increases. This can be interpreted as a side effect of the impu-

tation procedure implemented in DTW. In fact, the latter replaces some noisy

data with a mean value, hence providing a regularization bias that benefits the

classification procedure.

5.2. Benchmark time series datasets

We applied the proposed method to multivariate benchmark datasets from

the UCR and UCI databases [88, 89] and other published work [90, 91], described

in Tab. 2. In order to also illustrate TCK’s capability of dealing with UTS, we

randomly picked three univariate datasets from the UCR database; ItalyPower,

Gun Point and Synthetic control. Some of the multivariate datasets contain time

series of different length. However, the proposed method is designed for MTS

of the same length. Therefore we followed the approach of Wang et al. [92] and

transformed all the MTS in the same dataset to the same length, T , determined

21

Table 2: Description of benchmark time series datasets. Column 2 to 5 show the number of
attributes, samples in training and test set, and classes, respectively. Tmin is the length of
the shortest MTS in the dataset and Tmax the longest MTS. T is the length of the MTS after
the transformation.

Datasets Attributes Train Test Classes Tmin Tmax T Source

ItalyPower 1 67 1029 2 24 24 24 UCR
Gun Point 1 50 150 2 150 150 150 UCR
Synthetic control 1 300 300 6 60 60 60 UCR

PenDigits 2 300 10692 10 8 8 8 UCI
Libras 2 180 180 15 45 45 23 UCI
ECG 2 100 100 2 39 152 22 Olszewski
uWave 3 200 4278 8 315 315 25 UCR
Char.Traj. 3 300 2558 20 109 205 23 UCI
Robot failure LP1 6 38 50 4 15 15 15 UCI
Robot failure LP2 6 17 30 5 15 15 15 UCI
Robot failure LP3 6 17 30 4 15 15 15 UCI
Robot failure LP4 6 42 75 3 15 15 15 UCI
Robot failure LP5 6 64 100 5 15 15 15 UCI
Wafer 6 298 896 2 104 198 25 Olszewski
Japanese vowels 12 270 370 9 7 29 15 UCI
ArabicDigits 13 6600 2200 10 4 93 24 UCI
CMU 62 29 29 2 127 580 25 CMU
PEMS 963 267 173 7 144 144 25 UCI

by T =

⌈
Tmax

dTmax
25 e

⌉
, where Tmax is the length of the longest MTS in the dataset

and d e is the ceiling operator. We also standardized to zero mean and unit

standard deviation. Since decision trees are scale invariant, we did not apply

this transformation for LPS (in accordance with [39]).

Classification without missing data. Initially we considered the case of no miss-

ing data and applied a 1NN-classifier in combination with the five different

(dis)similarity measures. Tab. 3 shows the mean classification accuracies, eval-

uated over 10 runs, obtained on the benchmark time series datasets. Firstly, we

notice that the dependent version of DTW, in general, gives worse results than

the independent version. Secondly, TCK gives the best accuracy for 8 out of 18

datasets. LPS and GAK are better than the competitors for 8 and 3 datasets,

respectively. The two versions of DTW achieve the highest accuracy for Gun

Point. On CMU all methods reach a perfect score. We also see that TCK works

well for univariate data and gives comparable accuracies to the other methods.

22

Datasets TCK LPS DTW (i) DTW (d) GAK

ItalyPower 0.922 0.933 0.918 0.918 0.950

Gun Point 0.923 0.790 1.000 1.000 0.900

Synthetic control 0.987 0.975 0.937 0.937 0.870

Pen digits 0.904 0.928 0.883 0.900 0.945

Libras 0.799 0.894 0.878 0.856 0.811

ECG 0.852 0.815 0.810 0.790 0.840

uWave 0.908 0.945 0.909 0.844 0.905

Char. Traj. 0.953 0.961 0.903 0.905 0.935

Robot failure LP1 0.890 0.836 0.720 0.640 0.720

Robot failure LP2 0.533 0.707 0.633 0.533 0.667

Robot failure LP3 0.703 0.687 0.667 0.633 0.633

Robot failure LP4 0.848 0.914 0.880 0.840 0.813

Robot failure LP5 0.596 0.688 0.480 0.430 0.600

Wafer 0.982 0.981 0.963 0.961 0.967

Japanese vowels 0.978 0.964 0.965 0.865 0.965

ArabicDigits 0.945 0.977 0.962 0.965 0.966

CMU 1.000 1.000 1.000 1.000 1.000

PEMS 0.878 0.798 0.775 0.763 0.763

Table 3: Clas-
sification accu-
racy on differ-
ent UTS and
MTS bench-
mark datasets
obtained us-
ing TCK,
LPS, DTW
(i), DTW (d)
and GAK in
combination
with a 1NN-
classifier. The
best results
are highlighted
in bold.

