
Received November 7, 2020, accepted November 25, 2020, date of publication December 1, 2020,
date of current version December 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3041686

The Effects of a Visual Execution Environment
and Makey Makey on Primary School Children
Learning Introductory Programming Concepts
RAQUEL HIJÓN-NEIRA 1, DIANA PÉREZ-MARIN 1, CELESTE PIZARRO 2,
AND CORNELIA CONNOLLY 3
1Computer Science Department, Rey Juan Carlos University, 28933 Madrid, Spain
2Applied Mathematics Department, Rey Juan Carlos University, 28933 Madrid, Spain
3School of Education, National University of Ireland Galway, H91 TK33 Galway, Ireland

Corresponding author: Raquel Hijón-Neira (raquel.hijon@urjc.es)

This work was supported in part by the Spanish Ministry of Science, Innovation and Universities under Project TIN 2015-66731-C2-1-R,
and in part by the Madrid Regional Government through the Project e-Madrid-CM [e-Madrid-CM project is also co-financed by European
structural funds [Fondo Social Europeo (FSE) and Fondo Europeo de Desarrollo Regional (FEDER)]] under Grant P2018/TCS-4307.

ABSTRACT The interest of children in learning to program computers has increased dramatically in recent
years with the adaptation of new programming languages such as Scratch or game-based approaches. That
being so, it is still unclear how best to teach programming concepts to young children. There is a gap in the
literature on how to introduce basic programming concepts to children at the primary school level, while
taking factors such as the grade level and approach used into account. This paper explores the best approach
for introducing basic programming concepts to school children in the 4th, 5th and 6th grades as well as the
effects of the approaches on students’ learning gains (per concept). The concepts addressed here are those
used in a traditional Introduction to Programming course, such as programs, memory and variables, inputs
and outputs, conditionals and loops. The paper presents the resulting improvements achieved by the 4th, 5th
and 6th graders in a multigroup pretest-posttest design, with a control group (the use of a blackboard as an
unplugged approach) and two experimental groups (the use of a visual execution environment (VEE) with a
mouse and the use of the VEE with Makey Makey). We present the results exploring the interaction between
the grade and approach factors for the 144 children (9-12 years old) enrolled in primary education. The results
provide statistically significant data indicating how the children succeeded in learning basic programming
concepts according to their grade, the type of approach used, and the programming concept under study.

INDEX TERMS Early years education, primary education, improving classroom teaching, teaching
programming.

I. INTRODUCTION
Programming education is seen as a key to the acquisition
of skills called ‘‘21st century skills’’, such as creativity,
critical thinking, problem solving, communication and col-
laboration, social/intercultural skills, productivity, leadership
and responsibility [1]. Aligned with this fact, interactions
with computers are increasing day by day [2]. In a world
surrounded by computers and various programs, it becomes
necessary to understand the types of problems encountered
to be able to produce solutions. Individuals need to know

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

computer languages and have code literacy so that they can
participate in daily life activities [3].

Studies in many countries report using Scratch or game-
based approaches for teaching programming to young chil-
dren [4]–[10]. That being so, there are significant difficulties
encountered when teaching even basic concepts, such as pro-
gram constructions [11], loops [12], control structures and
algorithms [13]. Difficulties may arise from poor teaching
or even a lack of a proper teaching methodology [14], [15].
Teachers need some guidance with regard to efficiently
approaching tasks [16], [17].

To address this gap in the literature, the contribution of
this paper is aimed at determining approaches for introducing

217800 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3833-4228
https://orcid.org/0000-0003-3390-0251
https://orcid.org/0000-0003-2447-8239
https://orcid.org/0000-0001-9778-5569


R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

basic programming concepts at the primary school level; this
can be achieved by studying factors such as a student’s grade,
the type of approach used and the interaction between grade
and approach. The goal is to understand how these factors
affect students’ learning gains in general in terms of basic
programming concepts. The concepts addressed are those
found in a traditional ‘Introduction to Programming’ course,
and these include: programs, memory and variables, inputs
and outputs, conditional statements and loops. The types of
approach used may be unplugged, on the blackboard, or com-
puterized with a visual execution environment (VEE). AVEE
may connect to different tangible interfaces such as Makey
Makey connected with fruit versus a mouse interacting with
the PC. Therefore, the research questions of this study are as
follows:

RQ1. Do children enrolled in 4th, 5th and 6th grades learn
basic programming concepts in the same way or are there
significant differences?

H1. Children enrolled in higher grades learn more than
students enrolled in lower grades.

RQ2. Are children able to learn programming concepts in
the same way, or does it depend on how they are taught?
For example, would there be differences between children
learning without a VEE, those learning with a VEE and a
mouse, or those learning programming using Makey Makey?

H2. Students using a VEE with Makey Makey learn
more than students using a VEE with a mouse or without
technology.

RQ3. Is there an improvement in the test scores for
all grades (4th, 5th and 6th grades) and for all types
of approaches (control: blackboard, test: PC/mouse, test:
PC/Makey Makey)?

H3. Students enrolled in higher grades with a VEE and
Makey Makey learn more than students enrolled in lower
grades without technology.

RQ4. Are students able to learn some programming
concepts better than others depending on their grade and
approach?

H4. Some concepts are learned better by students enrolled
in lower grades, as they are all novice students without
PCs, Makey Makey and previous knowledge, unlike students
enrolled in higher grades with more access to technology and
previous knowledge.

The paper is organized into six sections: Section II presents
related work; Section III focuses on the experiment car-
ried out; Section IV presents the results of the experiment;
Section V provides a discussion; and Section VI ends the
paper with the main conclusions and lines of future work.

II. RELATED WORK
Much has been written about the most appropriate language
and paradigm to use for teaching students about computer
programming [18] and the trade-off between choosing a
language for its pedagogical suitability or the extent of its
use in industry [19]. There has also been an increasing
amount of literature on innovative techniques to support

introductory programming; suggestions have included the
use of robots [20], visual props [21], theatre and even
singing [22]. A number of advances have been adopted to help
improve students’ ability to learn programming, including
the use of the ALICE programming environment produced
by Carnegie Mellon [23], [24] and many other approaches
[25]–[28]. However, considerably less research has been con-
ducted regarding the teaching of basic programming concepts
to elementary school children.

This section reviews international approaches for teaching
programming at the primary school level, how the approaches
are introduced, the use of metaphors for teaching concepts,
and program visualization systems for introductory program-
ming education.

A. INTERNATIONAL APPROACHES FOR TEACHING
CHILDREN TO PROGRAM
The works of educational theorists such as Forbel, Dewey,
Papert, and Montessori argue that learning should be play-
ful, physical, reflective of everyday practices, and self-
directed [29]–[31]. Seymour Papert in particular worked to
demonstrate that during the activity of computer program-
ming, ‘‘the child is learning how to exercise control over an
exceptionally rich and sophisticated ‘microworld’’’ [29]. If a
child knows the ‘‘hows’’ and ‘‘whys’’ behind a concept, they
not only have an improved understanding of the information
but can develop a solution. The child will create, through
their own experimentation and experiences, a connection to
the idea that results in them developing a positive outlook on
learning [32].

Heintz et al. offered a summary of how the USA and sev-
eral European and Asian countries have started to teach com-
puter programming in their K-12 education systems [33]. It is
evident that internationally, computer science (CS) is typi-
callymandatory in primary (elementary) schools and optional
in secondary schools (high schools), as depicted in Table 1.

B. WHAT AND HOW TO TEACH PROGRAMMING IN
PRIMARY SCHOOLS
A common starting point in many countries and schools
is to teach the Scratch computer programming language
to children. Developed at the MIT Media Lab [9], [10],
Scratch allows students to create interactive programs using
programmable instruction blocks [9]. By using Scratch, chil-
dren learn basic programming features such as conditional
statements, events, operators, loops, parallelism, data and
sequences [5], [10]. The sequence concept is programmed,
for instance, by moving any sprite a short distance. The loop
concept, used as a way to repeat instructions several times
and represented by the repeat command, indicates the num-
ber of desired iterations, and the sprite moves accordingly.
The conditional concept enables the user to make decisions
based on predetermined conditions. The data concept is used
for storing, retrieving and updating values. These Scratch
approaches focus on visual programming as a means to lower
the barrier for small children to learn basic programming

VOLUME 8, 2020 217801



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

TABLE 1. Interest in teaching computer science [40].

concepts and to create a fun and motivating environment
for students [34]. A previous study introducing very simple
concepts to children between 9 and 12 years old using a
block-based approach found evidence that there are very little
differences in performance between grade levels [35].

A study [36] on tangible computing explained why tangi-
bility matters, especially for your children, because physical-
ity confers cognitive leverage in learning situations. This is
relevant, as Scratch can be used with Makey Makey, a simple
hardware device for improvising tangible user interfaces also
developed at MIT [37]. When using Makey Makey, the user
connects fruit, Play-Doh or any other conductive material
to Makey Makey, creating a tangible user interface (TUI)
that can control the software running on a computer as it
receives input from a mouse or keyboard [38]. Integrating a
TUI into different teaching methodologies has been proven to
increase student engagement due to the interactions between
students and the environment [39]. The manipulation of
physical objects fosters cognitive learning [40], engagement
and active participation to help students clearly compre-
hend concepts [41]. Baykal et al. encouraged designers and
researchers to use TUIs with children to obtain many ben-
efits, such as playful learning and embodiment effects [40],
[42], [43]. However, other authors [44] have identified sit-
uations in which tangible interaction proves less useful and
an alternative interaction or hybrid approach provides a more
appropriate medium for learning.

