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ABSTRACT

In this article, the standard theoretical model accounting for a double barrier quantum well resonant tunneling diode (RTD) connected
to a direct current source of voltage is simplified by representing its current–voltage characteristic with an analytically approachable, anti-
symmetric N-shaped function. The time and variables involved are also transformed to reduce the number of parameters in the model.
Responses observed in previous, more physically accurate studies are reproduced, including slow–fast dynamics, excitability, and bistability,
relevant for spiking signal processing. A simple expression for the refractory time of the excitable response is derived and shown to be in
good agreement with numerical simulations. In particular, the refractory time is found to be directly proportional to the circuit’s intrinsic
inductance. The presence or absence of bistability in the dependence of the parameters is also discussed thoroughly. The results of this work
can serve as a guideline in prospective endeavors to design and fabricate RTD-based neuromorphic circuits for power and time-efficient
execution of neural network algorithms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062686

Nanoscale resonant tunneling diodes have a potential application
as fundamental units (i.e., nodes) in spiking neuromorphic pro-
cessors given their locally negative differential conductance, small
size, and high frequency. In prior theoretical studies,1–3 a resonant
tunneling diode connected to DC voltage has been demonstrated
as a class-2 excitable spike generator (i.e., excitability is achieved
when the circuit is biased in proximity to an Andronov–Hopf
bifurcation4). In these works, the non-ohmic current–voltage
characteristic is represented by Schulman’s formula5 that, while
physically accurate, is also analytically complex. Here, a more
simple, anti-symmetric, N-shaped current–voltage characteris-
tic, made by a linear function minus a sigmoid, is used instead.
This, together with the normalization of the time and vari-
ables involved in the equations, provides a simplified model with
a reduced number of parameters that reproduces most of the
typical responses reported in the works mentioned above. The
simplified model also allows for an approachable description of
the equilibrium solutions and their transitions in terms of the

parameters on the analytical, numerical, and geometrical basis.
In particular, the model may or may not exhibit a coexistence
of fixed-value response with self-oscillations (i.e., bistability),
which represents a hindrance for the purpose of excitable spike
generation. Based on an adiabatic approximation and slow–fast
dynamics, an analytically simple expression for the refractory
time (i.e., the duration of the excitable spike) is integrated. This
expression is shown to be directly proportional to the circuit’s
intrinsic inductance and is in good agreement with numerical
simulations.

I. INTRODUCTION

During the last years, the field of Artificial Intelligence (AI) has
experienced an explosive growth. Every day, neural networks and
machine learning algorithms find new applications in both industry
and academic research studies, with the subsequent increase in the
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demand for competent professionals and hardware. Nonetheless,
one of the most significant obstacles that stagnates these applications
lies on the very architecture modern computers are designed under,
inspired by the Von Neumann model and the Complementary Metal
Oxide Semiconductor (CMOS) technology. The cornerstone behind
AI is learning by mining and analyzing large amounts of pre-existing
data, and current computers are able to execute these algorithms
only at the cost of long waiting times and high energy consumption.
The causes are numerous and include the inability of processors to
distinguish instructions from data, unnecessary data displacements
between physically distant units within integrated circuits, and heat
dissipation in electronic junctions.

Several efforts are being carried out with the purpose of design-
ing a new architecture able to meet the requirements discussed
above. Examples include the IBM TrueNorth chip6 and Intel Quark
SE chip7 as well as an optoelectronic implementation by Robertson
et al.8 and an all-optical implementation by Feldmann et al.9 These
projects share a common core idea: to emulate the dynamics of the
Human brain and neurons, based upon generation and propagation
of short voltage spikes at arbitrary moments. This is possible because
neurons are excitable systems, i.e., they respond to an external stim-
ulus solely in the case that such stimulus is stronger than a certain
threshold. The response is complex and drives the system far away
from its natural state of equilibrium, but only for a short span (in
the ms range), known as refractory time.4,10,11 During the refractory
time, the system is unable to respond to any subsequent stimulus,
regardless of its strength. Data processing in the form of excitable
spikes has the expressiveness of analogical signaling and the advan-
tage of lower energy consumption and robustness in the presence of
noise, proper of digital signaling.

A fast, low-power spike-signaling architecture based on res-
onant tunneling diodes (RTDs) has been proposed in previous
works.1,12 An RTD is a non-ohmic device with a highly nonlinear
current–voltage characteristic, resulting from its multi-layer semi-
conductor structure, aimed to produce a double barrier quantum
well (DBQW). An incident electron may cross the DBQW with
a probability that is locally maximized if its Fermi energy level
matches one of the confinement eigen-energy levels of the barrier.
Consequently, the current intensity across the RTD exhibits local
maximal points at finite, nonzero voltages, with local minimal points
in between. This in turn defines regions of positive differential con-
ductance (PDC) and negative differential conductance (NDC). This
property allows RTDs to exhibit self-oscillations in response to a
direct current (DC) input. Indeed, RTDs are the smallest and fastest
oscillators up to date, able to emit signals in the terahertz (THz)
frequency range.13,14 The potential of RTDs in ultrahigh-rate digi-
tal signaling has been vastly explored.15,16 However, an RTD can also
behave as an excitable spike generator with the proper specifications
and configuration.1–3,17 With this in mind, nanoscale RTDs can be
used as single units (i.e., nodes that emulate the dynamics of a spik-
ing neuron) in RTD-based neuromorphic processors, which could
in turn execute machine learning and neural network algorithms
efficiently.

On this regard, it is essential to have an understanding of the
responses that RTD-based circuits exhibit in terms of the parameters
that define them. To this end, a theoretical model is proposed

by Romeira et al.1 that describes the dynamics of an RTD con-
nected to electrical and optical inputs. The model includes an
analytical expression accounting for the current–voltage charac-
teristic provided by Schulman.5 This formula is derived by apply-
ing the Fermi–Dirac statistics in an idealized DBQW-RTD with a
single NDC region embedded in between two PDC regions, sep-
arated by one peak and one valley. Thus, the I–V characteristic
has a well-known N-shaped profile like those typically observed in
micro- and nanoscopic RTDs.13–16 Romeira’s model with Schulman’s
curve is also studied in a successive work,2 where a wide variety
of phenomena, such as self-oscillations, slow–fast dynamics, bista-
bility, mixed-mode oscillations (MMOs), and localized structures,
are discussed. In a following work by Ortega et al.,3 the model is
used to emulate an RTD connected to a DC voltage source, and
the responses in terms of the system’s parameters are thoroughly
described.