Classification with missing data. We used the Japanese vowels and uWave

datasets to illustrate the TCKs ability to classify real-world MTS with miss-

ing data. We removed different fractions of the values completely at random

(MCAR) and ran a 1NN-classifier equipped with TCK, LPS, DTW (i) and

GAK. We also compared to TCK and LPS with imputation of the mean. Mean

classification accuracies and standard deviations, evaluated over 10 runs, are

reported in Fig. 4.

On the Japanese vowels dataset the accuracy obtained with LPS decreases

very fast as the fraction of missing data increases and is greatly outperformed

by LPS imp. The performance of GAK also diminishes quickly. The accuracy

obtained with DTW (i) decreases from 0.965 to 0.884, whereas TCK imp de-

creases from 0.978 to 0.932. The most stable results are obtained using TCK:

as the ratio of missing data increases from 0 to 0.5, the accuracy decreases from

23

0 0.1 0.2 0.3 0.4 0.5
pMCAR

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

u
ra

cy

Japanese wovels

TCK
TCK imp
LPS
LPS imp
DTW
GAK

0 0.1 0.2 0.3 0.4 0.5
pMCAR

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

uWave

0 0.1 0.2 0.3 0.4 0.5
pMCAR

0.86

0.88

0.9

0.92

0.94
A

cc
u
ra

cy

uWave long

Figure 4:
Classification
accuracies
with different
proportions of
MCAR data
for Japanese
vowels and
uWave.
uWave long
represent the
uWave dataset
where the
MTS have
their origi-
nal length
(T = 315).
Shaded ar-
eas represent
standard devi-
ations calcu-
lated over 10
independent
runs.

0.978 to 0.960. We notice that, even if TCK imp yields the second best results,

it is clearly outperformed by TCK.

Also for the uWave dataset the accuracy decreases rapidly for LPS, DTW

and GAK. The accuracy for TCK is 0.908 for no missing data, is almost stable

up to 30% missing data and decreases to 0.868 for 50% missing data. TCK

imp is outperformed by TCK, especially beyond 20% missingness. We notice

that LPS imp gives better results than LPS also for this dataset. For ratios of

missing data above 0.2 TCK gives better results than LPS imp, even though in

absence of missingness the accuracy for LPS is 0.946, whereas TCK yields 0.908

only.

To investigate how TCK works for longer MTS, we classified the uWave

dataset with MTS of original length, 315. In this case the LPS performs better

than for the shorter MTS, as the accuracy decreases from 0.949 to 0.916. We

also see that the accuracy decreases faster for LPS imp. For the TCK the

accuracy increased from 0.908, obtained on uWave with MTS of length 25, to

24

TCK LPS Lin. Kernel

u
W

a
v
e

J
a
p
a
n
e
se

v
o
w
e
ls

C
h
a
ra

c
te
r
tr
a
je
c
to

ri
e
s

Figure 5: Projection of three MTS datasets onto the two top principal components when
different kernels are applied. The different colors indicate true class labels.

0.914 on this dataset. TCK still gives a lower accuracy than LPS when there

is no missing data. However, we see that TCK is very robust to missing data,

since the accuracy only decreases to 0.912 when the missing ratio increases to

0.5. TCK imp performs equally well up to 30% missing data, but performs

poorly for higher missing ratios.

These results indicate that, in contrast to LPS, TCK is not sensitive to the

length of the MTS. It can deal equally well with short MTS and long MTS.