Although using Makey Makey is relatively easy, it is not
used in many school environments, and minimal research

has been conducted on its effectiveness for learning. Lin and
Chang used Scratch based on multimedia and Flash with
a system based on Makey Makey to boost the motivation
of kindergarten kids with cerebral palsy to achieve certain
mobility actions [45]. Kafai and Vasudevan studied how
middle school students engaged in creating or reusing games
in Scratch with Makey Makey and improved their various
computational practices through the constructions of their
designs [46]. Sun and Han reported in their work that users’
enjoyment, interest, excitement, and enthusiasm when using
Makey Makey connected with bananas was higher than when
they used a standard keyboard input despite a worse per-
formance and lower preference ranking [47]. As a result,
García-Peñalvo et al. recommended that ‘‘even though it may
take time to think about how to introduceMakeyMakey in the
classroom, the benefits will be considerable’’ [48].

In using techniques such as Makey Makey and visual envi-
ronments to teach computer programming, theories of edu-
cation and human activity are further highlighted. Previous
studies [49], [50], which were based on Seymour Papert’s
view of empowering students by mastering programming,
concluded that primary school students in the fourth to sixth
grades (the former study) and the fifth grade (the latter study)
with greater interest in programming perceived it as more
meaningful.

The other educational possibilities are developing
your own program with Lego WeDo or Mindstorms
EV3 robots [7], [51] and unplugged approaches, where
students learn programming basics through storytelling or
with exercises from Code.org; however, there has not been
a proper evaluation of the effects of using these approaches;
therefore, the benefits are not yet clear [52].

An approach developed by Brady et al. included a vari-
ety of technologies, such as physical computing and a
rich Internet of things that students can plug into, meant
to engage girls in CS, and the approach showed positive
effects [53]. Research by Shim et al. proposed the use
of a robot game environment for learning the fundamental
programming concepts of sequences, repeats, conditionals,
branches, and parameters, and this technique resulted in a sig-
nificant increase in programming education efficiency [54].
The systematic review presented by Popat and Starkey also
identified the importance of instructional design for develop-
ing educational outcomes through coding [55].

C. USE OF METAPHORS TO TEACH CONCEPTS
Metaphors are a crucial factor of thinking [56]. The authors
in [57] declared that ‘‘the human species thinks with
metaphors and learns through stories’’. As [58] proved in the
case of teachers, the key is not only the use of a metaphor but
the story provided with the metaphor. Moreover, two theories
can be highlighted to support the correct use of metaphors for
teaching concepts: conceptual metaphor theory (CMT) and
structure mapping theory (SMT).

CMT [59] describes a conceptual metaphor as a cognitive
process that occurs when students seek understanding of new

217802 VOLUME 8, 2020



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

knowledge (the target domain) in terms of a different, already
known idea (existing knowledge: source domain) based on
their experience with that existing knowledge. Due to its
experiential basis, the metaphor can serve as a vehicle for
understanding a concept otherwise too abstract for the mind
to process [60].

SMT is based on the systematic principle, which claims
that the structural view of metaphors is about relations
and not because of simple features. Therefore, metaphors
can be applied to teach models, stories, concepts and
terms [61], [62]. Previous studies have proven the success of
using metaphors to teach programming to children [63]. For
instance, children may understand a program as a sequence
of available instructions that are visualized as an artifact
(a turtle drawn on the computer) that moves when the student
asks the computer to do so [64]. Children can also understand
programming using a cooking metaphor [65]. The ATM
metaphor can also be used with the programming concepts
of data processing and control structures [66]. The metaphor
for a program is a recipe, following the line of programming
being expressed as cooking [65]; this metaphor is explained
together with scripts in [67] and proven with significant
results in [68].

D. PROGRAM VISUALIZATION FOR INTRODUCTORY
PROGRAMMING EDUCATION
A review of generic program visualization systems for intro-
ductory programming [69] showed a trend of support for
engaging modes of user interaction. The results of evalu-
ations largely support the use of program visualization in
introductory programming education, but the research to date
is insufficient for drawing highly nuanced conclusions with
respect to learner engagement, learning tasks accomplished
and cognitive load. Specialized systems for helping learners
track program execution and providing models of program
execution through metaphors or illustrations can be found
for CS1 students. For instance, systems for expression eval-
uation [70], [71] use objects, such as BlueJ [72], Green-
foot [73] recursion [74] and assignment [75]. Specialized
systems have the advantage of centering on one topic or a
few topics. They may fully explain all difficult aspects, and
they can also make use of visual tricks and metaphors that
suit the particular topic/s especially well.

III. EXPERIMENT
Previous studies on how to teach programming to elementary
school children have shown that there is a lack of agree-
ment with regard to the best approach [76]. This section
describes a new experiment to provide some answers for the
literature. The experiment is described following the guide-
lines for reporting software engineering experiments written
by [77], [78] with the following subsections: A. Goal,
B. Context and participants (experimental units), C. Exper-
imental materials and tasks, D. Variables, E. Hypotheses,
F. Experimental design, G. Procedure and tools and H. Valid-
ity and reliability.

A. GOAL
The goal is to determine, among unplugged or computerized
approaches with a VEE (connected or not connected with
Makey Makey), how to introduce basic programming con-
cepts at the primary school level with the highest learning
gains. The research questions of this study are as follows:

RQ1. Do children enrolled in 4th, 5th and 6th grades learn
basic programming concepts in the same way or are there
significant differences?

RQ2. Are children able to learn programming concepts in
the same way, or does it depend on how they are taught? For
example, are there differences between the children learning
without a VEE, those learning with a VEE and a mouse, and
those learning programming using Makey Makey?

RQ3. Is there an improvement in the test scores for
all grades (4th, 5th and 6th grades) and for all types
of approaches (control: blackboard, test: PC/mouse, test:
PC/Makey Makey)?

RQ4. Are students able to learn some programming
concepts better than others depending on their grade and
approach?

B. CONTEXT AND PARTICIPANTS
This studywas conducted in a public school inMadrid, Spain.
Primary education in Spain spans from the ages of 6 to
12 years. The Ministry of Education establishes core subjects
that children must study in every grade. One of them is
Castilian Language and Literature, and metaphors are intro-
duced in their fourth year of the curriculum. Therefore, as the
methodology to teach programming also relies on metaphors,
the earliest year considered for the experiment was the fourth
grade (when children are, on average, 9 years of age.)

In Spain, there is a free configuration subject for
each autonomous region called ‘‘Technology and Digital
Resources to Improve Learning’’, which includes program-
ming concepts. Its specific content is set for the primary
education curriculum, but each individual school decides
on a preferred configuration within the academic program.
Consequently, the children participating in this study were
those enrolled in the 4th, 5th and 6th grades.

A total of 144 school children at the elementary school
level participated in the study. The breakdown was: 46 chil-
dren (31.9%) from the 4th grade (62.5%male, 37.5% female),
53 children (36.80%) from the 5th grade (40.38% male,
59,62% female), and 45 children (31.25%) from the 6th grade
(43,48% male, 56,52% female), with ages ranging from 9 to
12 years.

C. EXPERIMENTAL MATERIALS AND TASKS
Three instructional approaches were used to introduce
basic programming concepts to children in this study. The
metaphor methodology was common to all the types of
approaches. The three approaches adopted were as follows:
• Blackboard and paper exercises, no technology.
• VEE PrimaryCode used with a PC mouse as the interac-
tion method.

VOLUME 8, 2020 217803



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

FIGURE 1. PrimaryCode configuration screen when the selected
interaction is Makey Makey connected with pieces of fruit (A Play Doh
option is also available).

• VEE PrimaryCode used with the TUI of Makey Makey
connected with fruit to the PC to allow for interaction
with the VEE, where touching the fruit performs the
same effects as if the child were touching some keyboard
keys (Figure 1).

The difference between types 2 and 3 lies in the interaction
method because the VEE PrimaryCode is common to both
of them. The second type involves the common use of a PC
mouse, and the third type, Makey Makey, can be connected
with a plug and play device and configured to use the arrow
keys, space button and mouse clicks by touching a connected
fruit. For instance, in Figure 1, the left arrow key has been
associated with an apple, so when the child uses PrimaryCode
and touches the apple, he/she would have pressed the left
arrow key, thus making the interaction weird and fun.

In the next subsections, a detailed explanation of the
metaphor methodology (1), one application of the VEE Pri-
maryCode used with a PC mouse (2), another with the VEE
PrimaryCode used with MakeyMakey connected with pieces
of fruit (3), and the tasks carried out by the children regardless
of the type of approach (4) are described.