The studies discussed above have proven to be difficult from
the analytical point of view, given the complexity of Schulman’s
curve. Therefore, it would be desirable to have a more simple
expression to represent the I–V characteristic that retains its N-
shaped profile and reproduces the observed phenomena that are
key to spike signaling: excitability, slow–fast self-oscillations, and
bistability. (The presence of bistability is detrimental for the pur-
pose of spike generation because it may lead to bursting.4) The
FitzHugh–Nagumo model, which makes use of an N-shaped, third-
degree polynomial as the current–voltage characteristic,18,19 seems to
be the most befitting choice. However, this model does not exhibit
bistability when the circuit’s resistance is low. In addition, the N-
shaped third-degree polynomial is unique (save normalization) and
its shape cannot be tuned. This is relevant to bistability because its
presence or absence depends sensitively on the second and third
derivatives of the I–V characteristic.20 To capture these elements,
we propose a simplified model with a tunable, N-shaped I–V char-
acteristic consisting of a linear function minus a sigmoid. Such a
curve lacks the physical foundations of Schulman’s formula, and
it is not suitable for quantitatively reproducing (or fitting) the I–V
characteristic of micro- and nanoscale RTDs. However, it allows for
our model to provide a qualitatively reliable and comprehensible
description of the RTD’s responses in terms of a reduced number
of parameters and reproduces the phenomena that are key to spike
signaling. Finally, a simple analytical expression for the refractory
time of the excitable response is computed in terms of the model
parameters. A short refractory time is desirable in order to transmit
a large amount of information in the form of excitable spikes in a
short time span.

The article is structured as follows. In Sec. II, the theoret-
ical model and current–voltage characteristic used are described
in detail, as well as the parameters and equilibrium solutions.
This simplified model reproduces slow–fast dynamics and excitabil-
ity, as explained in Sec. III. A thorough discussion on the model
responses in terms of its parameters is provided in Sec. IV.
Bistability is discussed in Sec. V. An analytical expression for
the self-oscillation period in the slow–fast regime is derived in
Sec. VI, which leads to a more simple expression for the refrac-
tory time. A summary and final discussions are presented in
Sec. VII.
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II. SIMPLIFIED RTD MODEL

A. Derivation of the simplified model

We start with the standard physical model accounting for the
dynamics of a double barrier quantum well resonant tunneling
diode (DBQW-RTD or RTD for short) connected to a DC source
of voltage,

C
dV

dt
= I − F(V), (1)

L
dI

dt
= V0 − V − RI. (2)

Equations (1) and (2) are derived from the laws of Kirchhoff.
Figure 1 shows a scheme of the circuit. Here, V(t) and I(t) are the
voltage and current across the RTD. V0 is the input bias DC volt-
age. R, L, and C are the circuit’s intrinsic resistance, inductance, and
capacitance. F(V) is the RTD nonlinear, N-shaped current–voltage
characteristic. This curve tends to be irregular and rough in micro-
and nanoscale RTDs and more so in the latter, where the quan-
tum effects are more pertinent (see Fig. 1). However, they typically
exhibit a region of negative differential conductance (NDC) embed-
ded in between two regions of positive differential conductance
(PDC). In prior studies,1–3 F(V) has been represented by using
an analytical expression derived by Schulman.5 The solutions in
equilibrium are characterized and responses that suggest potential
applications in spiking signal processing (namely, slow–fast dynam-
ics, excitability, and bistability) are identified. Schulman’s formula
is physically accurate and suitable for experimental fitting, but it is
analytically complex and has a large number of parameters (which
add to R, L, C, and V0). Instead, we introduce a simple N-shaped
expression that allows for a minimal model with a reduced number
of parameters, able to qualitatively reproduce the same phenomena
and provide analytically simple descriptions. The following proper-
ties are assumed on F(V), which will be necessary in the steps leading
to the simplified model:

• F(V) has a single NDC region embedded in between two PDC
regions, delimited by peak and valley voltages Vp and Vv, with
0 < Vp < Vv. This confers an N-shaped profile to F(V).

FIG. 1. Schematics of a DBQW-RTD connected to a DC source of voltage,
together with a typical current–voltage characteristic observed in micro- and
nanoscale devices.

• F(V) is anti-symmetric with respect to the NDC region cen-
tral axis; i.e., given Vc = 1

2
(Vp + Vv), it follows that F(Vc − V)

= −F(Vc + V) for all V.
• The (negative) differential conductance F′(V) is minimal at

V = Vc.

After defining a normalized time τ = t/
√

LC and a coefficient
µ =

√
C/L, Eqs. (1) and (2) read

µ
dV

dτ
= I − F(V), (3)

dI

dτ
= µ(V0 − V − RI). (4)

It is explained in the study of Ortega et al.3 that µ levels the stiff-
ness of the dynamics in the circuit. Note that the system of Eqs. (3)
and (4) has three parameters instead of four. This system is also
invariant under translations along both voltage and current axes.
Indeed, after defining, V = V − Vc, I = I − F(Vc), V0 = V0 − Vc

− RF(Vc), and F(V) = F(V) − F(Vc), Eqs. (3) and (4) read as

µ
dV

dτ
= I − F(V), (5)

dI

dτ
= µ(V0 − V − RI). (6)

Note that F(V) is an anti-symmetric function [i.e., F(−V)

= −F(V)], with a peak and a valley at V = −Vm and V = +Vm,
where Vm = 1

2
(Vv − Vp). Also, F ′(V) is minimal at V = 0, with

F ′(0) < 0. The last step is to normalize the variables by defin-
ing, v = V/Vm, y = I/ (Vm|F ′(0)|), r = |F ′(0)|R, m = µ/|F ′(0)|,
v0 = V0/Vm, and f(v) = F(V)/ (Vm|F ′(0)|). Equations (5) and (6)
now read as

m
dv

dτ
= y − f(v), (7)

dy

dτ
= m(v0 − v − ry). (8)

f(v) is also anti-symmetric, with its peak and valley points
at v = −1 and v = +1, respectively. Its derivative is minimal at
the origin and unitary [i.e., f ′(0) = −1]. Besides the assumptions
made on the current–voltage characteristic F(V), there is no loss of
generality in the transformations leading from Eqs. (1) and (2) to
Eqs. (7) and (8). All the variables and parameters, v, y, τ , r, v0, and m,
involved in Eqs. (7) and (8) are normalized in the sense that have
no physical units. However, each one is linearly related to one
original physical quantity, V, I, t, R, V0, and µ, respectively. There-
fore, we will refer to the normalized variables as voltage, current,
time, resistance, input bias, and stiffness coefficient for the rest of
this article. Likewise, we will refer to the normalized function f(v)
and its derivative as current–voltage characteristic and differential
conductance.

B. Simplified current–voltage characteristic

A very simple choice for an origin-centered, anti-symmetric,
N-shaped current–voltage characteristic with its peak and val-
ley points at v = ±1 would be the third-degree polynomial,
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f(V) = 1
3
v3 − v. This choice turns Eqs. (7) and (8) into the

FitzHugh–Nagumo (FHN) model.18,19 The FHN model, however,
does not reproduce bistability when the circuit’s resistance is low. In
contrast, bistability is observed in Ortega’s work,3 where Schulman’s
curve is used. Moreover, there is no other third-degree polyno-
mial that satisfies the conditions mentioned above. This means
that the shape of the polynomial curve cannot be tuned. Alter-
natively, a simple, tunable N-shaped curve can be made with a
linear function minus a sigmoid. Such is the case in the Mor-
ris–Lecar model,4,21 where the hyperbolic tangent is used. The
Hodgkin–Huxley model4,22 constitutes a more complex example,
where the logistic function is used to model the ratio of open and
closed voltage-gated channels in the neuron’s cell membrane, such
as the Na+ and K+ channels. The logistic function is also typically
used in non-spike-based neural nodes.23 In the simplified model
proposed here, we choose the arctangent function since it leads to
an approachable expression for the differential conductance, which
in turn allows for a manageable derivation of the refractory time, in
Sec. VI B,

f(v) = kv − h arctan
( v

w

)

, (9)

where k, h, w > 0. Consequently, the differential conductance
reads as

f ′(v) = k −
hw

v2 + w2
. (10)

Provided that h > kw, then f(v) is N-shaped, as it has a local
maximum at v = −vM and a local minimum at v = +vM, where

vM =
√

(

h
k

− w
)

w. These values delimit an NDC region embedded

between two PDC regions. In particular, f ′(0) = k − h
w

< 0 is the
minimal differential conductance. On the other hand, if h ≤ kw,
then f(v) is monotonic and there is no NDC region.