Dimensionality reduction and visualization. In Fig. 5 we have plotted the two

principal components of uWave, Japanese vowels and Character trajectory, ob-

25

5 10 15 20 30 40 50
C

0.88

0.9

0.92

0.94

0.96

0.98
A

cc
u
ra

cy

Japanese
Wafer
Char

1 5 10 15 20 30 40 50
Q

0.93

0.94

0.95

0.96

0.97

0.98

A
cc

u
ra

cy

Japanese
Wafer
Char

Figure 6: Accuracies for (left) Q = 30 and varying C, and (right) C = 40 and varying Q, over
three datasets. Shaded areas represent standard deviations calculated over 10 replications.

tained with kPCA configured with TCK, LPS and a linear kernel. We notice a

tendency in LPS and linear kernel to produce blob-structures, whereas the TCK

creates more compact and separated embeddings. For example, for Japanese

vowels TCK is able to isolate two classes from the rest.

5.3. Sensitivity analysis

The hyperparameters in the TCK are: maximum number of mixtures C,

number of randomizations Q, segment length, subsample size η, number of at-

tributes, hyperparameters Ω and initialization of GMM parameters Θ. However,

all of them except C and Q, are chosen randomly for each q ∈ Q. Hence, the

only hyperparameters that have to be set by the user are C and Q.

We have already argued that the method is robust and not sensitive to

the choice of these hyperparameters. Here, we evaluate empirically TCK’s de-

pendency on the chosen maximum number of mixture components C and of

randomizations Q, on the three datasets Japanese vowels, Wafer and Character

trajectories. Fig. 6 (left) shows the classification accuracies obtained using TCK

in combination with a 1NN-classifier on the three datasets by fixing Q = 30 and

varying C from 5 to 50. We see that the accuracies are very stable for C larger

than 15-20. Even for C = 10, the accuracies are not much lower. Next, we fixed

C = 40 and varied Q from 5 to 50. Fig. 6 (right) shows that the accuracies

increase rapidly from Q = 1, but also that the it stabilizes quite quickly. It

appears sufficient to choose Q > 10, even if the standard errors are a bit higher

26

PEMS V = 963 V = 100 V = 10 V = 2

TCK 3.6 (116) 3.5 (115) 2.5 (84) 1.2 (31)

LPS 22 (269) 3.3 (33) 1.3 (4.5) 0.9 (2.9)

GAK 514 52 5.8 1.6

DTW (i) 1031 119 13 3.5

uWave T = 315 T = 200 T = 100 T = 25

TCK 42 (46) 39 (45) 41 (46) 27 (35)

LPS 26 (17) 17 (11) 11 (7) 6.6 (2.5)

GAK 28 25 21 20

DTW (i) 506 244 110 59

Table 4: Running times (sec-
onds) for computing the sim-
ilarity between the test and
training set for two datasets.
The time in brackets repre-
sents time used to train the
models for the methods that
need training. For the PEMS
dataset we used the origi-
nal 963 attributes, but also
ran the models on subsets
consisting of 100, 10 and 2
attributes, respectively. For
the uWave dataset we varied
the length from T = 315 to
T = 25.

for lower Q. These results indicate that it is not critical to tune the hyperpa-

rameters C and Q correctly, which is important if the TCK should be learned

in an unsupervised way.

5.4. Computational time

All experiments were run using an Ubuntu 14.04 64-bit system with 64 GB

RAM and an Intel Xeon E5-2630 v3 processor. We used the low-dimensional

uWave and the high-dimensional PEMS dataset to empirically test the run-

ning time of the TCK. To investigate how the running time is affected by

the length and number of variables of the MTS, for the PEMS dataset we

selected V = {963, 100, 10, 2}attributes, while for the uWave dataset we let

T = {315, 200, 100, 25}. Tab. 4 shows the running times (seconds) for TCK,

LPS, GAK and DTW (i) on these datasets. We observe that the TCK is com-

petitive to the other methods and, in particular, that its running time is not

that sensitive to increased length or number of attributes.

27

6. Conclusions

We have proposed a novel similarity measure and kernel for multivariate time

series with missing data. The robust time series cluster kernel was designed by

applying an ensemble strategy to probabilistic models. TCK can be used as

input in many different learning algorithms, in particular in kernel methods.

The experimental results demonstrated that the TCK (1) is robust to hyper-

parameter settings, (2) is competitive to established methods on prediction tasks

without missing data and (3) is better than established methods on prediction

tasks with missing data.

In future works we plan to investigate whether the use of more general

covariance structures in the GMM, or the use of HMMs as base probabilistic

models, could improve TCK.

Conflict of interest

The authors have no conflict of interest related to this work.

