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Abstract: The present paper focuses on the analysis of large data sets from public transport networks,
more specifically, on how to predict urban bus passenger demand. A series of steps are proposed
to ease the understanding of passenger demand. First, given the large number of stops in the bus
network, these are divided into clusters and then different models are fitted for a representative of
each of the clusters. The aim is to compare and combine the predictions associated with traditional
methods, such as exponential smoothing or ARIMA, with machine learning methods, such as support
vector machines or artificial neural networks. Moreover, support vector machine predictions are
improved by incorporating explanatory variables with temporal structure and moving averages.
Finally, through cointegration techniques, the results obtained for the representative of each group
are extrapolated to the rest of the series within the same cluster. A case study in the city of Salamanca
(Spain) is presented to illustrate the problem.
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1. Introduction

Advances in technology have allowed exponential growth in the volume of data that
can be collected, especially in the field of transport. Public transport plays a key role in
ensuring the movement of passengers within the city and between cities. Amongst them,
the bus service is one of the most used means of transport due to its accessibility and low
price. Forecasting methods used to make decisions need to be adjusted to the vast amount
of information available nowadays.

This paper focuses on the modelling of transport data from the urban bus network in
the city of Salamanca (Spain), in order to predict the behaviour of the users to help make
decisions about the reform and management of said public service. First, the different
bus stops are grouped into clusters; then, various prediction models are fitted, and their
predictions are combined. Finally, cointegration techniques are used to study similar
behaviour within each group.

Clustering is an essential tool for analysing big data. Shirkhorshidi et al. [1] reviewed
the trend and progress of clustering algorithms to face the challenges of big data since the
first proposed algorithms. Maharaj et al. [2] provides an overview of time series clustering
and classification methods.

The combination of predictions assumes that the underlying process that explains a
phenomenon cannot be identified by a single model. Each model may capture different as-
pects of the information, which lead to different predictions. Therefore, it may be desirable
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to merge multiple forecasting methods to improve the precision of each prediction. There
are different methods to combine predictions and the choice depends on the characteristics
of the data and the degree of precision resulting from the adjustments [3].

The use of the public bus varies according to many variables of time and space, such
as the day of the week, holidays, seasons, business centres, workplaces, residential areas
and other factors such as weather. A number of methods have been developed in the
literature for this type of analysis, most using clustering approaches [4]. There are two
main approaches when analysing public transport passengers flow. On one hand, the
stops can be grouped according to the temporal-spatial distribution characteristics of the
passengers [5]. On the other hand, groups of passengers with similar boarding times along
the week can be identified [6]. The k-means algorithm and hierarchical cluster analysis
have been the most widely used methods. Wang et al. [7], Kim et al. [8] and Ding et al. [9]
used gradient boosting decision trees. Hierarchical cluster analysis of passenger hourly
entries is used in [10] to study the common characteristics of stations, whilst in [11] this
was done using Tucker’s decomposition.

Among the studies with bus transport data are [12], which uses Holt–Winters mul-
tiplicative models with data from Kerala (India) and [13], which proposed a hierarchical
hybrid model based on different models of time series on the buses in Dalian, China. Comi
and Polimeni [14] presented an approach to forecast travel time based on time series, using
data from automated vehicle monitoring of bus lines sharing lanes with other vehicles
in Rome (Italy) and Lviv (Ukraine). Ye et al. [15] proposed autoregressive models for
forecasting data collected from bus cards.

In [16], ARIMA and artificial neural networks models were used for passenger flow of
transit buses forecasting.

Cointegration techniques allow two series to be fitted at once using the same model
if they share a common stochastic trend. Introduced in Engle and Granger [17], they are
of great use in econometrics to measure relationships between economic variables. In the
literature, works relating economic and environmental indices with the use of transport
can be found, see, for example [18,19].

The main aim of this paper is to analyse the most commonly used time series models
and improve their predictions when applied to transport data, more specifically to data
from the Salamanca bus network and which can be extrapolated to any other city with
similar characteristics, i.e. with no complementary metro network or other type of public
transport network. Furthermore, given the temporal characteristics of the bus data, an
improvement of the support vector machine is incorporated, using explanatory variables
with temporal structure and moving averages to improve predictions.

The paper is organised as follows: Section 2 presents the data and the situation of
the buses in Salamanca, in Section 3 the applied methodology is introduced: clustering,
models and combinations of their predictions and cointegration techniques. In Section 4,
the results from applying the steps proposed to the data from Salamanca are presented.
Furthermore, in this section, it can be seen how the modification of the SVM method results
in the predictions with the smallest errors. Using a representative and the cointegration
techniques, instead of having to work with each series individually, saves computational
time. Finally, Section 5 discusses the main conclusions and further lines of investigation.