The restrictions vM = 1 and f ′(0) = −1 constitute a system of
two equations for k, h, and w, and its solution set can be computed
as a parameteric form,

k =
a

1 − a
, h =

√

a

(1 − a)3
, w =

√

a

1 − a
, (11)

where 0 < a < 1. Note also that kh/w = a. Figure 2 shows some N-
shaped curves given by Eqs. (9) and (11) for different values of a,
which turns out to tune the sharpness of the curve. The smaller a, the
spikier the peak and the valley of the current–voltage characteristic
and the less curved the sections in the PDC and NDC regions. On
the other hand, r and v0 set the slope and position coefficient of the
(normalized) load line, v0 − v − ry = 0. Finally, it will be explained
in Sec. III A that m levels the stiffness of the dynamics. Summariz-
ing, Eqs. (7), (8), (9), and (11) define a simplified model with only
four free parameters: a, r, m, and v0. In what follows, the analytical
expressions resulting from this simplified model will be computed
in terms of k, h, w, or a, depending on what notation makes each
expression more succinct. However, it is important to emphasize
that k, h, and w are now defined as functions of a according to
Eq. (11) and are not independent parameters.

FIG. 2. Examples of normalized current–voltage characteristics used in the
simplified model, Eqs. (7) and (8). The regions of positive and negative differ-
ential conductances are also shown as yellow and green areas, respectively. (a)
a = 0.01, (b) a = 0.1, (c) a = 0.4, and (d) a = 0.9.

C. Equilibrium solutions

Depending on the parameters a, r, m, and v0, the simplified
model exhibits solutions in equilibrium in the form of fixed points
[Fig. 3(a)] and limit cycles [Fig. 3(b)]. These solutions may be sta-
ble or unstable depending on the associated eigenvalues in the case
of a fixed point and the Floquet multipliers in the case of the limit
cycle.24 There is also the possibility of multiple solutions coexisting.
For instance, a stable fixed point and a stable limit cycle can coexist
if an unstable limit cycle lies in between [Fig. 3(c)]. When this hap-
pens, we say that the system is bistable. It is also possible that the
system exhibits multiple fixed points if the load line intersects the
I–V curve in more than one place [Fig. 3(d)]. On this regard, the crit-
ical resistance, defined in Ref. 3 as the absolute value of the reciprocal
of the minimal differential conductance in the NDC region, is signif-
icant. In the context of the simplified model, the critical resistance is
a normalized quantity with no physical dimensions,

rC = −
1

min
{

f ′(v)
} .

For the I–V characteristic defined in Eq. (9), the critical resistance is
given by

rC = −
1

f ′(0)
=

w

h − kw
,

which is reduced to 1 when k, h, and w are given by Eq. (11). Indeed,
if the circuit’s resistance is over the critical value, the load line may
intersect the I–V curve in multiple points, with a maximum of three.
Indeed, it is not difficult to demonstrate that looking for the intersec-
tion points is equivalent to intersecting a straight line with a sigmoid,
which cannot intersect at more than three points.
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FIG. 3. Stable and unstable solutions in equilibrium of Eqs. (7) and (8) under
different parameters. Stable (unstable) fixed points are depicted as black (white)
dots. Stable (unstable) periodic orbits are depicted as solid (dashed) red lines. The
I–V characteristic (solid blue line) and load line (dashed yellow line) are included.
(a) a = 0.6, r = 0.05. m = 1.2, v0 = −1.5. (b) a = 0.6, r = 0.2, m = 1.2,
v0 = 0. (c) a = 0.6, r = 0.1,m = 1, v0 = 0.89. (d) a = 0.6, r = 1.4,m = 0.48,
v0 = 0.

III. SPIKE GENERATION IN THE SIMPLIFIED MODEL

A. Slow–fast dynamics

It is often mentioned in the literature relevant to micro- and
nanoscale RTDs that they exhibit self-sustained oscillations (i.e., a
stable limit cycle) when biased in the NDC region and a steady
response (i.e., stable fixed point) when biased in one of the PDC
regions.1,12,15 In general, the limit cycle is well-rounded and the
dynamics is quite smooth [Figs. 4(a) and 4(c)]. However, if m is
several times smaller than 1, the limit cycle in the simplified model
takes a stiff shape and stages of slow and fast dynamics can be recog-
nized [Figs. 4(b) and 4(d)]. In the stages of slow dynamics, the orbit
remains close to the I–V curve in the PDC regions, until reaching
either the peak or the valley, where the orbit quickly jumps toward
the other PDC region. In this fast stage, the normalized voltage v
suddenly changes in a very short time, with little change in the nor-
malized current y. Thus, every period of the limit cycle has two slow
stages and two fast stages. A physical interpretation of the slow–fast
dynamics is provided by Ortega et al.3 In the slow stages, y ≈ f(v), all
the incident electrons cross the DBQW and none are accumulated
in its ends (represented by the intrinsic capacitance C, see Fig. 1). In
the upper fast stage, v suddenly raises and the DBQW charges. In the
lower fast stage, v suddenly drops and the DBQW discharges.

How small the stiffness coefficient really needs to be for the
system to exhibit slow–fast dynamics is actually subjected to the
parameter a in the simplified model and to the specific shape of the

FIG. 4. Stable limit cycle on the phase space (solid red line) for a = 0.6,
r = 0.1, v0 = −0.5, and two different values ofm: (a)m = 0.4 and (b)m = 0.1.
The current–voltage characteristic (solid blue line) and load line (dashed yellow
line) are included. (c) and (d) Evolution over time of the output variables v and y
corresponding to the limit cycles in (a) and (b), respectively. The system exhibits
stages of slow and fast dynamics when m is sufficiently small.

I–V curve in more realistic models and experiments. For a = 0.6,
slow–fast dynamics is present for m under 0.1. However, if a = 0.3
(a rather sharp curve), m has to be reduced down to 0.05. In that
sense, it is accurate to say that a also influences the stiffness of the
dynamics.

B. Excitable response

Figure 4(d) shows that as a result of the slow–fast dynamics,
an RTD biased in the NDC region produces spikes periodically (i.e.,
self-oscillations with a spike-like profile). It has been discussed in
previous works1,3,12 that an RTD can be configured to produce spikes
in arbitrary fashion by setting the bias in the proximity to the NDC
region and perturbing the circuit. If the perturbation is sufficiently
strong, above a certain threshold, the system responds with a sin-
gle spike (i.e., a single orbit, a precursor of the stable limit cycle)
and returns to the stable fixed point equilibrium proper of a PDC-
biased RTD. If the perturbation is weak, the system quickly returns
to the fixed point and no spike is elicited. This property to respond
only to suprathreshold perturbations is known as excitability and
was first observed in neurological systems.4,10,11 For the duration of
the excitable response, known as refractory time, any additional per-
turbation—weak or strong—will not elicit a second response from
the system.