Acknowledgement

This work (Robert Jenssen and Filippo Bianchi) is partially supported by

the Research Council of Norway over FRIPRO grant no. 234498 on developing

the Next Generation Learning Machines. Cristina Soguero-Ruiz is supported

by FPU grant AP2012-4225 from Spanish Government.

The authors would like to thank Sigurd Løkse and Michael Kampffmeyer for

useful discussions, and Jonas Nordhaug Myhre for proof reading the article.

Appendix A.

Theorem 2. LPS is a kernel.

Proof. The LPS similarity between two time series X(n) and X(m) is com-

puted from the LPS representation, given by the frequency vectors H(X(n))

28

and H(X(m)), where H(X(n)) =
[
h
(n)
1,1 , . . . , h

(n)
R,J

]
∈ NRJ0 being h

(n)
r,j ∈ N0 the

number of segments of X(n) contained in the leaf r of tree j and J the number

of trees [39]. Let Ns = T −L−1 be the total number of segments of length L in

the MTS X of length T . Without loss of generality we assume that Ns and R,

the total number of leaves, are constant in all trees. The LPS similarity reads

S
(
X(n), X(m)

)
=

1

RJ

R∑
r=1

J∑
j=1

min
(
h
(n)
r,j , h

(m)
r,j

)
∈ [0, 1]. (A.1)

We notice that, if we ignore the normalizing factor, Eq. A.1 is the computation

of the intersection between H(X(n)) and H(X(m)). In order to complete the

proof, we now introduce an equivalent binary representation of the frequency

vectors in the leaves. We represent the leaf r of the tree j as a binary sequence,

with hr,j 1s in front and 0s Ns − hr,j in the remaining positions

H̄(X) =

︸ ︷︷ ︸
leaf (1,1)

h1,1︷ ︸︸ ︷
1, . . . , 1,

Ns−h1,1︷ ︸︸ ︷
0, . . . , 0, . . . , ︸ ︷︷ ︸

leaf (r,j)

hr,j︷ ︸︸ ︷
1, . . . , 1,

Ns−hr,j︷ ︸︸ ︷
0, . . . , 0, . . . , ︸ ︷︷ ︸

leaf (R,J)

hR,J︷ ︸︸ ︷
1, . . . , 1,

Ns−hR,J︷ ︸︸ ︷
0, . . . , 0

 ∈ {0, 1}NsRJ .

The intersection between H(X(n)) and H(X(m)), yielded by Eq. A.1, can

be expressed as a bitwise operation through dot product

(
H(X(n)) ∧H(X(m))

)
= H̄(X(n))T H̄(X(m)), (A.2)

which is a linear kernel in the linear span of the LPS representations, which is

isometric to RNsRJ .

References

[1] W. Vandaele, Applied time series and Box-Jenkins models, 1983.

[2] C. Chatfield, The analysis of time series: an introduction, CRC press, 2016.

[3] J. D. Cryer, N. Kellet, Time series analysis, Vol. 101, Springer, 1986.

29

[4] R. H. Shumway, D. S. Stoffer, Time series analysis and its applications: with R

examples, Springer Science & Business Media, 2010.

[5] F. Iglesias, W. Kastner, Analysis of similarity measures in times series clustering

for the discovery of building energy patterns, Energies 6 (2) (2013) 579–597.

[6] M. Ji, F. Xie, Y. Ping, A dynamic fuzzy cluster algorithm for time series, Abstract

and Applied Analysis 2013.

[7] M. Pyatnitskiy, I. Mazo, M. Shkrob, E. Schwartz, E. Kotelnikova, Clustering

gene expression regulators: New approach to disease subtyping, PLOS ONE 9 (1)

(2014) 1–10.

[8] K. Häyrinen, K. Saranto, P. Nykänen, Definition, structure, content, use and

impacts of electronic health records: A review of the research literature, Interna-

tional Journal of Medical Informatics 77 (5) (2008) 291–304.

[9] C. Soguero-Ruiz, W. M. Fei, R. Jenssen, K. M. Augestad, J.-L. Rojo-Álvarez,

I. Mora-Jiménez, R.-O. Lindsetmo, S. O. Skrøvseth, Data-driven temporal pre-

diction of surgical site infection, in: AMIA Annual Symposium Proceedings, Vol.