2. Study Area

The city of Salamanca is located in western Spain and is the capital of the province
of Salamanca in the autonomous community of Castile and León. It is close to the border
with Portugal and just a couple of hours from the capital of Spain, Madrid. The province of
Salamanca has 362 municipalities, 17 of which are less than 10 km from the city and about
30 are between 10 and 20 km, which make these municipalities dormitory populations
for people who work in the city, who usually leave their vehicles on the outskirts and use
urban transport to get around. The city has approximately 150,000 registered inhabitants
and the main industries (apart from the university) are the service sector and agriculture.
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Salamanca is known for being a university city. More than 30,000 people, which represents
almost 20% of the population, are students and a large part of the inhabitants are directly
or indirectly related to the university. Today, in addition to being a famous university city,
Salamanca is a city that holds numerous international congresses and important cultural
events. It is a UNESCO World Heritage City and, in 2002, it was named the European
Capital of Culture. Furthermore, it is a popular destination for foreigners who want to
learn Spanish.

In recent years, with the rapid development of intelligent transportation, the number
of passengers taking a bus can be obtained through onboard instruments. This way, the
number of boardings taken place at a bus stop at a certain hour can be obtained by adding
up the entries at each bus. The data here studied consists of records for 272 bus stops where
the hourly number of passengers is recorded. This paper focuses on the data from two
consecutive weeks in May 2019, where the working hours of the different bus lines are
from 7 a.m. to 11 p.m. Therefore, there are 17 daily entries for 14 days. A prior analysis
of the data was performed, eliminating the stops whose average of passengers in the two
weeks was less than 1, mainly corresponding to the last stops of the different lines in
each direction.

Descriptive Data Analysis

The data provided by the transport company are the number of passengers at each
of the different bus stops. When studying the daily total number of boardings, a great
difference can be appreciated in those stops which are in the city centre (for example, Stop
4, where 6 out of the 13 bus lines pass through and can reach about 1600 passengers per
day) and those in the areas surrounding the city, that are usually the last stops of the lines,
and have barely any boardings.

Figure 1 shows the aggregated passenger count for each day of the week. A similar
pattern can be observed in both weeks, as well as the (dis)similarities between and within
weekdays and weekends. Figure 2 shows the boarding throughout the day for each day of
the week for each week. It can be observed that both weeks have the same pattern, peak
hours coincide every weekday (8 a.m. and 2 p.m.) and differ from Saturdays and Sundays,
which are similar to each other.

Figure 1. Series for the 14 days, 17 h by day.
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Figure 2. Time-varying diagram of passenger flow by weeks.

In Figure 3, the daily boxplots, where the differences in passengers between weekdays
and weekends are appreciated, are shown. This decrease in the number of passengers is
what causes the frequency of buses to be lower on weekends. Asymmetry can be observed
on Thursdays and Fridays, which is caused by the university nature of the city of Salamanca,
since many schools do not have classes on Fridays, causing a weekend eve effect on both
days. In addition, many companies on Fridays work intensive hours only in the morning,
which also affects the use of the bus.

Figure 3. Passenger flow boxplots by day.

3. Methodology

Clustering is an unsupervised learning task that aims to divide a data set into homo-
geneous groups or clusters. The partition is done in such a way that the elements in the
same group are more similar to each other than the elements in different groups according
to some defined criterion, which marks the measure of similarity.

Clustering techniques are divided according to whether the number of partitions to
be created is known in advance (partition clustering) or if the number of clusters is not
known, but observations are grouped according to their similarity to a structure hierarchical
(hierarchical clustering). Moreover, clustering methods require a metric that defines the dis-
tance, either similarity or dissimilarity, between the observations. Selecting an appropriate
distance measure is a key aspect of the clustering process. In the specific context of time
series data, the concept of dissimilarity is particularly complex due to the dynamic nature
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of the series. Differences that are generally considered in the conventional grouping cannot
work well with time-dependent data because they ignore the interdependence relationship
between values.

The first important question is to decide whether grouping should be governed
by a ‘form-based’ or a ‘structure-based’ concept of dissimilarity [20,21]. In the context
of time series, establishing what makes two objects to be considered ‘similar’, i.e., that
should belong in the same cluster, is particularly complex due to the dynamic character of
the series. Dissimilarities usually considered in conventional clustering could not work
adequately with time-dependent data because they ignore the interdependence relationship
between values. Several authors have considered distance measures based on the estimated
autocorrelation functions (see e.g., [22–24]).