1) METAPHOR METHODOLOGY
In our previous work, a methodology based on the use of
metaphors to teach programming in primary education was
published [67]. This methodology provides teachers with
guidance for teaching the basic concepts of programming
to children using the metaphors summarized in Table 2. As
indicated in Section II, part C, the key is not only the use
of the metaphors in teaching but the scripts by which the
metaphor is introduced and how the teachers should use them
when trying to explain abstract concepts to students with daily
objects [67].

The first block serves to introduce the program, program-
ming, sequence and memory concepts using the metaphor of
a recipe, where the memory works as a pantry with boxes and
baskets as variables. The second block serves to introduce

TABLE 2. Overview of a smoothie recipe metaphor for use with children.

input and output instructions, with the mouth as input to
the digestive system and the rectum as the output. The third
block serves to explain conditional instructions as intelligent
decision making for a fridges with regard to whether or not
there are enough groceries to cook certain meals. The fourth
block serves to introduce the loop concept with the simile of
a juicer and hand mixer in the kitchen.

This methodology can be used with any resource avail-
able to teachers in the classroom. If there is no computer
in the classroom, the process will likely take longer because
metaphors must be drawn on the blackboard and the students
need the scripts and exercises on paper.

If there is one computer in the classroom, the VEE Pri-
maryCode can be installed and run to support the metaphors.
Students can interact with the computer via the mouse. More-
over, if both a computer andMakeyMakey [37] are available
in the classroom, the metaphors are explained with the VEE
PrimaryCode, and students interact with the computer using
fruit or Play-Doh as explained previously.

In our previous study on proving the efficacy of the
metaphors and the use of MECOPROG [68], 132 primary
education students (9–12 years of age) were taught pro-
gramming by using MECOPROG. At the beginning of the
experiment, all students were asked to complete program-
ming concepts and computational thinking tests. During the
sessions, all students were taught according to MECOPROG.
Finally, they took the tests again. Significant improvements
in the results on all the tests were measured, supporting the
use of metaphors to teach computer programming concepts
to primary education students.

2) METAPHOR METHODOLOGY WITH PRIMARYCODE AND
A MOUSE
PrimaryCode is a VEE developed in an ad hoc manner to
explain introductory programming concepts to children. This
paper presents it for the first time. The VEE is intended to
display the metaphor methodology in an interactive way to
children. Therefore, to explain the metaphors presented in
the previous subsection, it helps to structure the contents
similarly in three parts: 1- input and output, 2- conditionals
and 3- loops. In addition, the VEE transversally includes the
concept of sequence, since it shows the execution of snippets
written in pseudocode step by step on the left. Implicitly,
the concept of ‘‘Program&Programming’’ is shown, offering
several examples where the child can change the inputs and

217804 VOLUME 8, 2020



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

FIGURE 2. PrimaryCode executing a loop statement (left) step by step,
where the states of the variables kept on the baskets represent the
computer memory (right); in this case, the interaction is done with the
mouse (top left).

variables values to see what happens in terms of memory
or the outputs (screen) as the snippets execute. It offers
snippets where students can change the values of variables
and inputs on the computer just by selecting them with the
mouse. In PrimaryCode, a (sequential, conditional, or input &
output) statement is executed step by step on the left-hand by
clicking with the mouse, and it runs parallel with the outputs
or variables, as shown on the right.

In Figure 2, PrimaryCode shows a loop concept snippet
being executed (left) and the baskets representing variables
that change (increase or decrease) their contents during every
loop iteration (right), and this is all being executed step by
step (red arrow pointing out the instruction being executed)
by the child clicking the ‘‘next step option’’ (bottom) with the
mouse. The system offers several types of loops and different
examples where children can change the values of variables
of the conditional statement and observe what happens. The
same is true for the input, output, and conditional statement
snippets.

3) METAPHOR METHODOLOGY WITH PRIMARYCODE AND
MAKEY MAKEY
The VEE PrimaryCode was designed to introduce children to
programming in a funway; hence, its colorful interface is very
child-oriented and presents abstract concepts with simple
visual examples such as baskets or barrels for variables or a
red arrow for pointing out the next instruction being executed.
Thus, the authors were aware of how much children love to
use Makey Makey and that using it for learning is definitely
valuable [17], [37], [45], [79]. Therefore, the system allows
two types of interactions: the first is normal use with the
mouse (explained in the previous subsection). In this type of
approach, the VEE offers snippets where students can change
the values of variables and inputs on the computer just by
selecting them by touching the fruit previously connected
to it through Makey Makey (Figure 1). In PrimaryCode,

FIGURE 3. Child executing a snippet on PrimaryCode (left) and watching
what happens to the outputs and variable (represented with a barrel),
both on the right. In this case, the interaction is done with fruit connected
through Makey Makey.

a (sequential, conditional, or input & output) statement is
executed step by step on the left-hand side by touching the
fruit (a banana in this example), and it runs parallel with
the outputs and/or variables, as shown on the right (on the
right hand side of the screen, a barrel represents the variable
that shows the change affected on it); see Figure 3 for an
illustration.

PrimaryCode, when used with Makey Makey, offers two
options for the tangible interface; it can be configured either
with fruit or with Play-Doh. If used with other programs, such
as Scratch, any conductive material can be used (aluminum
foil, water, etc.).

4) PRIMARYCODE TASKS FOR LEARNING PROGRAMMING
CONCEPTS
Table 3 demonstrates the programming concepts inculcated
through the exercises performed in PrimaryCode or paper
exercises derived from it. There are a total of 31 different
exercises that utilize the programming concepts included
in Table 2. Some concepts are common to all exercises
(sequences, variables), and others include concepts used
before (such as inputs, conditions or loops). All exercises
have between 2 and 6 different parameters required for exe-
cution, and the children can play with different values and
observe what happens.

D. VARIABLES
Two different factors were considered in the study as inde-
pendent variables:

- Grade (three different levels: 4th, 5th and 6th).
- Type of approach (three different levels: unplugged, com-

puterized with a VEE used with Makey Makey, and comput-
erized with a VEE used with a PC mouse)

In addition, interactions between these two factors were
considered.

The dependent variables are related to the learning scores
of the students obtained on two programming knowledge tests
(a pretest at the beginning of the experiment and a posttest
at the end of the experiment). These learning scores served

VOLUME 8, 2020 217805



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

TABLE 3. PrimaryCode tasks for learning programming concepts.

as a quantitative measure for testing the improvements in the
students’ knowledge of the programming concepts.

E. HYPOTHESES
The hypotheses of the study are as follows:

H1. Students enrolled in higher grades learn more than
students enrolled in lower grades.

H2. Students using a VEE with Makey Makey learn
more than students using a VEE with a mouse or without
technology.

H3. Students enrolled in higher grades with a VEE and
Makey Makey learn more than students enrolled in lower
grades without technology.

H4. Some concepts are learned better by students enrolled
in lower grades, as they are all novice students without
PCs, Makey Makey and previous knowledge, unlike students
enrolled in higher grades with more access to technology and
previous knowledge.

F. EXPERIMENTAL DESIGN
To achieve the goal of the experiment, taking the quan-
titative nature of the variables and the hypotheses formu-
lated into account was the reason to choose a multigroup

pretest-posttest design for the experiment with three groups,
one for the control group, known as unplugged, and two test
groups, one for each of the approaches under study: comput-
erized with a VEE and Makey Makey and computerized with
a VEE and a mouse.

G. PROCEDURE AND TOOLS
The experiment took place inDecember 2018. The three com-
puter science specialists adopted the metaphor methodology
for lesson planning, and the same type of approach was used
for each age group (4th, 5th and 6th grade). Each computer
science specialist was responsible for one particular type of
approach, and each of them taught 4th, 5th and 6th graders.

At the beginning, all students in each of the grades (4th,
5th and 6th) took a pretest concerning basic programming
concepts to evaluate their initial knowledge of programming
concepts. Students then received 8 sessions (one hour each)
on the basics of programming, covering the concepts of pro-
grams, programming, sequences, memory, inputs and out-
puts, conditionals, and loops.

Using a similar approach to that applied by the authors
in [54], the children were evaluated on their understanding
of 5 programming concepts: sequences, repetitions, condi-
tions and branches, functions and parameters [54]. In this
case, a total of 31 visual interactive exercises were carried
out by the students, compared to the 10 developed in [54].

Table 4 presents the 12 open-ended questions of the test,
indicating the knowledge evaluated by each question. The
children answered qualitatively in open text boxes, and they
were scored between 0 or 1 for each question according
to a rubric. Therefore, the final score of each student was
between 0 (minimum) and 12 (maximum). These scores
were scaled to a range of 0 (minimum) to 10 (maximum),
as that is the usual scoring scale in Spain. The questions
were paired in a two-tiered test format in line with the study
by Yang [80], with the first type of questions requiring
short-answer responses and the second asking for the stu-
dent’s reason for giving the first response or asking for an
example.

The time devoted to each session was 60minutes; however,
the time devoted to each particular concept was not predeter-
mined. On the other hand, mastery learning was used [81]
given its benefits in the areas of achievement and retention of
the content [82]. Therefore, each concept was explained until
it could be linked by the children to the previous concepts.
As indicated in [67], the teaching methodology advised
teachers not to move on to new concepts until previous con-
cepts had been understood.