2015, American Medical Informatics Association, 2015, pp. 1164 –1173.

[10] C. Soguero-Ruiz, K. Hindberg, I. Mora-Jiménez, J. L. Rojo-Álvarez, S. O.

Skrøvseth, F. Godtliebsen, K. Mortensen, A. Revhaug, R.-O. Lindsetmo, K. M.

Augestad, et al., Predicting colorectal surgical complications using heterogeneous

clinical data and kernel methods, Journal of biomedical informatics 61 (2016)

87–96.

[11] Y.-C. Hsu, A.-P. Chen, A clustering time series model for the optimal hedge ratio

decision making, Neurocomputing 138 (2014) 358–370.

[12] R. S. Tsay, Multivariate Time Series Analysis: with R and financial applications,

John Wiley & Sons, 2013.

[13] O. Anava, E. Hazan, A. Zeevi, Online time series prediction with missing data.,

in: ICML, 2015, pp. 2191–2199.

[14] F. Bashir, H. L. Wei, Handling missing data in multivariate time series using a

vector autoregressive model based imputation (var-im) algorithm: Part i: Var-

im algorithm versus traditional methods, in: 24th Mediterranean Conference on

Control and Automation, 2016, pp. 611–616.

[15] B. Scholkopf, A. J. Smola, Learning with kernels: support vector machines, reg-

ularization, optimization, and beyond, MIT press, 2001.

[16] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, Cambridge

university press, 2004.

30

[17] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P. Scheuermann, E. Keogh, Ex-

perimental comparison of representation methods and distance measures for time

series data, Data Mining and Knowledge Discovery 26 (2) (2013) 275–309.

[18] S. Aghabozorgi, A. S. Shirkhorshidi, T. Y. Wah, Time-series clustering – a decade

review, Information Systems 53 (C) (2015) 16 – 38.

[19] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subsequence matching in

time-series databases, in: Proceedings of the 1994 ACM SIGMOD International

Conference on Management of data, ACM, 1994, pp. 419–429.

[20] K.-P. Chan, A. W.-C. Fu, Efficient time series matching by wavelets, in: Pro-

ceedings 15th International Conference on Data Engineering, IEEE, 1999, pp.

126–133.

[21] F. Korn, H. V. Jagadish, C. Faloutsos, Efficiently supporting ad hoc queries in

large datasets of time sequences, in: Proceedings of the 1997 ACM SIGMOD

International Conference on Management of Data, ACM, 1997, pp. 289–300.

[22] J. Lin, E. Keogh, L. Wei, S. Lonardi, Experiencing SAX: a novel symbolic rep-

resentation of time series, Data Mining and Knowledge Discovery 15 (2) (2007)

107–144.

[23] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for

fast similarity search in large time series databases, Knowledge and Information

Systems 3 (3) (2001) 263–286.

[24] B. M. Marlin, D. C. Kale, R. G. Khemani, R. C. Wetzel, Unsupervised pattern

discovery in electronic health care data using probabilistic clustering models, in:

Proceedings of the 2nd ACM SIGHIT International Health Informatics Sympo-

sium, ACM, 2012, pp. 389–398.

[25] F. Bashir, A. Khokhar, D. Schonfeld, Automatic object trajectory-based motion

recognition using Gaussian mixture models, in: IEEE International Conference

on Multimedia and Expo, IEEE, 2005, pp. 1532–1535.

[26] F. I. Bashir, A. A. Khokhar, D. Schonfeld, Object trajectory-based activity clas-

sification and recognition using hidden Markov models, IEEE Transactions on

Image Processing 16 (7) (2007) 1912–1919.

[27] M. Ramoni, P. Sebastiani, P. Cohen, Bayesian clustering by dynamics, Machine

Learning 47 (1) (2002) 91–121.

[28] A. Panuccio, M. Bicego, V. Murino, A Hidden Markov Model-based approach

to sequential data clustering, in: Proceedings of the Joint IAPR International

Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Springer,

2002, pp. 734–743.

31

[29] B. Knab, A. Schliep, B. Steckemetz, B. Wichern, Model-based clustering with hid-

den markov models and its application to financial time-series data, in: Between

Data Science and Applied Data Analysis, Springer, 2003, pp. 561–569.