Amongst the different clustering techniques, the hierarchical cluster is performed. To
select the optimal number of clusters k, different methods are compared. A simple and
popular solution consists of inspecting the dendrogram produced to see if it suggests a
particular number of clusters. However, this approach is very subjective. Fortunately,
there are several indices and methods that have been published for identifying the optimal
number of clusters. This method is well summarised in Charrad et al. [25]. In this study, the
elbow method, which looks at the total within-cluster sum of square (WSS) as a function of
the number of clusters, is also looked at.

Once the different clusters are defined, a representative is chosen for each of the
clusters randomly among those stops with the largest number of boardings (therefore, the
most used stops) and different models are fitted:

• Holt–Winters seasonal exponential smoothing. Holt [26] and Winters [27] extended Holt’s
method to capture seasonality. The Holt–Winters seasonal method comprises the
forecast equation and three smoothing equations and is used for forecasting time series
data that exhibits both a trend and a seasonal variation. The unknown parameters are
determined by minimising the squared prediction error. More details can be found,
for example, in [28–30].

• The Arima model or Box–Jenkins method. Introduced by Box et al. [31], this method
focuses on the autocorrelation between the observations, describing each value as
a linear function of previous data and errors due to chance, being able to include
a cyclical or seasonal component. The acronym ARIMA stands for auto-regressive
integrated moving average and its a generalisation of an auto-regressive moving
average (ARMA) model.

• The K-nearest Neighbours (KNN) method. KNN is a very popular algorithm used in
classification and regression. This algorithm stores a collection of examples. Each
example consists of a vector of features that describe the example and, in our case, its
numeric value (for prediction). Given a new example, KNN finds its k most similar
examples, called nearest neighbours, according to a distance metric and predicts its
value as an aggregation of the target values associated with its nearest neighbours.
The multiple input multiple output (MIMO) strategy to forecast multiple steps ahead,
commonly applied with KNN, with k = 2, is used.

• Autoregressive neural networks (ARNN). This method is based on a combination of the
multilayer perceptron method with an autoregressive linear model. For time series
data the lagged (autoregressive) values of the time series are used as inputs to a neural
network. The objective is then to determine how many lags to include in the input
layer and how many neurons to include in the hidden layer to produce a forecast that
minimises the error. The ARNN is trained to make use of the R Package developed by
Velásquez et al. [32].

• Support vector machines (SVM) are a type of neural network that can be used for predic-
tion in time series. Parameter estimation is done by minimising a risk function where
the empirical error between the model and the data and a regularisation component
that depends only on the weights is measured. In this work, a modification of the SVM
procedure is presented, in which explanatory variables are incorporated to contribute
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to the accuracy of both the fit and the prediction. Without this modification, the SVM
model does not capture the temporal dynamics of the data (hours, days, weeks, ....).
First, variables to represent the hour and the day of the week are constructed by
means of indicator variables (dummies). In addition, autoregressive variables and
lags smoothed by means of a moving average are included to capture the dynamics of
the series more accurately.

• Exponential smoothing state space model with Box–Cox transformation, ARMA errors, trend
and seasonal components (TBATS). TBATS is an acronym for key features of the model:
T: trigonometric seasonality; B: Box–Cox transformation; A: ARIMA errors; T: trend; S:
seasonal components. The main aim of this model is to forecast time series with com-
plex seasonal patterns using exponential smoothing. The trigonometric seasonality
expression can significantly reduce model parameters at high seasonality frequen-
cies and at the same time offer the model plasticity to compromise with complex
seasonality [33].

Once the models have been fitted by the different methods described above, to choose
the most accurate one, the estimation errors (difference between the observed value yi
and the predicted value ŷi) are analysed through the following measurements of precision,
mean squared error (MSE) and mean absolute error (MAE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 MAE =

1
n

n

∑
i=1
|yi − ŷi|

To assess the stability of the model over time and its forecast accuracy, a rolling-
window analysis of the models is done. For this, first, a rolling window size, m, is chosen,
i.e., the number of consecutive observations per rolling window. In this case, we are
working with hourly boardings, with 17 h a day, for 2 weeks: 238 data points. A window
of 5 days (85 h), is chosen. Then, the forecast horizon, h, is set to be 1 day (17 h). The
number of increments between successive rolling windows is also chosen to be 1 day. Then,
for each rolling window sub-sample, the model is fitted over the m historical data and
the h-step-ahead forecast is done. Finally, the forecast errors, MSE and MAE, for all the
predictions through the different moving windows are calculated. The MAEs and MSEs
among the models are compared and the model with the lowest set of errors has the best
predictive performance.