The teacher recognized when the students understood the
concept by performing continuous evaluations. All students
had to answer a set of questions and exercises about the con-
cepts during the sessions. It was not just the teacher talking as
in a master lecture. Furthermore, irrespective of the approach,
all students were given explanations of the concepts (drawn
on the blackboard or projected on a screen for the VEE
PrimaryCode), and later, the students were asked during the

217806 VOLUME 8, 2020



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

TABLE 4. Pre-post test questions.

sessions to complete the same sort of exercises covering the
programming concepts being taught (on paper for the control
group and on the VEE PrimaryCode for both test groups) and
answer questions formulated by the teachers. The differences
between the groups were made just to test which type of
approach was most adequate for each age group:

- Group 1 (control: blackboard) was the control group; they
only used the metaphor methodology explained on the black-
board and performed their exercises on paper (unplugged
approach).

- Group 2 (test: PC/mouse) was a test group that
used the VEE PrimaryCode with a mouse (described in
Section III.C.2). All computers displayed the VEE Prima-
ryCode on the screen when children arrived at the computer
room to prevent any setup time.

- Group 3 (test: PC/Makey Makey) was another test group
that used the VEE PrimaryCode with Makey Makey con-
nected to fruit (described in Section III.C.3). As in Group 2,
all computers displayed the VEE PrimaryCode on the screen,
and the pieces of fruit were already connected to Makey
Makey when children arrived at the computer room to prevent
any setup time.

At the end of the sessions, all the children took the posttest,
which was exactly the same as the pretest.

H. VALIDITY AND RELIABILITY
This paper adapted programming concepts used in earlier
research to be appropriate for the target students [52], [83].

Three computer science education specialists, along with
three primary teachers (one for each class group involved
in the study), together adjusted the questions to the compre-
hension levels of the targets. Their validity was evaluated
by administering them in a test to 144 students (46 fourth
graders, 53 fifth graders and 45 sixth graders). The test reli-
ability was high (Cronbach’ s α = 0.81 for fourth graders,
Cronbach’ s α = 0.883 for fifth graders and Cronbach’ s
α = 0.876 for sixth graders).
All objectives, instructional activities and evaluations were

developed by researchers (computer science specialists) and
reviewed by the primary education teachers to prevent any
possible misunderstanding of the wording of the test follow-
ing the revision of Bloom’s taxonomy [84] (focusing on the
lower levels).

Statistical calculations were performedwith the IBMSPSS
Statistics Version 25 program.

IV. RESULTS
This study focuses on the improvement, first, of the global
scores of the individuals within the levels of each factor
separately by grade and then by approach type. Second,
the improvement is focused on the programming concepts
learned, again by grade and by approach type. Subsequently,
the study attests to the improvement when these two factors
are combined.

A. WITHIN-SUBJECTS EFFECTS
The objective is to know whether the test scores improved as
a result of the approach in each grade and of each approach
type separately. It is also essential to quantify any possible
improvement.

1) RESULTS BY GRADE
To obtain additional information, some statistical parameter
calculations are performed for each grade. Table 5 shows the
means and standard deviations of the 4th, 5th and 6th grades
regardless of the type of approach used for the students (con-
trol: blackboard, test: PC/mouse or test: PC/Makey Makey).

Table 6 suggests that there is a significant improvement on
the posttest for all grades, whereas their standard deviations
show just small increases except for the 6th grade, where it
decreases slightly. Figure 4 shows box plots for the three
grades on the pre- and posttests. In each box, two values
are represented: Q1 or first quartile and Q3 or third quartile.
Therefore, each box shows 50% of the cases, and a line inside
the box represents the median score. The highest and lowest
values for each figure correspond to values that are lower
than or equal to Q3+1.5·(Q3-Q1) and greater than or equal to
Q1-1.5·(Q3-Q1), respectively.

The Shapiro-Wilk tests used for the three grades conclude
normality in all of them. Furthermore, there is no correlation
between the samples. In such cases, the t-test for independent
samples is used.

Table 6 shows a comparison between the pretest and
posttest. There are very significant differences in all the

VOLUME 8, 2020 217807



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

FIGURE 4. Box plots for the students’ grades on the pre- and posttests.

TABLE 5. Statistical parameters of the tests for all grades.

TABLE 6. t-test: Comparison between the pre- and posttests by grade.

TABLE 7. Descriptive statistics for different approach types.

grades. The obvious conclusion is that the participants
improved significantly on the test for all approaches.

Some additional information to measure the value of
the change produced in all grades is computed using the
d-statistics metric proposed by Cohen. All values for the 4th

(d = 2.2), 5th (d = 2.46), and 6th (d = 2.99) grades indicate
large effects.

2) RESULTS BY APPROACH TYPE
Table 7 shows a descriptive analysis of the means and stan-
dard deviations of the test scores for the three types of
approaches. The pretest values of the means and standard
deviations for different approach types are similar. In con-
trast, for the posttest, the mean is higher in the control:
blackboard group, but its data dispersion is greater than those
of the other groups.

FIGURE 5. Box plots for different groups on the pre- and posttests.

TABLE 8. t-test: Comparison between the pre- and posttests By learning
approach.

Figure 5 shows box plots for the three groups on the pre-
and posttests Normality can be concluded for the control
group (p > 0.05 using the Shapiro-Wilk test for the three
groups), allowing the use of the t-test for related samples
(p > 0.05 using the bivariate correlations test).
Table 8 shows significant differences between the pretest

and the posttest results with respect to each approach. Con-
sequently, it is deduced that the participants had improved
significantly in the test results using all the approachmethods.

For further data measuring the magnitudes of the differ-
ences between the three learning approaches, the effect sizes
in all groups are calculated by the method of Cohen’s d
statistic [85]. Therefore, the value d = 3.41 for the control
group indicates a huge effect. When the metaphor methodol-
ogy is displayed on the VEE PrimaryCode (interaction with
the mouse), the obtained value d = 2.46 corresponds to a
huge effect, and the same is true for the value d = 1.93 with
Makey Makey. All approaches indicate a large effects,
with the highest value reached by the control: blackboard
group.

The use of this method for learning the basics of the
programming concepts of sequences, memory, outputs and
inputs, conditions and loops, regardless of the approach type
used, resulted in a significant increase in the efficiency of
learning these concepts.

3) RESULTS BY CONCEPT
Figure 6 shows the percentage of students who passed the
pre- and posttest by course and by approach. Using Stu-
dent’s t-test for paired samples, significant improvements

217808 VOLUME 8, 2020



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

FIGURE 6. Bar chart representing the number of approved students for each approach type in the pre- and posttests, separated by
concept.

in the learning of all concepts are observed, both by grade
and by approach type.

-4th grade: the concepts with the lowest percentage of
passes for the posttest are concentrated in the inputs and
conditionals concepts, regardless of the methodology used.
The approach type that worked best depends on the concept.
Generally, for most concepts, the blackboard worked best,
followed by the PrimaryCode used with a mouse and the
PrimaryCode used with Makey Makey.

-5th grade: the concepts of sequences, outputs, memory
and loops obtained more than a 50% pass rate both for the
unplugged approach and for the PC with Makey Makey.
For the memory and conditionals concept, ‘‘PC & mouse’’
worked better than ‘‘PC & Makey Makey’’.

-6th grade: each of the three approach types generally
achieved a very large percentage of passes, although the
improvement was greatest in the unplugged approach, fol-
lowed by ‘‘PC & mouse’’. In addition, inputs and conditions
were the concepts with the lowest number of approvals,
although in both cases, they were above 50%. Sequences,
memory and loops were the concepts with the highest number
of passes for all the approach types, where in most cases
100% of students achieved grades greater than or equal to 5
(out of 10).

Now, instead of analyzing final learning effects by count-
ing the percentage of students who passed, the improvement
achieved in relation to the pretest is observed. Thus, the size
of the improvement is quantified by Cohen’s d statistic.
Table 9 shows this sizes of the improvement for all the grades
together (4th, 5th and 6th) and divided by the approach type,
thus for ‘‘Blackboard’’, ‘‘PC & Makey Makey’’ and ‘‘PC &
mouse’’, it can be said that:

-There are at least very large effects for concepts of
loops, conditionals, sequences and outputs, regardless of the
approach type used.

- The memory concept only has a very large effect when
using the ‘‘Blackboard’’ and ‘‘PC & mouse’’ approaches.

- The inputs concept only has a very large effect when using
‘‘Blackboard’’.

Table 10 shows the sizes of the improvements for all
the approach types together (‘‘Blackboard’’, ‘‘PC & Makey
Makey’’ and ‘‘PC & mouse’’), split by grade; thus, for the
4th, 5th and 6th graders, it can be said that:

-There are great improvements for all the grades for
the concepts of (in descending order) loops, conditionals,
sequences and memory.

- The output concept has very large effects only for the 6th

and 4th graders.

VOLUME 8, 2020 217809



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

TABLE 9. Cohen’s d-value for different concepts by interaction type.