[30] N. Kumar, V. N. Lolla, E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei,

Time-series bitmaps: a practical visualization tool for working with large time

series databases, in: Proceedings of the Fifth SIAM International Conference on

Data Mining, SIAM, 2005, pp. 531–535.

[31] M. Corduas, D. Piccolo, Time series clustering and classification by the autore-

gressive metric, Computational Statistics and Data Analysis 52 (4) (2008) 1860

– 1872.

[32] Y. Xiong, D.-Y. Yeung, Mixtures of arma models for model-based time series

clustering, in: IEEE International Conference on Data Mining, IEEE, 2002, pp.

717–720.

[33] T.-C. Fu, A review on time series data mining, Engineering Applications of Arti-

ficial Intelligence 24 (1) (2011) 164–181.

[34] J. Han, J. Pei, M. Kamber, Data mining: concepts and techniques, Elsevier, 2011.

[35] D. J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time se-

ries, in: Proceedings of the 3rd International Conference on Knowledge Discovery

and Data Mining, AAAI Press, 1994, pp. 359–370.

[36] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, E. Keogh, Indexing multi-

dimensional time-series with support for multiple distance measures, in: Pro-

ceedings of the Ninth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, ACM, 2003, pp. 216–225.

[37] K. Yang, C. Shahabi, An efficient k nearest neighbor search for multivariate time

series, Information and Computation 205 (1) (2007) 65–98.

[38] L. Chen, M. T. Özsu, V. Oria, Robust and fast similarity search for moving object

trajectories, in: Proceedings of the 2005 ACM SIGMOD International Conference

on Management of Data, ACM, 2005, pp. 491–502.

[39] M. G. Baydogan, G. Runger, Time series representation and similarity based on

local autopatterns, Data Mining and Knowledge Discovery 30 (2) (2016) 476–509.

[40] R. Jenssen, Kernel entropy component analysis, IEEE transactions on pattern

analysis and machine intelligence 32 (5) (2010) 847–860.

[41] R. Jenssen, Entropy-relevant dimensions in the kernel feature space: Cluster-

capturing dimensionality reduction, IEEE Signal Processing Magazine 30 (4)

(2013) 30–39.

32

[42] B. Schölkopf, K. Tsuda, J.-P. Vert, Kernel methods in computational biology,

MIT press, 2004.

[43] G. Camps-Valls, L. Bruzzone, Kernel methods for remote sensing data analysis,

John Wiley & Sons, 2009.

[44] C. Soguero-Ruiz, K. Hindberg, J. L. Rojo-Álvarez, S. O. Skrøvseth, F. Godtlieb-

sen, K. Mortensen, A. Revhaug, R. O. Lindsetmo, K. M. Augestad, R. Jenssen,

Support vector feature selection for early detection of anastomosis leakage from

bag-of-words in electronic health records, IEEE Journal of Biomedical and Health

Informatics 20 (5) (2016) 1404–1415.

[45] B. Schölkopf, R. Herbrich, A. J. Smola, A generalized representer theorem, in:

International Conference on Computational Learning Theory, Springer, 2001, pp.

416–426.

[46] A. Berlinet, C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability

and statistics, Springer Science & Business Media, 2011.

[47] I. Steinwart, A. Christmann, Support vector machines, Springer Science & Busi-

ness Media, 2008.

[48] B. Schölkopf, A. Smola, K.-R. Müller, Kernel principal component analysis, in:

International Conference on Artificial Neural Networks, Springer, 1997, pp. 583–

588.

[49] B. Haasdonk, C. Bahlmann, Learning with distance substitution kernels, in: Joint

Pattern Recognition Symposium, Springer, 2004, pp. 220–227.

[50] P.-F. Marteau, S. Gibet, On recursive edit distance kernels with application to

time series classification, IEEE Transactions on Neural Networks and Learning

Systems 26 (6) (2015) 1121–1133.

[51] M. Cuturi, Fast global alignment kernels, in: Proceedings of the 28th Interna-

tional Conference on Machine Learning, 2011, pp. 929–936.

[52] T. Jebara, R. Kondor, A. Howard, Probability product kernels, Journal of Ma-

chine Learning Research 5 (2004) 819–844.

[53] T. S. Jaakkola, M. Diekhans, D. Haussler, Using the Fisher kernel method to

detect remote protein homologies, in: Proc Int Conf Intell Syst Mol Biol., Vol. 99,

1999, pp. 149–158.