Figure 5 shows that the simplified model, Eqs. (7) and (8), is
able to reproduce the excitable behavior observed in RTDs. Here,
the system is biased at the left side of the NDC region, close to
the peak of the NDC region, and perturbed with a square voltage
pulse, i.e., the input bias v0 is changed for a brief time 1τ = 2.
For this configuration, in particular, the threshold value to trigger
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FIG. 5. (a) Square voltage pulses used to perturb the simplified model with
parameters a = 0.6, r = 0.1, m = 0.1, and v0 = −1.25. (b) Current responses
to the perturbations over time. (c) Responses to the perturbations on the phase
plane. Responses to suprathreshold perturbations exhibit stages of slow and
fast dynamics. Suprathreshold (Subthreshold) perturbations and their responses
are plotted in red (green). The insets zoom over the responses to sub-threshold
perturbations.

the excitable response is 1v0 = 0.2. If the amplitude of the square
pulse is above 1v0, a single down-stroke spike is elicited. Otherwise,
the system quickly decays into the fixed point. It can be inferred
from the anti-symmetry of the current–voltage characteristic curve
that an excitable response in the form of an up-stroke spike can be
achieved by biasing the RTD at the right side of the valley and inject-
ing a negative square voltage pulse. More importantly, excitability
in the simple model is a robust phenomenon in the sense that the
model behaves as an excitable spike generator provided that it is
biased close to the NDC region regardless of the other parameters
or the shape of the I–V characteristic.

IV. BIFURCATION ANALYSIS

A. Bifurcation diagrams

The fixed point equilibrium solution to Eqs. (7) and (8) is given
by the intersection between the RTD I–V characteristic

[

y = f(v)
]

and the load line
(

v0 − v − ry = 0
)

. This leads to the equation
v0 − v − rf(v) = 0, for which there is no analytical solution given
our choice of the function f(v). However, it is possible to derive
a parametric form for the fixed point branch by computing the

coordinate v and the input bias v0 as functions of the coordinate v,

v0 = v + rf(v), (12)

y = f(v). (13)

Equations (12) and (13) can be used to trace a bifurcation dia-
gram in terms of v0 (see Fig. 6). Note that the shape of the branch
is not affected by the stiffness coefficient m; its stability, however, is.
The Jacobian matrix associated to Eqs. (7) and (8) reads

J =
[

− 1
m

f ′(v) 1
m

−m −mr

]

.

The eigenvalues of J are given by

λ± =
1

2

(

tr(J) ±
√

tr(J)2 − det(J)

)

, (14)

where the trace and determinant of J are in turn given by tr(J)
= −

(

1
m

f ′(v) + mr
)

and det(J) = rf ′(v) + 1. A fixed point (v, y) is
stable if and only if both eigenvalues are either negative or complex
conjugates with a negative real part. Andronov–Hopf (or simply,
Hopf) bifurcations have been reported in previous studies on RTD
models,2,3 and they are also observed in this one (see Fig. 6). A
Hopf bifurcation takes place when λ± are complex conjugates and
their real part shifts sign,4,24 i.e., tr(J) = 0 and det(J) > 0. The first
condition is satisfied when v = ±vAH, where vAH is given by

vAH =

√

hw

m2r + k
− w2. (15)

It is inferred from Eq. (12) that two Hopf bifurcations occur
at the input bias values v0 = ±vAH + rf(±vAH). This is possible only
if vAH is real, i.e., m2r < h

w
− k = 1. Note that both ±vAH are nec-

essarily in the NDC region, since f ′(±vAH) = −m2r < 0. On the
other hand, the second condition (evaluated at v = ±vAH) is satisfied
when mr < 1.

Note that if r � 1, the rf(v) term in Eq. (12) becomes negligible
and the fixed point branch resembles the N-shaped I–V curve [see
Fig. 6(a)]. As r increases, the branch adopts a more “italicized” shape
[Fig. 6(b)]. However, if r > 1, the branch becomes a non-uniquely
evaluated curve, as it folds back and forth into two saddle-node
bifurcations [thus becoming Z-shaped, as seen in Fig. 6(c)]. It is
geometrically intuitive that the saddle-node fixed point bifurca-
tion occurs when dy/dv0 diverges, i.e., dv0/dv = 1 + rf ′(v) = 0. The
solutions to the latter equation are v = ±vSN, where vSN is given by

vSN =

√

rhw

1 + rk
− w2, (16)

and we infer from Eq. (12) that the two saddle-node folds take place
at v0 = ±vSN + rf(±vSN). The latter is possible only if vSN is real, i.e.,
r > w

h−kw
= 1. This is consistent with the results presented by Ortega

et al.,3 where sadddle-node bifurcations arise only if the circuit’s
resistance is larger than the critical resistance.

The limit cycle branches shown in Fig. 6 have been numerically
computed using MATLAB DDE-BifTool. From each Hopf bifurca-
tion, a limit cycle branch emerges. The limit cycle may be stable
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FIG. 6. Bifurcation diagrams over the input bias voltage v0 for different values of a, r , andm. Solid (dashed) blue line: y-coordinate of the stable (unstable) fixed point. Solid
(dashed) red line: y-extreme values of the stable (unstable) limit cycle. Solid (blank) yellow dots: y-extreme values of the small (big) homoclinic curves. AH, Andronov–Hopf
bifurcations; SN, saddle-node bifurcations; F, limit cycle folds. Insets zoom over the right AH bifurcation. (a) a = 0.9, r = 0.1,m = 0.2; (b) a = 0.9, r = 0.5,m = 0.2;
(c) a = 0.9, r = 1.23,m = 0.6. (d)–(f) Period of the limit cycles shown in (a)–(c). Right side boxes zoom over the right AH bifurcation.

or unstable depending on whether the Hopf bifurcation is super-
critical or subcritical.4,24 The nature of the Hopf bifurcation can be
determined by a formula derived after a normal form analysis,20,25,26

� =
rf ′′(vAH)2

1 − (mr)2
− f ′′′(vAH). (17)

If � is negative (positive), the Hopf bifurcation is supercriti-
cal (subcritical) and the limit cycle is stable (unstable). The case of
our interest is when RTD can behave as an excitable spike generator,
i.e., m is very small. In that case, � ≈ rf ′′(vAH)2 − f ′′′(vAH). It turns
out that f ′′′(vAH) = 2w(4kw − 3h) = 8

3
wh
(

a − 3
4

)

[see Eq. (11)]. If

a > 3
4
, then f ′′′(vAH) > 0 and � may be positive or negative depend-

ing on r. For r sufficiently small, � < 0, the Hopf bifurcations are
supercritical and the limit cycle is always stable. Such is the case
in Fig. 6(a). As r increases however, � becomes positive. The Hopf
bifurcations are now subcritical and unstable limit cycle branches
emerge from each one. These branches then fold (becoming sta-
ble) and connect, as shown in Fig. 6(b). As a consequence, there are
ranges of v0 where the system is bistable, as a stable fixed point and a
stable limit cycle coexist [see Fig. 3(c)]. If m is small, these ranges are
very narrow (order 10−3 or less) because the size of the limit cycle
emerging from each Hopf point increases explosively with v0 (thus
being canard solutions27). On the other hand, if a < 3