TABLE 10. Cohen’s d-value for different concepts by grade.

TABLE 11. Statistical parameters of the diftest variable for grade and
approach type.

- The inputs concept, the hardest of all, only achieves very
large improvements in 6th grade.

B. EFFECTS BETWEEN SUBJECTS
Next, the objective is to determine if the grade that the stu-
dents are in, the approach type used and/or a combination
of both influence the magnitude of improvement of the test
scores, assuming that there is one.

The profile plot shown in Figure 7 is a graphical output
from Table 11. It shows how the approach used and grade
influence the mean of the diftest variable. It seems that there
is some kind of interaction, as the lines are not parallel.
Furthermore, the line for the means corresponding to 5th

grade shows more abrupt changes than the other lines due
to the approach used. A two-way ANOVA calculation can be
used to examined the effects of the approach and grade level
on the test scores:

yij= µ+αi + βj + (αβ)ij + εij

where yij is the dependent variable, computed as the differ-
ence between the post- and pretest scores (named diftest); µ
corresponds to the model mean; and αi is the main effect of
level i of the grade (i = 1, 2, 3). βj is the main effect of level
j of the approach (j = 1,2,3). (αβ)ij is the interaction effect
of treatment (i,j) from both factors, grade and approach. εij is
the random error.

First, the normality and homogeneity (the population vari-
ances are equal across all subpopulations) of the dependent
variable are satisfactorily checked. These assumptions are
necessary to ensure the effectiveness of the results.

FIGURE 7. Estimated marginal means of the diftest variable for each
grade and approach type.

TABLE 12. Two-way ANOVA with interaction.

Table 12 shows that there was a statistically significant
interaction between the effects of the approach type and grade
level on the scores (p = 0.026). The main effects analysis
in two-way ANOVA showed that the approach does indeed
influence the test score (p < 0.001) but also that there are no
differences between grades (p = 0.155).
Table 13 presents the results from deeper studies of the

simple effects, and these show the parameters used in one-
way ANOVA, split by grade. The factor is the approach used.

TABLE 13. One-way ANOVA by grade. Factor: Approach/Methodology.

The effect of the approach used is statistically significant
in 5th grade (p < 0.001). This means that the approach used
influences the results in some way. Therefore, a post hoc
analysis for 5th grade yielded more information. Tukey’s
HSD test, which compares each approach with every other
approach twice, was used.

Table 14 shows that the comparisons between ‘‘control:
blackboard’’ and ‘‘test: PC & mouse’’ and between ‘‘control:
blackboard’’ with ‘‘test: PC&MakeyMakey: are statistically
significant (p < 0.001).

1) RESULTS BY CONCEPT
Table 15 shows an informative result for a two-factor ANOVA
with interaction. An ‘‘X’’ in a given box denotes a p-value
larger than 0.05, implying that there are no differences among

217810 VOLUME 8, 2020



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

TABLE 14. Post hoc comparison: Tukey’s HSD.

TABLE 15. Summary table for a two-way ANOVA with interaction (by
concept).

the different levels of the factor studied. A check symbol in
the box denotes a p-value lower than 0.01, which implies
significant differences have been found among the levels of
the factor.

A deeper study is necessary when a significant interac-
tion is found, and future research would be to analyze the
Grade factor, which is currently fixed and studied separately.
A one-factor ANOVA is carried out, and the results show the
following:

- In 4th grade, the approach type is not very important for
learning the concepts of sequences, outputs and conditionals,
but it is more effective to use ‘‘Blackboard’’ for memory. It is
also more effective to use ‘‘Blackboard’’ and ‘‘PC & mouse’’
for loops.

-In 5th grade, all approach types work well for sequences,
but for the rest of the concepts, it is most effective to use
‘‘Blackboard’’.

-In 6th grade, all approaches work well for all the concepts
except for loops, where the use of ‘‘Blackboard’’ is most
effective.

V. DISCUSSION
In recent decades, there has been increasing interest in how
to teach programming to children. Several approaches have
been tried, as reviewed in the literature. In this experi-
ment, three approaches were under study: an unplugged
approach using only the blackboard and a computerized
approach using a VEE with or without Makey Makey.
A multigroup pretest-posttest design has been followed
to answer the research questions described in subsec-
tion A along with their practical implications, and the
threats to the validity of the experiment are explored in
subsection B.

A. ANSWERS TO RESEARCH QUESTIONS
RQ1. Do children enrolled in 4th , 5th and 6th grades
learn basic programming concepts in the same way or
are there significant differences?The results for the grade
factor are provided in Section IV.A.1. It has been recorded
how the participants improved significantly on the test for
all grades with large effects. It seems that there are no
significant differences between the grades. This invalidates
H1, as students enrolled in higher grades do not learn more
than students enrolled in lower grades, which could have
been considered the expected outcome. This has an impor-
tant practical implication, as teachers should not presuppose
that students in lower courses are not going to be able to
understand the concepts; they could try, as it is possible that
they may be able to understand them as well as students in
higher grades.

RQ2. Are students taught without a VEE or with a
VEE with a mouse or Makey Makey able to learn basic
programming concepts in the same way? Are there sig-
nificant differences?The results for the approach factor are
provided in Section IV.A.2. All approach types (with a VEE
with a mouse, with Makey Makey, or just the blackboard)
have large effects on the students’ learning. The highest
improvement is registered in the control: blackboard group.
This result invalidates H2, as students using a VEE with
Makey Makey do not necessarily learn more than students
using a VEE with a mouse or without technology. These
results could be surprising at first or even contradictory, but
they support other studies proving the benefits of unplugged
approaches for teaching programming [86], [87]. As a prac-
tical implication, it is highlighted that even in situations in
which technology cannot be used, it is possible to effectively
teach programming to children.

RQ3. Are the improvements in the test scores the same
for all grades (4th , 5th and 6th grades) and for all types
of approaches (control: blackboard, test: PC and mouse,
test: PC andMakeyMakey)? The results for the interaction
between the grade and type of approach factors are provided
in Section IV.B. The approach used influences the results in
some way. This indicates that there is an interaction between
the grade and approach factors, where only in 5th grade is
the control: blackboard approach most effective. This implies
that one cannot expect that students enrolled in higher grades
with a VEE and Makey Makey will learn more than students
enrolled in lower grades without technology, thus invalidating
H3. As a practical implication, teachers of 5th grade students
who can choose between different resources for teaching
programming to the children are advised to use an unplugged
approach to achieve highest learning gains.

RQ4. Are students able to learn some concepts bet-
ter than others depending on their grade and the type
of approach used? The results for the interaction between
the grade and approach factors by concept are provided in
Sections IV.A.3 and IV.B.1. H4 is supported by the results,
as it can be distinguished that concepts such as loops, con-
ditionals and sequences show very large effects for all the

VOLUME 8, 2020 217811



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

approach types and grades. While the memory concept only
yields a very large effect using the blackboard or ‘‘PC &
Mouse’’ regardless of the grade level, the inputs concept only
yields a very large effect using the blackboard and for the 6th

grade, and the outputs concept only yields a very large effect
for the 6th and 4th grades regardless of the approach type
used. This has practical implications for teachers of students
enrolled in the 4th, 5th, and 6th grades who want to teach those
programming concepts, as they can provide additional help
for some concepts and use the most adequate approach for
each case. For instance, to teach the memory concept, it is
recommended to use the unplugged approach or theVEEwith
a mouse.

B. THREATS TO VALIDITY
There are some threats to the validity of this study [88], [89]:

• Construction validity: The use of a computer can
present some novel effects for students, since many of
them abandon their routine and find something else that
is interesting and attractive to them. This innovation
can create enthusiasm that makes it easier a teacher to
achieve his/her goals [90].

• External validity: Given that it is difficult to have two
different treatments in the same class, the split of the
students, albeit random, was limited to keeping the stu-
dents of the same group together in their class level while
using the same approach (unplugged, a VEEwithMakey
Makey or a VEE with a mouse).

• Internal validity: Since this study is a true experimental
design, specifically a multigroup pretest-posttest design
including a control group [91], the degree of control
over the experiment is great. However, sometimes, with
human participants, it is not possible to have a very high
degree of control [92]. Furthermore, a historical threat
may be that, in the entire experiment, the same teachers
remained with the same group of students, which may
influence the grades obtained on the tests.

• Conclusion validity: Statistical conclusion validity ‘‘is
concerned with sources of random error and with the
appropriate use of statistics and statistical tests’’ [88],
so there is no perfect validity. At the moment in which
an inferential study of the data is carried out, type
1 errors (rejecting the null hypothesis incorrectly) and
type 2 errors (accepting a null hypothesis that is false)
may be present, although the study does try to minimize
them.

VI. CONCLUSION
This paper contributes to the CS education literature with
an original study relating the grade in which children are
enrolled, 4th, 5th or 6th grade, the type of educational
approach used, and the students’ gain in knowledge of basic
programming concepts when being taught in primary educa-
tion. The three types of educational approaches were as fol-
lows: Group 1- control, no technology, reproducing what was

done with a VEE PrimaryCode using unplugged approaches
with a blackboard and paper exercises; Group 2- where stu-
dents interacted with a PrimaryCode program using a mouse;
and Group 3- students interacted with a PrimaryCode pro-
gram using Makey Makey.