Once the best prediction models have been chosen, the combination of predictions will
be used for the final model, combining the different forecasts obtained from each model
into one, providing the information collected by each of the models individually to the
combined model [34]. There are many different ways to perform the combination of models,
such as the arithmetic mean of the predictions obtained by the individual methods, the
weighted average based on variances where the weights are obtained based on the error
variance of the predictions [35] or a weighted mean based on regression where the weights
are obtained by a regression model, for which there is a method that was first proposed by
Granger and Ramanathan [36], amongst others.

After the predictions for the representatives have been made, if the series within each
cluster are cointegrated, the results obtained for the representatives can be used to adjust
and predict the behaviour of the rest of the cluster stops by cointegration. Two series are
said to be cointegrated if they move together in time and the differences between them
are stable. The cointegration tests of Johansen [37] and Johansen et al. [38] allow to test
the cointegration between series. In this work, the trace test will be used. To estimate
the cointegration relationship, linear regression is adjusted for the cointegrated series,
evaluating the stationarity of the residuals. In this way, the settings for all stops can be
obtained using the information provided by the representative, without having to adjust
the models to each of the series.
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4. Results

The results shown below have been obtained using R [39], EViews 10 [40] and IBM
SPSS 26 [41].

4.1. Clustering Analysis

First of all, the series are standardised. Centring is done by subtracting the series
means and then scaling is done by dividing the (centred) series by their standard deviations.

To calculate the clusters, autocorrelation-based dissimilarity is used. This performs
the weighted Euclidean distance between the simple autocorrelation coefficients. The total
within-cluster sum of square as a function of the number of clusters is shown in Figure 4,
pointing to 2 clusters as the optimal solution. The periodogram-based distance was also
explored, pointing to the same results while being much more computationally expensive.
The dendrogram in Figure 5 shows that two clustering solutions are possible. The four-
cluster solution is chosen as it provides a more detailed segmentation of the stations. A
representative of each of the clusters is chosen, based on those that present larger variability
in the number of passengers. It should be noted that the stops are grouped according to
time and location, with the different lines that operate through them not being particularly
relevant. The different lines of the bus network start from the peripheral areas and cross
the city through the centre. The most important aspect of the network, for this study, is the
number of passengers per stop, so as to perform the appropriate modifications.

There are 27 stops in Cluster 1. Its representative is Stop 2, a stop located in a peripheral
area, through which 3 lines pass. In this cluster, there are mainly stops in peripheral
neighbourhoods, where the peaks of boardings correspond to the start times of school, first
thing in the morning. Few lines pass through these stops (1 or 2 maximum). Compared
with the series from the rest of the clusters, they are stops with fewer passengers. In cluster
2, there are 79 stops. Its representative, Stop 33, is a stop that borders the pedestrianised old
town of the city and 6 lines pass through it. These are stops whose main use corresponds
to leaving work and schools to return to the suburban residential neighbourhoods. For
Cluster 3, with 44 stops, the representative is Stop 6. In this group, there are stops that
are on large avenues. These are stops through which more than two lines operate, and
they may serve as transfer stops on the way back home. Weekends, on the other hand,
have little movement compared to weekdays. The 93 stops in Cluster 4 are represented by
Stop 309, a stop located in a non-central area. These are stops farther from the historical
centre, without becoming peripheral neighbourhoods. The largest number of passengers is
concentrated mainly in the first hours of the day. More than two lines pass through most of
the stops.
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Figure 4. Graphical representation of elbow method to determine the optimal number of clusters,
using the ACF distance.
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Figure 5. Hierarchical clustering with ACF distance dendrogram.

Figure 6 shows the four representatives chosen. Although some patterns may seem
similar, the differences in the y axes must also be taken into account. Clusters 2 and 3
representatives, for example, have far more boardings than the other two.

Figure 6. Representatives for each cluster.

4.2. Forecasting Ridership Patterns

Figure 7 shows the MAEs for the different models in each cluster’s representative.
The overall MAEs are shown in Table 1. SVM and TBATS are always best. In particular,
SVM, which has the explanatory variables previously described, is always the one with
the smallest MAE. The third best is between ARIMA and Holt–Winters (H-W), the more
traditional methods.
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Table 1. Overall MAE and MSE for each model in each cluster.

ARIMA H–W KNN ARNN SVM TBATS

CLUSTER 1 MAE 7.77 5.73 7.83 8.51 4.85 5.34
MSE 98.90 62.18 100.30 117.22 42.68 49.23

CLUSTER 2 MAE 32.02 35.34 39.39 42.54 17.21 25.02
MSE 2047.28 2325.61 3303.37 3365.08 475.58 1190.70

CLUSTER 3 MAE 14.46 15 18.68 24.18 9.72 13.58
MSE 882.53 1019.44 1213.24 1749.24 167.32 598.37

CLUSTER 4 MAE 9.29 8.71 11.46 14.11 5.81 8.57
MSE 267.34 240.89 364.13 424.30 50.99 182.10
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Figure 7. Boxplot MAE cluster.