4
, then � > 0

and the system exhibits ranges of bistability regardless of r.
As a consequence of the fixed point branch becoming Z-

shaped, the system may exhibit homoclinic bifurcations,4 as illus-
trated in Fig. 6(c). The corresponding homoclinic solutions are
shown in Fig. 7. As the limit cycle emerging from each Hopf point
increases in size, it may encounter the middle fixed point, which

is a saddle with one attractive and one repulsive eigendirection.
The limit cycle connects with these eigendirections and becomes
a homoclinic curve that surrounds either the upper or the lower
fixed point [Figs. 7(b) and 7(c), respectively]. This type of solu-
tion is known as “small” homoclinic curve.4 Likewise, the unstable
limit cycle coming from each fold may also coalesce with the mid-
dle saddle point and become a homoclinic curve. This coalescence
is not visible in Fig. 6(c) because it occurs from the side of the sad-
dle point rather than from above or below, but it can be appreciated
in Figs. 7(a) and 7(d). These are known as “big” homoclinic curves
because they surround the three fixed points.4 Note that the homo-
clinic bifurcations result in discontinuities in the unstable limit cycle
branches.

Figure 6(d)–6(f) show the period of the limit cycles depicted in
Figs. 6(a)–6(c), respectively. As a limit cycle emerges from each Hopf
bifurcation, its period increases explosively (regardless of whether
the Hopf bifurcations are super or subcritical), reaches a peak value,
and then decreases. Thus, the period exhibits a concave basin with a
local minimum at v0 = 0. It makes sense that the limit cycle period is
a symmetrical curve of v0 given the anti-symmetry of f(v). The peak
values of the limit cycle are not at the fold points (in case there is
any) but slightly inward.

B. Bifurcation branches on the space of parameters

In this section, the evolution of the bifurcation branches is
tracked in terms of the system parameters (a, m, r, v0). In order
to simplify this study, only the m < 1 case is considered, as our
interest lays on the slow–fast dynamics and excitable response. In
Sec. IV A, the input bias values for which the Hopf bifurcations and
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FIG. 7. Homoclinic solutions to Eqs. (7) and (8) (brown lines) for a = 0.9,
r = 1.23, andm = 0.6 and different values of v0. Stable (unstable) fixed
points are depicted as black (white) dots. Stable periodic orbits and null-
clines are included as light-shaded lines. (a) v0 = −0.049 (“big” homoclinic);
(b) v0 = −0.04 (“small” homoclinic); (c) v0 = 0.04 (“small” homoclinic);
(d) v0 = 0.049 (“big” homoclinic).

saddle-node bifurcations take place were computed,

vAH
0 = ±

(

vAH + rf(vAH)
)

, (18)

vSN
0 = ±

(

vSN + rf(vSN)
)

, (19)

where vAH and vSN are given by Eqs. (15) and (16), respectively. This
allows to compute the Hopf and saddle-node branches in the plane
of parameters defined by v0 and r, as illustrated in Fig. 8. In panel
(a), the remaining parameters are fixed at a = 0.3 and m = 0.2. Both
bifurcations have actually two branches each with opposite v0 values
(the “±” acts as a common factor since in this simplified model, f(v)
is perfectly anti-symmetric). As r increases, the fixed point branch
takes a more “italicized” N-shape and the Hopf points become
closer. At r = rC = 1, the fixed point branch becomes Z-shaped
[see Fig. 6(c)] and the two saddle-nodes emerge from a cusp.4 The
saddle-nodes become more distant from one another with increas-
ing r. Now that the fixed point branch is not uniquely evaluated,
the Hopf points may switch sides. For a = 0.3 and m = 0.2, this
occurs at about r = 1.8 [Fig. 8(a), lower-left panel]. As r further
increases, the saddle-nodes approach the Hopf points and they coa-
lesce at r = 1

µ
= 5 in a Bogdanov–Takens bifurcation.4 Here, the

Hopf branches vanish, as discussed in Sec. IV A.
The Hopf branches delimit the regions where the fixed point is

stable or unstable (see Fig. 8). As the fixed point-branch becomes
Z-shaped and the Hopf points switch sides, a new region arises
in the space of parameters where the system exhibits two stable
fixed points in coexistence. This region is first delimited by the

FIG. 8. (a) Bifurcation branches and stable solutions on the (v0, r) plane for a = 0.3 andm = 0.2. The lower panels zoom over the triple stability region (double FP + LC).
(b) and (c) Bifurcation branches and stable solutions on the (v0, r) plane for (b) a = 0.6,m = 0.3 and (c) a = 0.9,m = 0.4.
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Hopf branches. Above the Bogdanov–Takens bifurcations, there is
no Hopf points and the region is delimited by the saddle-nodes.
In order to understand this, it is worth computing the eigenval-
ues at the saddle-nodes. It was explained in Sec. IV A that at the
saddle-nodes, det(J) = 1 + rf ′(v) = 0. Substitution in Eq. (14) leads
to λ1 = 0 and λ2 = tr(J) = − 1

m
f ′(v) − mr = 1

mr
− mr. The second

eigenvalue is positive only if r < 1
m

. This means that for r < 1
m

, each
saddle-node gives rise to an unstable node and a saddle (also unsta-
ble), with the former eventually transitioning into an unstable focus
and then into a stable focus later at the respective Hopf point [see
Fig. 6(c)]. On the other hand, for r > 1

m
, each saddle-node gives rise

to a stable node and a saddle.
The limit cycle fold branches were numerically computed with

MATLAB DDE-BifTool. When a = 0.3 and m = 0.2 [Fig. 8(a)],
these branches remain close to each Hopf bifurcation at a dis-
tance mostly unchanged by r. As r increases, the folds become
closer, and at about r = 2.07, they connect [Fig. 8(a), lower-right
panel]. The limit cycle folds delimit the region where the system
exhibits a stable limit cycle, and, together with the Hopf branches,
they delimit the regions where the limit cycle coexists with a stable
fixed point, i.e., the system is bistable. These two ranges of bista-
bility intersect right under the peak of the limit cycle fold branches
[Fig. 8(a), left panel]. In this intersection, the stable limit cycle coex-
ists with two stable fixed points, i.e., the system exhibits a triple
stability.

The homoclinic branches have also been computed with MAT-
LAB DDE-BifTtool. These branches emerge close to the intersection
between the saddle-node and Hopf branches at about r = 1.74
[Fig. 8(a), lower-left panel]; one small homoclinic and one big
homoclinic from each side. If m is small, the homoclinic branches
remain close to the limit cycle folds. As r increases, the homoclin-
ics approach the v0-axis. At about r = 2.02, the small homoclinics
switch sides [Fig. 8(a), lower-right panel]. They do not coalesce,
since each homoclinic surrounds a different fixed point. As r further
increases, the small homoclinics approach the Hopf points, and they
coalesce together with the saddle-nodes at the Bogdanov–Takens
bifurcations at r = 1

m
[Fig. 8(a), upper panel]. On the other hand,

the big homoclinic branches fold at r = 2.04 and coalesce in the
same point where the small homoclinics meet at r = 2.02. [Fig. 8(a),
lower-right panel].