All types of approaches provided satisfactory results with
regard to student learning, and there were no statistically
significant differences among the three types of approaches.
The data confirmed that even when the students were prone
to work with a computer using the tangible interface Makey
Makey, the approach used did not necessarily result in better
results on their tests.

The interaction between the grade and approach factors is
statistically significant. Depending on the grade, it is most
advisable to use different types of approaches. Only for fifth
graders did the use of the blackboard result in a statistically
significant improvement over the other types of approaches.

Regarding the grades, approaches and concepts, it can be
concluded that any of the approaches can be used for concepts
such as loops, conditionals, sequences and outputs, which
always show very large effects. For the memory concept, both
a blackboard and a PC&mouse have very large effects. How-
ever, for the inputs concept, a very large effect is obtained
only when using the blackboard. Moreover, the concepts of
loops, conditionals, sequences and memory resulted in very
large effects in all grades. The outputs concept only results in
a large effect for 5th graders. The inputs concept only results
in a very large effect for 6th graders.

Future work will include studying the motivations or emo-
tions of working with tangible interfaces such as Makey
Makey. Other areas of research include the use of additional
factors, such as gender, type of school, or student and teacher
motivation with regard to adopting one type of approach
or another. Additionally, the use of different times slots or
different interaction types for adjusting to new programs or
the use of tangible interfaces that can emotionally affect stu-
dent concentrationwill be considered.Moreover, studying the
effects of additional programming concepts, testing students
enrolled in more grades in primary education, and covering
higher levels of Bloom’s taxonomywill be examined to deter-
mine the relationships between all these factors.

ACKNOWLEDGMENT
The authors would also like to thank the school, teachers and
students for their collaboration.

REFERENCES
[1] W. W. F. Lau and A. H. K. Yuen, ‘‘Modelling programming performance:

Beyond the influence of learner characteristics,’’ Comput. Edu., vol. 57,
no. 1, pp. 1202–1213, Aug. 2011.

[2] L. Manovich, Software Takes Command A&C Black. New York, NY, USA:
Academic, 2013.

[3] D. Rushkoff, Program or be Programmed: Ten Commands for a Digital
Age. New York, NY, USA: Or Books, 2010.

[4] Education Act, Government Ireland, Statute Educ. Act, Dublin, Ireland,
1998.

[5] K. Brennan and M. Resnick, New Frameworks for Studying and Assess-
ing the Development of Computational Thinking, vol. 1. Vancouver, BC,
Canada: American Educational Research Association, 2012, p. 25.

217812 VOLUME 8, 2020



R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

[6] S. Campe and J. Denner, ‘‘Programming games for learning: A research
synthesis,’’ presented at the Paper Annual Meeting Amer. Educ. Res.
Assoc. (AERA), 2015.

[7] M. Jovanov, E. Stankov, M.Mihova, S. Ristov, andM. Gusev, ‘‘Computing
as a new compulsory subject in the macedonian primary schools curricu-
lum,’’ in Proc. IEEE Global Eng. Edu. Conf. (EDUCON), Apr. 2016,
pp. 680–685.

[8] I. Ouahbi, F. Kaddari, H. Darhmaoui, A. Elachqar, and S. Lahmine,
‘‘Learning basic programming concepts by creating games with scratch
programming environment,’’ Procedia Social Behav. Sci., vol. 191,
pp. 1479–1482, Jun. 2015.

[9] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, ‘‘Scratch: Programming for all,’’ Commun. ACM, vol. 52, no. 11,
pp. 60–67, 2009.

[10] M. Resnick, F. Martin, R. Sargent, and B. Silverman, ‘‘Programmable
bricks: Toys to think with,’’ IBM Syst. J., vol. 35, no. 3.4, pp. 443–452,
1996.

[11] E. Lahtinen, K. Ala-Mutka, andH.-M. Järvinen, ‘‘A study of the difficulties
of novice programmers,’’ ACM SIGCSE Bull., vol. 37, no. 3, pp. 14–18,
Sep. 2005.

[12] D. Ginat, ‘‘On novice loop boundaries and range conceptions,’’ Comput.
Sci. Edu., vol. 14, no. 3, pp. 165–181, Sep. 2004.

[13] O. Seppälä, L. Malmi, and A. Korhonen, ‘‘Observations on student
misconceptions—A case study of the build—Heap algorithm,’’ Comput.
Sci. Edu., vol. 16, no. 3, pp. 241–255, Sep. 2006.

[14] L. J. Barker, C. McDowell, and K. Kalahar, ‘‘Exploring factors that
influence computer science introductory course students to persist in the
major,’’ ACM SIGCSE Bull., vol. 41, no. 1, pp. 153–157, Mar. 2009.

[15] N. J. Coull and I. M. M. Duncan, ‘‘Emergent requirements for supporting
introductory programming,’’ Innov. Teaching Learn. Inf. Comput. Sci.,
vol. 10, no. 1, pp. 78–85, Feb. 2011.

[16] A. Yadav, C. Mayfield, N. Zhou, S. Hambrusch, and J. T. Korb, ‘‘Com-
putational thinking in elementary and secondary teacher education,’’ ACM
Trans. Comput. Edu., vol. 14, no. 1, pp. 1–16, Mar. 2014.

[17] A. Yadav, S. Gretter, S. Hambrusch, and P. Sands, ‘‘Expanding computer
science education in schools: Understanding teacher experiences and chal-
lenges,’’ Comput. Sci. Edu., vol. 26, no. 4, pp. 235–254, Dec. 2016.

[18] M. Feldgen and O. Clua, ‘‘Games as a motivation for freshman students to
learn programming,’’ in Proc. 34th Annu. Frontiers Edu. FIE, Oct. 2004,
pp. S1H/11–S1H/16.

[19] T. Jenkins, ‘‘The motivation of students of programming,’’ ACM SIGCSE
Bull., vol. 33, no. 3, pp. 53–56, Sep. 2001.

[20] M. Huggard and C. M. Goldrick, ‘‘Practical positioning projects: Location
based services in the laboratory,’’ in Proc. Frontiers Edu. 35th Annu. Conf.,
2005, pp. 1–6.

[21] O. Atrachan, ‘‘Hooks and props in teaching programming,’’ in Proc.
ITiCSE, Dublin, Ireland, 1998, pp. 21–24.

[22] E. V. Siegel, ‘‘Why do fools fall into infinite loops: Singing to your
computer science class,’’ in Proc. 4th Annu. SIGCSE/SIGCUE ITiCSE
Conf. Innov. Technol. Comput. Sci. Edu. - ITiCSE, 1999, pp. 167–170.

[23] S. Cooper,W. Dann, and R. Pausch, ‘‘Teaching objects-first in introductory
computer science,’’ in Proc. 34th SIGCSE Tech. Symp. Comput. Sci. Edu.
- SIGCSE, 2003, pp. 191–195.

[24] W. Dann, S. Cooper, and R. Pausch, Learning to Program With Alice.
Upper Saddle River, NJ, USA: Prentice-Hall, 2006.

[25] G.-A. Amoussou and S. Steinberg, ‘‘Work in progress: Assessing the
teaching of the science of design in computer science programs,’’ in Proc.
Frontiers Educ., 36th Annu. Conf., Oct. 2006, pp. 27–28.

[26] S. J. Lincke, ‘‘Work in progress—Motivating students for software engi-
neering,’’ in Proc. Frontiers Edu. 35th Annu. Conf., Oct. 2005, pp. 1–2.

[27] A. F. McKenna, J. Nocedal, R. Freeman, and S. H. Carr, ‘‘Introduc-
ing a constructivist approach to applying programming skills in engi-
neering analysis,’’ in Proc. Frontiers Edu. 35th Annu. Conf., Oct. 2005,
Art. no. 1611958.

[28] C. A. Wellington, T. Briggs, and C. D. Girard, ‘‘Comparison of student
experiences with plan-driven and agile methodologies,’’ in Proc. Frontiers
Edu. 35th Annu. Conf., Oct. 2005, Art. no. T3G-18.

[29] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas.
New York, NY, USA: Basic Books, 1980.

[30] P. Blikstein, ‘‘Digital fabrication and ’making’ in education: The democ-
ratization of invention,’’ FabLabs, Mach., Makers and Inventors, vol. 4,
no. 1, pp. 1–21, 2013.

[31] L. Martin, ‘‘The promise of the maker movement for education,’’ J. Pre-
College Eng. Edu. Res. (J-PEER), vol. 5, no. 1, p. 4, Apr. 2015.

[32] S. Papert, The Children’s Machine. New York, NY, USA: Basic Books,
1993.

[33] F. Heintz, L. Mannila, and T. Farnqvist, ‘‘A review of models for intro-
ducing computational thinking, computer science and computing in K-12
education,’’ in Proc. IEEE Frontiers Edu. Conf. (FIE), Oct. 2016, pp. 1–9.