[54] H. Chen, F. Tang, P. Tino, X. Yao, Model-based kernel for efficient time series

analysis, in: Proceedings of the 19th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2013, pp. 392–400.

33

[55] Z. Bankó, J. Abonyi, Correlation based dynamic time warping of multivariate

time series, Expert Systems with Applications 39 (17) (2012) 12814–12823.

[56] Z. Liu, M. Hauskrecht, Learning adaptive forecasting models from irregularly

sampled multivariate clinical data, in: Thirtieth AAAI Conference on Artificial

Intelligence, 2016, pp. 1273–1279.

[57] A. R. T. Donders, G. J. van der Heijden, T. Stijnen, K. G. Moons, Review: a gen-

tle introduction to imputation of missing values, Journal of clinical epidemiology

59 (10) (2006) 1087–1091.

[58] T. G. Dietterich, Ensemble methods in machine learning, in: International work-

shop on multiple classifier systems, Springer Berlin Heidelberg, 2000, pp. 1–15.

[59] M. Cuturi, A. Doucet, Autoregressive kernels for time series, arXiv preprint

arXiv:1101.0673.

[60] E. Izquierdo-Verdiguier, R. Jenssen, L. Gómez-Chova, G. Camps-Valls, Spec-

tral clustering with the probabilistic cluster kernel, Neurocomputing 149, Part C

(2015) 1299 – 1304.

[61] Q. Cai, L. Chen, J. Sun, Piecewise statistic approximation based similarity mea-

sure for time series, Knowledge-Based Systems 85 (2015) 181 – 195.

[62] C. A. Ratanamahatana, E. Keogh, Three myths about dynamic time warping

data mining, in: Proceedings of the 2005 SIAM International Conference on Data

Mining, SIAM, 2005, pp. 506–510.

[63] J. Lines, A. Bagnall, Time series classification with ensembles of elastic distance

measures, Data Mining and Knowledge Discovery 29 (3) (2015) 565–592.

[64] M. Shokoohi-Yekta, B. Hu, H. Jin, J. Wang, E. Keogh, Generalizing DTW to the

multi-dimensional case requires an adaptive approach, Data Mining and Knowl-

edge Discovery 31 (1) (2017) 1–31.

[65] C. Berg, J. P. Christensen, P. Ressel, Harmonic Analysis on Semigroups: Theory

of Positive Definite and Related Functions, 1st Edition, Vol. 100 of Graduate

Texts in Mathematics, Springer, 1984.

[66] G. Wu, E. Y. Chang, Z. Zhang, Learning with non-metric proximity matrices,

in: Proceedings of the 13th annual ACM international conference on Multimedia,

ACM, 2005, pp. 411–414.

[67] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, L. Cazzanti, Similarity-based

classification: Concepts and algorithms, Journal of Machine Learning Research

10 (2009) 747–776.

34

[68] K. Tsuda, T. Kin, K. Asai, Marginalized kernels for biological sequences, Bioin-

formatics 18 (suppl 1) (2002) S268–S275.

[69] D. B. Rubin, Inference and missing data, Biometrika 63 (3) (1976) 581–592.

[70] J. A. Bilmes, A gentle tutorial of the em algorithm and its application to param-

eter estimation for Gaussian mixture and hidden Markov models, International

Computer Science Institute 4 (510) (1998) 126.

[71] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incom-

plete data via the EM algorithm, Journal of the royal statistical society. Series B

(methodological) (1977) 1–38.

[72] G. McLachlan, T. Krishnan, The EM algorithm and extensions, Vol. 382, John

Wiley & Sons, 2007.

[73] T. J. Hastie, R. J. Tibshirani, J. H. Friedman, The elements of statistical learning:

data mining, inference, and prediction, Springer series in statistics, Springer, 2009.

[74] C. J. Wu, On the convergence properties of the EM algorithm, The Annals of

statistics (1983) 95–103.

[75] L. Breiman, Bagging predictors, Machine learning 24 (2) (1996) 123–140.

[76] Y. Freund, R. E. Schapire, Experiments with a new boosting algorithm, in: Pro-

ceedings of the Thirteenth International Conference on Machine Learning (ICML

1996), 1996, pp. 148–156.