Figures 8(b) and 8(c) show the bifurcation branches and stable
solutions on the (v0, r) plane for a = 0.6 and a = 0.9, respectively.
As the dynamics is more stiff, the branches are closer to one another
and the regions of multiple stability are smaller. However, there is
no changes on the qualitative basis, with the exception of the limit
cycle fold at low resistance. If a < 3

4
[Figs. 8(a) and 8(b)], the Hopf

bifurcations are always subcritical; an unstable limit cycle branch
emerges from each, which either folds to become stable or ends
in a (small) homoclinic bifurcation. On the other hand, if a > 3

4

and r is sufficiently small, the Hopf bifurcations are supercritical
and a stable limit cycle branch emerges from each; there is neither
limit cycle fold nor bistability. These arise when the Hopf bifurca-
tions become subcritical (i.e., Bautin bifurcation4) when � = 0 [see
Eq. (17)]. The solution to this equation is numerically estimated at
r = 0.357 ± 0.001, in agreement with our results.

V. BISTABILITY RANGE

As explained in Sec. IV B, the limit cycle fold and the sub-
critical Hopf bifurcation at each side of the NDC region delimit a
range on the v0-axis where the stable limit cycle and the stable fixed
point solutions coexist. This bistability is unwanted in the context
of spike generation since it may lead to bursting.4 From a didac-
tic point of view, perturbing the circuit with a square voltage pulse
equates to displacing the load line into the NDC region for a brief
moment, which may trigger the stable limit cycle response. If the
system has a sufficiently wide range of bistability, it will follow the
cycle of hysteresis once the perturbation ends, which may have the
system exhibit more than a single orbit of the limit cycle. The sys-
tem may also exhibit stochastic bursting when injected with noise,1–3

generating spikes at unwanted moments.
Figure 9 shows the bias range of bistability, 1v0, for differ-

ent values of a, r, and m. (Note that the ranges at both sides of
the NDC region have the same size given the symmetry of the
space of parameters, see Fig. 8.) We observe that for m under 0.1,
1v0 increases with m at quadratic range, remaining under 0.01 in
most cases [for comparison, remember that the peak and valley of
f(v) are at v = ±1]. It also increases with r and decreases with a
although the influence of these parameters is little compared to that
of m. As m increases above 0.1, 1v0 increases at a less steep rate,

FIG. 9. Numerical estimation of the input bias bistability range as a function ofm for different values of a and r . (a) a = 0.3; (b) a = 0.6; (c) a = 0.9. The dashed line marks
the quadratic rate. Note that in (c) the system does not exhibit bistability only for r ≤ 0.1. The outlayers in (a) and (b) are attributed to numerical imprecision.
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reaches a maximum, and decreases. The size and position of max-
imum 1v0 are both higher at higher r. Although not shown in the
figure, 1v0 is expected to become zero at a large, yet finite m, pro-
vided that r ≤ 1. This has been observed by Ortega et al.3 and it
is also predicted by Eq. (17). From the discussion in Sec. IV A,
we infer that the maximal value of m for which there is any Hopf
bifurcation is m = 1√

r
. Since 1

m
f ′(v) + mr = 0 at the Hopf point,

we know that f ′(vAH) = −m2r = −1, the minimal negative differ-
ential conductance. Therefore, f ′′(vAH) = 0 and f ′′′(vAH) > 0. Thus,
as m approaches 1√

r
, the first term in � approaches zero while the

second term remains negative [see Eq. (17)]. Finally, � becomes
negative, the Hopf bifurcations become supercritical and there is no
bistability.

As discussed in Sec. IV A, if a < 3
4

and m is small, the sys-
tem exhibits bistability regardless of r. This is in agreement with
Figs. 9(a) and 9(b). However, if a > 3

4
, the system exhibits bistability

only for a sufficiently large resistance. Such is the case in Fig. 9(c),
where a = 0.9, as there is a non-zero bias range only if r = 1. This
is also in agreement with Eq. (17). Indeed, numerical computations
show that for a = 0.9 and r = 0.1, 0.01, and 0.001, the coefficient �

is negative regardless of m.
It is worth comparing the results in this section with those

presented by Carmona et al.,? where a 2D slow–fast model is stud-
ied. The nullclines are a piecewise linear N-shaped function and a
vertical load line. This model can be interpreted as accounting for
the dynamics of a zero-resistance RTD connected to DC voltage.
In Carmona’s work,? it is found that 1v0 = αm + βm3/2 + O(m2).
This seems to contradict the quadratic rate relation reported here,
although the N-shape curves used in both models are ultimately
different in nature. Our choice of the N-shaped curve resembles a
piecewise linear function for small values of a (under 0.1). It would
be interesting to compute 1m0 for small values of a, m, and r to
establish a proper comparison between the models.

VI. LIMIT CYCLE PERIOD AND REFRACTORY TIME

A. Limit cycle period

A relatively simple expression for the period of the stable
limit cycle can be provided when m � 1. To this end, an adia-
batic approximation is applied, as illustrated in Fig. 10(a). During
the first slow stage, the orbit remains over the I–V curve in the
first PDC region. Upon arrival to the I–V curve peak at v = −vM

= −1, the orbit instantaneously and horizontally jumps to the sec-
ond PDC region, at v = vA, where f(vA) = f(−vM) = yA. Here, the
second slow stage takes place, and the orbit travels along the cur-
rent–voltage characteristic until reaching the valley at v = vM = 1.
From here, there is another instantaneous, horizontal jump toward
the first PDC region at v = −vA, given by f(−vA) = f(vM) = −yA.
Although vA cannot be computed analytically under our choice
of f(v), defined in Eq. (9), an approximation formula can be pro-
vided. In Fig. 10(b), numerical estimations of vA for different values
of a are plotted in a log–log scale and fitted against a quadratic
polynomial via least squares regression; ln vA = p

(

ln a
)

, where
p(x) = p0 + p1x + p2x

2 and p0 = 0.6862 ± 0.0003, p1 = −0.6487
± 0.005, and p2 = −0.0133 ± 0.0001. Hence, vA is approximated as

FIG. 10. (a) Schematics of the stable limit cycle under adiabatic approximation
(solid red line). The nullclines are included as light-shaded lines. (b) Numerical
computation of vA as a function of a (orange dots), together with a quadratic fit of
the logarithms (blue line). (c) Relative error of the quadratic fit as a function of a.

ep(ln a). Figure 10(c) illustrates the relative error of the approxima-
tion, which remains under 1% for a > 0.003.