[34] Q. Burke and Y. B. Kafai, ‘‘The writers’ workshop for youth programmers:
Digital storytelling with scratch in middle school classrooms,’’ in Proc.
43rd ACM Tech. Symp. Comput. Sci. Edu. - SIGCSE, 2012, pp. 433–438.

[35] D. Franklin, G. Skifstad, R. Rolock, I. Mehrotra, V. Ding, A. Hansen,
D. Weintrop, and D. Harlow, ‘‘Using upper-elementary student perfor-
mance to understand conceptual sequencing in a blocks-based curricu-
lum,’’ in Proc. ACM SIGCSE Tech. Symp. Comput. Sci. Edu., Mar. 2017,
pp. 231–236, doi: 10.1145/3017680.3017760.

[36] M. Horn and M. Bers. ‘‘Tangible Computing,’’ in The Cambridge Hand-
book of Computing Education Research, S. A. Fincher and A. V. Robins,
Eds. Cambridge, U.K.: Cambridge Univ. Press, 2019.

[37] B. M. Collective and D. Shaw, ‘‘Makey makey: Improvising tangible and
nature-based user interfaces,’’ in Proc. 6th Int. Conf. Tangible, Embedded
Embodied Interact., Feb. 2012, pp. 367–370.

[38] E. Lee, Y. B. Kafai, V. Vasudevan, and R. L. Davis, ‘‘Playing in the arcade:
Designing tangible interfaces with MaKey MaKey for Scratch games,’’ in
Playful User Interfaces. Singapore: Springer, 2014, pp. 277–292.

[39] S. Cuendet, J. Dehler-Zufferey, G. Ortoleva, and P. Dillenbourg, ‘‘An inte-
grated way of using a tangible user interface in a classroom,’’ Int. J.
Comput.-Supported Collaborative Learn., vol. 10, no. 2, pp. 183–208,
Jun. 2015.

[40] Y. Zhou, ‘‘Tangible user interfaces in learning and education,’’ Social
Behav. Sci., vol. 1, pp. 20–25, Jan. 2015.

[41] B. Schneider and P. Blikstein, ‘‘Comparing the benefits of a tangible user
interface and contrasting cases as a preparation for future learning,’’ in
Proc. Exploring Mater. Conditions Learn., Comput. Supported Collabora-
tive Learn. (CSCL) Conf., vol. 1, O. Lindwall, P. Häkkinen, T. Koschman,
P. Tchounikine, and S. Ludvigsen, Eds. Gothenburg, Sweden: International
Society of the Learning Sciences (ISLS), 2015.

[42] G. E. Baykal, I. V. Alaca, A. E. Yantaç, and T. Göksun, ‘‘A review on
complementary natures of tangible user interfaces (TUIs) and early spatial
learning,’’ Int. J. Child-Comput. Interact., vol. 16, pp. 104–113, Jun. 2018.

[43] A. Skulmowski, S. Pradel, T. Kühnert, G. Brunnett, and G. D. Rey,
‘‘Embodied learning using a tangible user interface: The effects of haptic
perception and selective pointing on a spatial learning task,’’Comput. Edu.,
vols. 92–93, pp. 64–75, Jan. 2016.

[44] M. S. Horn, R. J. Crouser, and M. U. Bers, ‘‘Tangible interaction and
learning: The case for a hybrid approach,’’ Pers. Ubiquitous. Comput.,
vol. 16, no. 4, pp. 379–389, 2012, doi: 10.1007/s00779-011-0404-2.

[45] C.-Y. Lin and Y.-M. Chang, ‘‘Increase in physical activities in kindergarten
children with cerebral palsy by employingMaKey–MaKey-based task sys-
tems,’’Res. Develop. Disabilities, vol. 35, no. 9, pp. 1963–1969, Sep. 2014.

[46] Y. B. Kafai and V. Vasudevan, ‘‘Constructionist gaming beyond the screen:
Middle school Students’ crafting and computing of touchpads, board
games, and controllers,’’ in Proc. Workshop Primary Secondary Comput.
Edu. ZZZ - WiPSCE, 2015, pp. 49–54.

[47] E. Sun and S. Han, ‘‘Fun with bananas: Novel inputs on enjoyment and
task performance,’’ presented at the CHI Extended Abstr. Hum. Factors
Comput. Syst., 2013, pp. 1275–1280.

[48] F. J. García-Peñalvo, D. Reimann, M. Tuul, A. Rees, and I. Jormanainen,
‘‘An overview of the most relevant literature on coding and computational
thinking with emphasis on the relevant issues for teachers,’’ Erasmus +
KA2 project ‘TACCLE 3 – Coding’, Tech. Rep. 2015-1-BE02-KA201-
012307, 2016.

[49] S.-C. Kong, M. M. Chiu, and M. Lai, ‘‘A study of primary school stu-
dents’ interest, collaboration attitude, and programming empowerment in
computational thinking education,’’ Comput. Edu., vol. 127, pp. 178–189,
Dec. 2018.

[50] G. Chen, J. Shen, L. Barth-Cohen, S. Jiang, X. Huang, and M. Eltoukhy,
‘‘Assessing elementary students’ computational thinking in everyday rea-
soning and robotics programming,’’ Comput. Edu., vol. 109, pp. 162–175,
Jun. 2017.

[51] A. Sovic, T. Jagust, and D. Sersic, ‘‘How to teach basic university-level
programming concepts to first graders?’’ in Proc. IEEE Integr. STEM Edu.
Conf., Mar. 2014, pp. 1–6.

[52] F. Kalelioğlu, ‘‘A new way of teaching programming skills to K-12 stu-
dents: Code.org,’’ Comput. Hum. Behav., vol. 52, pp. 200–210, Nov. 2015.

VOLUME 8, 2020 217813

http://dx.doi.org/10.1145/3017680.3017760
http://dx.doi.org/10.1007/s00779-011-0404-2


R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

[53] C. Brady, K. Orton, D.Weintrop, G. Anton, S. Rodriguez, andU.Wilensky,
‘‘All roads lead to computing: Making, participatory simulations, and
social computing as pathways to computer science,’’ IEEE Trans. Educ.,
vol. 60, no. 1, pp. 59–66, Feb. 2017.

[54] J. Shim, D. Kwon, and W. Lee, ‘‘The effects of a robot game
environment on computer programming education for elementary
school students,’’ IEEE Trans. Educ., vol. 60, no. 2, pp. 164–172,
May 2017.

[55] S. Popat and L. Starkey, ‘‘Learning to code or coding to learn? A systematic
review,’’ Comput. Edu., vol. 128, pp. 356–376, 2019.

[56] M. Johnson andG. Lakoff,Metaphors we Live by. Chicago, IL, USA: Univ.
Chicago Press., 2003.

[57] M. C. Bateson, Peripheral Visions: Learning Along the Way. New York,
NY, USA: HarperCollins, 1994.

[58] C. J. Craig, ‘‘Metaphors of knowing, doing and being: Capturing experi-
ence in teaching and teacher education,’’ Teaching Teacher Edu., vol. 69,
pp. 300–311, Jan. 2018.

[59] T. H. Hui and I. N. Umar, ‘‘Does a combination of metaphor and pairing
activity help programming performance of students with different self-
regulated learning level,’’ TOJET, TurkishOnline J. Educ. Technol., vol. 10,
no. 4, pp. 121–129, 2011.

[60] M. Forišek and M. Steinová, ‘‘Metaphors and analogies for teaching
algorithms,’’ presented at the 43rd ACM Tech. Symp. Comput. Sci. Educ.
2012.

[61] D. Gentner and A. B. Markman, ‘‘Structure mapping in analogy and
similarity,’’ Amer. Psychologist, vol. 52, no. 1, p. 45, 1997.

[62] B. Falkenhainer, K. D. Forbus, and D. Gentner, ‘‘The structure-mapping
engine: Algorithm and examples,’’ Artif. Intell., vol. 41, no. 1, pp. 1–63,
Nov. 1989.

[63] S. Schez-Sobrino, M. Á. García, C. Gómez, D. Vallejo, A. I. Molina,
C. Lacave, C. Glez-Morcillo, J. A. Albusac, and M. Á. Redondo,
‘‘ANGELA: A novel approach of graphic notation based on the metaphor
of road signs to facilitate the learning of programming,’’ in Proc.
7th Int. Conf. Technol. Ecosyst. Enhancing Multiculturality, Oct. 2019,
pp. 822–829.

[64] J. Hromkovič, T. Kohn, D. Komm, and G. Serafini, ‘‘Combining the
power of python with the simplicity of logo for a sustainable computer
science education,’’ in Proc. Int. Conf. Informat. Schools, Situation, Evol.,
Perspect. Berlin, Germany: Springer, 2016, pp. 155–166.

[65] S. Tarkan, V. Sazawal, A. Druin, E. Golub, E. M. Bonsignore, G. Walsh,
and Z. Atrash, ‘‘Toque: Designing a cooking-based programming language
for and with children,’’ presented at the Comput. Hum.-Interact. Conf.,
Apr. 2010.