[77] A. L. N. Fred, A. K. Jain, Evidence accumulation clustering based on the k-means

algorithm, in: Joint IAPR International Workshops on Statistical Techniques in

Pattern Recognition and Structural and Syntactic Pattern Recognition, Springer,

2002, pp. 442–451.

[78] S. Monti, P. Tamayo, J. Mesirov, T. Golub, Consensus clustering: A resampling-

based method for class discovery and visualization of gene expression microarray

data, Machine Learning 52 (1-2) (2003) 91–118.

[79] A. Strehl, J. Ghosh, Cluster ensembles – a knowledge reuse framework for combin-

ing multiple partitions, Journal of Machine Learning Research 3 (2003) 583–617.

[80] S. Vega-Pons, J. Ruiz-Shulcloper, A survey of clustering ensemble algorithms,

International Journal of Pattern Recognition and Artificial Intelligence 25 (03)

(2011) 337–372.

[81] M. Glodek, M. Schels, F. Schwenker, Ensemble Gaussian mixture models for

probability density estimation, Computational Statistics 28 (1) (2013) 127–138.

35

[82] A. L. Fred, A. K. Jain, Combining multiple clusterings using evidence accumu-

lation, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (6)

(2005) 835–850.

[83] R. J. Kate, Using dynamic time warping distances as features for improved time

series classification, Data Mining and Knowledge Discovery 30 (2) (2016) 283–312.

[84] LPS Matlab implementation, http://www.mustafabaydogan.

com/files/viewdownload/18-learned-pattern-similarity-lps/

60-multivariate-lps-matlab-implementation.html, accessed: 2017-03-07.

[85] T. Giorgino, Computing and visualizing dynamic time warping alignments in R:

The dtw package, Journal of Statistical Software 031 (i07).

[86] L. Hubert, P. Arabie, Comparing partitions, Journal of Classification 2 (1) (1985)

193–218.

[87] H. W. Kuhn, B. Yaw, The Hungarian method for the assignment problem, Naval

Research Logistics Quarterly (1955) 83–97.

[88] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista, The

UCR time series classification archive, www.cs.ucr.edu/~eamonn/time_series_

data/, accessed: 2016-12-17 (July 2015).

[89] M. Lichman, UCI machine learning repository, http://archive.ics.uci.edu/

ml, accessed: 2016-10-29 (2013).

[90] Carnegie mellon university motion capture database, http://mocap.cs.cmu.edu,

accessed: 2017-1-13 (2014).

[91] R. T. Olszewski, Generalized feature extraction for structural pattern recognition

in time-series data, Ph.D. thesis, Pittsburgh, PA, USA (2001).

[92] L. Wang, Z. Wang, S. Liu, An effective multivariate time series classification

approach using echo state network and adaptive differential evolution algorithm,

Expert Systems with Applications 43 (2016) 237 – 249.

[93] Fast global alignment kernel Matlab implementation, http://www.marcocuturi.

net/GA.html, accessed: 2017-06-20.

[94] K. Ø. Mikalsen, Time series cluster kernel (TCK) Matlab implementation, http:

//site.uit.no/ml (2017).

36

http://www.mustafabaydogan.com/files/viewdownload/18-learned-pattern-similarity-lps/60-multivariate-lps-matlab-implementation.html
http://www.mustafabaydogan.com/files/viewdownload/18-learned-pattern-similarity-lps/60-multivariate-lps-matlab-implementation.html
http://www.mustafabaydogan.com/files/viewdownload/18-learned-pattern-similarity-lps/60-multivariate-lps-matlab-implementation.html
www.cs.ucr.edu/~eamonn/time_series_data/
www.cs.ucr.edu/~eamonn/time_series_data/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://mocap.cs.cmu.edu
http://www.marcocuturi.net/GA.html
http://www.marcocuturi.net/GA.html
http://site.uit.no/ml
http://site.uit.no/ml

	Introduction
	Related work
	Background
	Background on kernels
	MTS with missing data
	Diagonal covariance GMM for MTS with missing data
	MAP-EM diagonal covariance GMM augmented with empirical prior

	Time series cluster kernel (TCK)
	Method details
	Parameters and robustness
	Algorithmic complexity
	Properties

	Experiments and results
	Synthetic example: Vector autoregressive model
	Benchmark time series datasets
	Sensitivity analysis

	Conclusions
	