According to the adiabatic approximation, y = f(v) during the
slow stages, when the orbit travels over the I–V curve. Substitution
of the latter in Eq. (8) allows to derive a one-dimensional equation
for v(τ ),

dv

dτ
=

v0 − v − rf(v)

f ′(v)
. (20)

The period of the stable limit cycle is estimated as 1τ = 1τ1

+ 1τ2, where 1τ1 and 1τ2 are the duration of the first and the sec-
ond slow stages, while the time spent at the fast stages is neglected.
Integration of Eq. (20) over the intervals [−vA, −vM] and [vA, vM]
leads to the following expressions for 1τ1 and 1τ2:

1τ1 =
1

m

∫ −vM

−vA

f ′(v)

v0 − v − rf(v)
dv, (21)

1τ2 =
1

m

∫ vM

vA

f ′(v)

v0 − v − rf(v)
dv. (22)

Thus, 1τ is inversely proportional to m. Numerical estima-
tions of the limit cycle period reported by Ortega et al.3 are in
agreement with this. Remember that 1τ is the period in nor-
malized units (see Sec. II B). Therefore, we expect the limit cycle
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period in real time units to be directly proportional to the cir-
cuit’s intrinsic inductance, L. This has been discussed by Romeira
et al.1 as well. For the piecewise linear model studied by Carmona
et al.,? a more complex expression for the refractory time is derived.
Moreover, the slow–fast parameter and variable normalization are
different from those used here. Nonetheless, it can be demon-
strated after proper variable conversion and Taylor expansion that
1τ ∼

(

1 + O(m2)
)

/m when m is very small.
It is worth discussing the possibility of the integrand becoming

singular [i.e., rf(v) + v + v0 = 0] in Eqs. (21) and (22). This cor-
responds to the intersection of the nullclines at a fixed point. In
principle, the stable limit cycle arises when the fixed point is unsta-
ble. This requires v to be in between ±vAH, which are in the NDC
region, and in between ±vM (see Sec. IV A). In this case, the sin-
gularity is in neither integration domain. It is also possible that the
system is bistable and exhibits a stable limit cycle with a stable fixed
point in one of the PDC regions, close to either ±vM. In this case,
the integrand has a 1

x
-type of singularity and the corresponding inte-

gral is undefined. Nonetheless, the infinite areas under the curve at
each side of the singularity have opposite signs and cancel out. (Like-
wise, the integral of 1

x
between ±1 is undefined, but the total area

under the curve is zero.) In that sense, we say that the integral has
a principal value.28 The last scenario is that the fixed point is exactly
at either ±vM. In this case, the integrand has a 0

0
limit, found via

L’Hôpital’s rule to be f ′′(±vM), the singularity is repaired, and the
integral converges.

Ortega et al. report that the refractory time is mostly unaffected
by the circuit’s resistance.3 Together with the change of variables
v → −v in Eq. (21) and the anti-symmetry of f(v), this leads to

1τ =
1

m

∫ vA

vM

2vf ′(v)

v2 − v2
0

dv. (23)

Finally, substitution of f ′(v), VM, and VA allows to solve the
above integral,

1τ =



























1
m

(

(

k − hw

v2
0+w2

)

ln

∣

∣

∣

∣

e2p(ln a)−v2
0

1−v2
0

∣

∣

∣

∣

+ hw

v2
0+w2 ln

(

e2p(ln a)+w2

1+w2

))

, |v0| 6= 1,

k
m

ln
(

e2p(ln a)+w2

1+w2

)

, |v0| = 1.

(24)

Equation (24) is valid for v0 between the Hopf bifurcation
points (±vAH

0 ) if they are supercritical and between the limit cycle
fold points otherwise. Note that the upper expression in Eq. (24) is
undefined when v2

0 = 1, as the first logarithm has a diverging argu-
ment. However, the factor multiplying this logarithm turns out to
be the differential conductance, f ′(v0), which becomes zero when
v2

0 = 1. Thus, we have a 0 × ln(∞) type of limit. It can be demon-
strated that the limit when v2

0 approaches 1 is, in fact, the lower
expression in Eq. (24). This corresponds to the case discussed above,
where the integrand singularity is at either −1 or +1 and can be
repaired. Hence, the singularity in 1τ is also repaired.

In Fig. 11, numerical and analytical estimations of the stable
limit cycle period are compared for different choices of parameters.
Indeed, the analytical curve reproduces the concavity of the numeri-
cal curve along the v0-axis and its valley at v0 = 0. Both curves are in
good agreement in most of the domains with a relative error of about

FIG. 11. Numerical estimation of the limit cycle period (red line) together with
its analytical estimation (yellow line) as a function of v0 for different values
of a, r , andm. Stable (unstable) solutions correspond to solid (dashed) lines.
(a) a = 0.5, r = 0.1,m = 0.01; (b) a = 0.5, r = 0.1,m = 0.05; (c) a = 0.9,
r = 0.1,m = 0.01; (d) a = 0.9, r = 0.1,m = 0.05.

2% when m = 0.01 and 10% when m = 0.05. However, Eq. (24)
loses validity at the boundaries of the domain, where the numerical
curve reaches a peak and then decays, while the analytical curve con-
tinues to grow. This is even more notorious if the Hopf bifurcations
are supercritical [Figs. 11(c) and 11(d)], since beyond the peaks the
numerical estimation decays rapidly while the limit cycle remains
stable. This loss of validity is expected at the boundaries, where the
canard explosion takes place and the assumptions about slow–fast
dynamics and adiabatic regime that led to Eqs. (21) and (22) are no
longer valid.

B. Refractory time of the excitable response

The refractory time is the duration of the excitable response to
a suprathreshold perturbation. During the refractory time, the sys-
tem does not respond to any other perturbation, weak or strong.
The excitable response is a single orbit, precursor of the stiff, sta-
ble limit cycle, with slow and fast stages, that takes place after a
suprathreshold perturbation that momentarily drives the system
into the region of the space of parameters where the stable periodic
solution arises, beyond either a supercritical Hopf branch or a limit
cycle fold branch. Therefore, the refractory time is expected to be
similar to the limit cycle period close to the boundary of the afore-
mentioned region. We propose Eq. (24) evaluated at |v0| = 1 since
it is a simple expression and close to the borders of the domain,

1τref =
k

m
ln

(

e2p(ln a) + w2

1 + w2

)

. (25)
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FIG. 12. Numerical simulations of Eqs. (26) and (27) for a = 0.6, r = 0.1,
m = 0.05, v0 = 0.95, and different values of η. (a) η = 0.012; (b) η = 0.018;
(c) η = 0.024.

In order to check the validity of Eq. (25), numerical simulations
of Eqs. (7) and (8) are carried out with additive noise,

dv

dτ
=

y − f(v)

m
+ ηξ(τ), (26)

dy

dτ
= µ(v0 − v − ry). (27)

Here, ξ(τ ) is a time-uncorrelated white noise function [i.e.,
〈ξ(τ )〉 = 0 and 〈ξ(τ1)ξ(τ2]〉 = δ(τ2 − τ1)) and η is the noise inten-
sity. For given values of the parameters a, r, and m, the system is

biased at v0 = vonset
0 + δv0, where vonset

0 is the onset of the stable
limit cycle at the right side of the current–voltage characteristic
(either vAH

0 if the Hopf bifurcation is supercritical or the limit cycle
fold point otherwise) and δv0 = 0.005. Under this configuration,
the deterministic system does not exhibit periodic solutions. How-
ever, provided that the fluctuations are sufficiently strong, excitable
spikes are triggered randomly.1–3 The higher the noise intensity, the
more frequently spikes arise, as shown in Fig. 12. This can be used
to estimate the refractory time as the shortest time in between two
consecutive spikes over a simulation. The results are summarized in
Fig. 13. Since the normalized refractory time 1τref is inversely pro-
portional to m, the actual refractory time in physical units is directly
proportional to the circuit’s inductance, L (see Sec. II). Figure 13
also shows that the refractory time decreases with increasing r and
increases with increasing a. Still, m remains as the most influen-
tial parameter. This is consistent with the results reported by Ortega
et al.3 Figure 13 also shows good agreement between numerical and
analytical estimations, with a relative difference under 2% provided
that r < 0.1 and µ < 0.01.