[66] T. Moape, S. Ojo, and E. Van Wyk, ‘‘A metaphor-driven interactive mul-
timedia simulation for teaching and learning of programming concepts,’’
presented at the IST-Africa Conf., May 2018.

[67] D. Perez-Marin, R. Hijon-Neira, and M. Martin-Lope, ‘‘A methodology
proposal based on metaphors to teach programming to children,’’ IEEE
Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 13, no. 1,
pp. 46–53, Feb. 2018.

[68] D. Pérez-Marín, R. Hijón-Neira, A. Bacelo, and C. Pizarro, ‘‘Can com-
putational thinking be improved by using a methodology based on
metaphors and scratch to teach computer programming to children,’’ Com-
put. Human Behav., vol. 105, pp. 1–10, Apr. 2020, doi: 10.1016/j.chb.2018.
12.027.

[69] J. Sorva, V. Karavirta, and L. Malmi, ‘‘A review of generic program visu-
alization systems for introductory programming education,’’ ACM Trans.
Comput. Edu., vol. 13, no. 4, pp. 1–64, Nov. 2013, doi: 10.1145/2490822.

[70] P. Brusilovsky and T. D. Loboda, ‘‘WADEIn II: A case for adaptive
explanatory visualization,’’ ACM SIGCSE Bull., vol. 38, no. 3, pp. 48–52,
Sep. 2006.

[71] A. N. Kumar, ‘‘Results from the evaluation of the effectiveness of an online
tutor on expression evaluation,’’ SIGCSE Bull., vol. 37, no. 1, pp. 216–220,
2005.

[72] M. Kölling, ‘‘Using BlueJ to introduce programming,’’ in Reflec-
tions on the Teaching of Programming: Methods and Implementations,
J. Bennedsen, M. E. Caspersen, and M. Kolling Eds. Berlin, Germany:
Springer, 2008, pp. 98–115.

[73] M. Kölling, ‘‘The greenfoot programming environment,’’ ACM Trans.
Comput. Edu., vol. 10, no. 4, pp. 1–21, Nov. 2010, doi: 10.1145/1868358.
1868361.

[74] J. A. Velázquez-Iturbide, A. Pérez-Carrasco, and J. Urquiza-Fuentes,
‘‘SRec: An animation system of recursion for algorithm courses,’’ SIGCSE
Bull., vol. 40, no. 3, pp. 225–229, 2008.

[75] L. Ma, J. Ferguson, M. Roper, I. Ross, and M. Wood, ‘‘Improving the
mental models held by novice programmers using cognitive conflict and
jeliot visualisations,’’ ACM SIGCSE Bull., vol. 41, no. 3, pp. 166–170,
Aug. 2009.

[76] T.-C. Hsu, S.-C. Chang, and Y.-T. Hung, ‘‘How to learn and how to teach
computational thinking: Suggestions based on a review of the literature,’’
Comput. Edu., vol. 126, pp. 296–310, Nov. 2018.

[77] A. Jedlitschka and D. Pfahl, ‘‘Reporting guidelines for controlled experi-
ments in software engineering,’’ presented at the IEEE Int. Symp. Empiri-
cal Softw. Eng., Nov. 2005.

[78] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Berlin, Germany:
Springer, 2012.

[79] Y. Rogers, J. Paay, M. Brereton, K. L. Vaisutis, G. Marsden, and F. Vetere,
‘‘Never too old: Engaging retired people inventing the future with MaKey
MaKey,’’ in Proc. 32nd Annu. ACM Conf. Hum. Factors Comput. Syst.
CHI, 2014, pp. 3913–3922.

[80] T.-C. Yang, S. Y. Chen, and G.-J. Hwang, ‘‘The influences of a two-tier test
strategy on student learning: A lag sequential analysis approach,’’ Comput.
Edu., vol. 82, pp. 366–377, Mar. 2015.

[81] B. S. Bloom, ‘‘Mastery learning,’’ inMastery Learning: Theory and Prac-
tice, J. H. Block Ed. NewYork, NY, USA: Holt, Rinehart &Winston, 1971.

[82] D. Davis and J. Sorrell. (1995).Mastery Learning in Public Schools. Edu-
cational Psychology, Valdosta State University. Accessed: Aug. 5, 2010.
[Online]. Available: http://teach.valdosta.edu/whuitt/files/mastlear.html

[83] J. M. Sáez-López, M. Román-González, and E. Vázquez-Cano, ‘‘Visual
programming languages integrated across the curriculum in elementary
school: A two year case study using, ‘Scratch’ five schools,’’Comput. Edu.,
vol. 97, pp. 129–141, Jun. 2016.

[84] D. R. Krathwohl, ‘‘A revision of Bloom’s taxonomy: An overview,’’ Theory
Into Pract., vol. 41, no. 4, pp. 212–218, Nov. 2002.

[85] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Evanston,
IL, USA: Routledge, 2013.

[86] C. Brackmann, D. Barone, A. Casali, R. Boucinha, and
S. Munoz-Hernandez, ‘‘Computational thinking: Panorama of the
americas,’’ in Proc. Int. Symp. Comput. Edu. (SIIE), Sep. 2016, pp. 1–6.

[87] R. A. Alamer, W. A. Al-Doweesh, H. S. Al-Khalifa, and M. S. Al-Razgan,
‘‘Programming unplugged: Bridging CS unplugged activities gap for learn-
ing key programming concepts,’’ in Proc. 5th Int. Conf. e-Learn. (econf),
Oct. 2015, pp. 97–103.

[88] T. D. Cook and D. T. Campbell, Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Boston, MA, USA: Houghton Mifflin,
1979.

[89] W. R. Shadish, T. D. Cook, and D. T. Campbell, Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Boston, MA,
USA: Houghton Mifflin, 2002.

[90] G. H. Bracht and G. V. Glass, ‘‘The external validity of experiments,’’
Amer. Educ. Res. J., vol. 5, no. 4, pp. 437–474, 1968.

[91] S. F. Davis and R. A. Smith, An introduction to Statistics and Research
Methods: Becoming a Psychological Detective. London, U.K.: Pearson,
2005.

[92] M. A. Saint-Germain. Research Methods. Accessed: Jul. 27, 2020.
[Online]. Available: https://web.csulb.edu/~msaintg/ppa696/696exper.htm

RAQUEL HIJÓN-NEIRA received the European
Ph.D. degree in computer science, in 2010.

She worked as a Computer Science Engineer for
a period of five years and as an Instructor with the
university for a period of 20 years. She has been
a member of the Laboratory of Information Tech-
nologies in Education (LITE) since its inception.
She is currently an Assistant Professor with the
Computer Science Department, Universidad Rey
Juan Carlos, Madrid, Spain. Her research interests

include software for and innovation in programming education, educative
technologies, teaching programming to K-12 students, and serious games.

Dr. Hijón-Neira received the Best Thesis Award from the Spanish Chap-
ter of the IEEE Education Society.

217814 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.chb.2018.12.027
http://dx.doi.org/10.1016/j.chb.2018.12.027
http://dx.doi.org/10.1145/2490822
http://dx.doi.org/10.1145/1868358.1868361
http://dx.doi.org/10.1145/1868358.1868361


R. Hijón-Neira et al.: Effects of a VEE and Makey Makey

DIANA PÉREZ-MARIN received the European
Ph.D. degree in computer science and telecommu-
nication, in 2007.

She worked as a Lecturer and a Researcher
with the Universidad Autónoma de Madrid for
a period of ten years. She has been a Lecturer
and a Researcher with the Universidad Rey Juan
Carlos for a period of ten years. She is currently a
Professor with the Computer Science Department,
Universidad Rey Juan Carlos, Madrid, Spain. She

is a member of the Laboratory of Information Technologies in Education
(LITE). She has published more than 100 papers in national and international
journals and conferences. Her research interests include human–computer
interaction, computer assisted education, and computer science education.
She was a recipient of several awards.

CELESTE PIZARRO received the M.Sc. degrees
in mathematics and statistics from Universidad de
Extremadura, Badajoz, Spain, in 2000 and 2001,
respectively, and the Ph.D. degree in computer
science and mathematical modeling from the Uni-
versidad Rey Juan Carlos, Madrid, Spain, in 2006.
She is currently an Assistant Professor in applied
mathematics with the Universidad Rey Juan Car-
los. She is also an Assistant Professor with the
Department of Statistics and Operations Research,

Universidad Rey Juan Carlos. Her research interests include different math-
ematical programming fields (stochastic, integer, and linear programming)
and their applications.

CORNELIA CONNOLLY received the B.Eng.
degree (Hons.) in computer engineering and the
M.Eng. degree (Hons.) for research, and the Ph.D.
degree from the University of Limerick (UL),
in 2007.

She was a Lecturer in computer and math-
ematics. She is currently a Lecturer with the
School of Education, National University of Ire-
land Galway, Galway, Ireland. She is also a STEM
Teacher/Educator. Her research interests include

mathematics and computer science education. She publishes regularly on
educational design and pedagogical enhancement in STEM education.

Dr. Connolly was a recipient of the IEEE Student Paper Award at the
2001 IEEE Conference on the History of Telecommunications.

VOLUME 8, 2020 217815