The possibility of chaos arising in the simplified model when
biased close to a Hopf bifurcation or in between them and subjected
to external modulation is an interest direction to conduct research
on in a future study. Romeira et al.2 investigate the effects of mod-
ulated dynamics on an RTD-based circuit, including mixed mode
oscillations (MMOs) and potentially chaos as well as prospective
applications in regenerative memory.

VII. SUMMARY AND CONCLUSIONS

A simple, bivariate mathematical model accounting for a
DBQW-RTD connected to a DC voltage input has been proposed
with the aim to find a proper configuration for the circuit to gener-
ate excitable spikes at arbitrary times. Instead of using Schulman’s
formula to represent the current–voltage characteristic of the RTD,
as in previous works, a simple, N-shaped, origin-centered expres-
sion is chosen, consisting of a linear function minus an arctangent.
Normalization of the variables and time leads to a further simplifica-
tion of the model, now described in terms of four parameters: a, m, r,
and v0. These parameters tune the sharpness of the current–voltage

FIG. 13. Numerical estimation of the normalized refractory time of the excitable response as a function of m for different values of a, r , and η, together with its analyti-
cal estimation (dashed brown line). The insets show the relative difference between numerical and analytical estimations. (a) a = 0.3, η = 0.05; (b) a = 0.6, η = 0.02;
(c) a = 0.9, η = 0.02.
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characteristic, the stiffness of the dynamics (i.e., the rate between
slow and fast time scales), the circuit’s normalized resistance, and
the input bias voltage, respectively. Depending on the parameters,
the system exhibits solutions in equilibrium in the form of fixed
point (i.e., steady response) or limit cycle (i.e., self-oscillations), with
the possibility of coexistence between multiple solutions. The model
is minimal in the sense that it is not possible to further reduce the
number of parameters or variables without losing reproducibility of
the observed phenomena described above.

The model successfully reproduces responses reported in previ-
ous theoretical works that use Schulman’s curve.1–3 A low resistance
circuit exhibits self-oscillations when biased in the negative differen-
tial conductance region (delimited by the peak and valley of the I–V
curve) and a steady response otherwise. As the resistance increases,
the bias range where self-oscillations arise narrows and eventually
vanishes. With the increase in the resistance, the system may also
exhibit up to two stable fixed points coexisting (which may addi-
tionally coexist with the stable limit cycle), since the load line can
intersect the current–voltage characteristic up to three times (the
middle point always being a saddle). Provided that the stiffness coef-
ficient m is sufficiently small, the self-oscillations show stages of
slow and fast dynamics and thus spikes are generated periodically.
If the circuit is biased outside but close to the bias range where
self-oscillations arise and subjected to a suprathreshold perturba-
tion (e.g., a square voltage pulse), it responds with a single orbit,
precursor of the periodic spiking solution and therefore behaves as
an excitable spike generator.

The bias voltage ranges where the circuit responds with a
steady state or self-oscillations may overlap, thus producing ranges
of bistability. From the nonlinear dynamics point of view, this occurs
because the unstable limit cycle branch emerges from the fixed point
at a subcritical Andronov–Hopf bifurcation, then folds and becomes
stable. The criticality of the Hopf bifurcation is ruled by the sharp-
ness of the I–V curve; if a ≤ 0.75 (a relatively sharp I–V curve), there
is always a bistability bias range. If a > 0.75 and the resistance is
sufficiently small, the Hopf bifurcations are supercritical and there
is no bistability. These results are in agreement with previous stud-
ies based on normal form expansion.20,25,26 Bistability represents a
drawback in the context of spike signaling since it may lead the cir-
cuit to respond to a single suprathreshold perturbation with multiple
spikes (i.e., deterministic bursting). However, it is shown that for
small-enough m, the bistability bias range is very narrow.

The choice of a simple N-shaped I–V curve allows to derive
analytical expressions for the period of self-oscillations and the
refractory time of the excitable response in the slow–fast regime.
Both expressions are in good agreement with numerical simula-
tions. In addition, both expressions, when normalized, are found
to be inversely proportional to m. Consequently, the period and
refractory time in actual time units are directly proportional to
the circuit’s inductance, L. This contradicts (or rather, amends) the
notion suggested in prior studies3 that the period and refractory time

are similar to the tank period,
√

CL, where C is the RTD parasitic
capacitance. The dilemma that these results present is that reducing
L reduces the refractory time but may also compromise the slow–fast
regime, since m ∝

√
C/L. To avoid this, C must be chosen to keep

m small. Finally, the resistance has little effect on the refractory

time. Still, it is desirable to have a small resistance to avoid energy
dissipation and coexistence of multiple fixed points.

The results presented in this work may serve as a guideline
for prospective attempts to design and fabricate neuromorphic pro-
cessors for time and power-efficient execution of machine learning
algorithms and neural networks, where nanoscale RTD-based units
would function as individual spiking signaling nodes. Under no
circumstance, the simplified model intends to be a quantitatively
accurate or a physically faithful representation of the dynamics of
RTDs. The N-shaped current–voltage characteristic of an RTD is
typically irregular and with no recognizable symmetry with respect
to the NDC region. Furthermore, it tends to be even rougher for
nanoscale RTDs, where the quantum effects become more perti-
nent, in contrast to the smooth and anti-symmetrical curve used in
this study. All the latter must be considered in eventual attempts
to model neural networks that resort to our simplified model to
represent individual nodes, which may still have theoretical, com-
putational, and applicational interests, especially considering the
reduced number of parameters and lower power consumption.

In regard to biological neurons, the simplified model as pre-
sented here is in principle not suitable for reproducing their dynam-
ics. Biological neurons are more complex systems than RTDs; a
wider variety of phenomena and behaviors have been observed
(such as class-1 excitability and spiking with long latency4) and their
models generally involve more dynamic variables, equations, and
parameters. The Hodgkin–Huxley model4,22 and the Morris–Lecar
model4,21 are well-known examples, where the conductance of the
neuron’s cell membrane is accounted for by one or more time-
dependent variables related to the voltage-gated channels that acti-
vate, deactivate, and/or inactivate depending on the membrane
polarization voltage. In a more recent work by Yang et al.,29 a multi-
compartment conductance-based neuron model is used to imple-
ment an architecture for neural networks. On the other antipode,
minimal models have also been proposed to describe spiking in bio-
logical neurons, such as the integrate-and-fire models.4,30 However,
an approach similar to ours can also be applied to simplify bio-
logical neuron models and provide manageable and qualitatively
reliable descriptions of the phenomena of interest. For instance,
the Morris–Lecar model can be simplified in terms of the number
of parameters and analytical complexity by using a linear-minus-
sigmoid function with few parameters to reproduce the N-shaped
nullcline and a single sigmoid to represent the S-shaped nullcline.
Yang’s architecture29 might also see performance benefits by a simi-
lar simplifying approach. The chosen sigmoid may not necessarily
be the hyperbolic tangent and its choice may be based purely on
analytical manageability.
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