4.2.1. Predictions and Combinations by Cluster

Once the three best models are chosen, the combination of predictions is carried out
using the arithmetic mean (AM), the Bates and Granger weighted mean (B&G) and the
weighted mean based on constrained least squared (CLS) regression. For the latter, the
variant of the method implemented adds the restriction that combination weights must be
non-negative and is combined with the condition of forcing the weights to sum up to one.
To illustrate the combinations, a week is chosen from Friday to Thursday and the following
Friday is predicted.

Cluster 1

Figure 8 shows the forecasts from each model and the real values for Stop 2, the
representative of Cluster 1. The predictions are shown together with the real number of
boardings, as well as the last three previous days. It should be noted that in this cluster,
the number of boardings is significantly smaller than in other clusters. While Stop 33,
for example, reaches a maximum of almost 200 passengers, in Stop 2 the maximum does
not reach 50. The MAEs and MSEs are shown in Table 2, together with the errors for the
combination of the best three models. For Cluster 1, the best three models are SVM, TBATS



Mathematics 2022, 10, 2670 10 of 16

and Holt–Winters. The best combination, in this case, is the Bates and Granger weighted
mean (B&G). Figure 9 shows the real data, the best model and the best combination.

Table 2. MAEs and MSEs for each model in Cluster 1 for one-week historical and one-day predictions
and for the different combinations of the best three models.

Models ARIMA H-W KNN ARNN SVM TBATS

MAE 5.47 4.12 6.29 10.88 3.33 4.41
MSE 57.24 38.59 70.65 206.29 22.80 41.47

Best 3 Comb. AM B&G CLS

MAE 3.33 3.13 3.33
MSE 30.40 28.20 22.80
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Figure 8. Cluster 1: two last days of historical data plus one-day predictions and real values (left).
On the (right), a close-up of the predictions and real values is shown.
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Figure 9. Cluster 1 best 3 models (left) and final combined predictions (right).

Cluster 2

For the representative in Cluster 2 (Stop 33), the forecasts from each model are shown
in Figure 10. The predictions are shown together with the real number of boardings, as
well as the last three previous days. The MAEs and MSEs are shown in Table 3, together
with the errors for the combination of the best three models. In this case, it can be seen that
the best models are SVM and TBATS, as they are in every cluster, and the third best model
is ARIMA. Therefore, these are the three models combined.
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Figure 10. Cluster 2: three last days of historical data plus one-day predictions and real values (left).
On the (right), a close-up of the predictions and real values is shown.

Table 3. MAEs and MSEs for each model in Cluster 2 for one-week historical and one-day predictions
and for the different combinations of the best three models.

Models ARIMA H-W KNN ARNN SVM TBATS

MAE 11.24 26.12 12.06 30.47 7.13 9
MSE 197 1006 325.12 1694 81.67 136.53

Best 3 Comb. AM B&G CLS

MAE 8.53 7.86 7.13
MSE 122.53 103.07 81.67

The best combination is constraint least squares (CLS), which is actually setting all the
weights to select the predictions from SVM, which was the best model. Figure 11 shows the
real data, the three chosen models and the best predictions.
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Figure 11. Cluster 2 best 3 models (left) and final combined predictions (right).

Cluster 3

Stop 6 is the representative for Cluster 3. In this cluster, the maximum number of
boarding is over 200, as can be seen in Figure 12. Table 4 shows the MAEs and MSEs for this
cluster. The improved SVM is again the best, followed by Holt–Winters and TBATS. The
best combination is the same as in Cluster 1, the Bates and Granger weighted mean, shown
in Figure 13. In this case, the combination is almost the same as the SVM predictions, just
slightly improved.
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Figure 12. Cluster 3: two last days of historical data plus one-day predictions and real values (left).
On the (right), a close-up of the predictions and real values is shown.

Table 4. MAEs and MSEs for each model in Cluster 3 for one-week historical and one-day predictions,
and for the different combinations of the best models.

Models ARIMA H-W KNN ARNN SVM TBATS

MAE 8.47 6.65 11.54 21.76 3.60 7.41
MSE 122.47 67.83 358.59 1693.18 31.20 137.29

Best 3 Comb. AM B&G CLS

MAE 4.07 3.60 3.87
MSE 28.87 24.87 23.47
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Figure 13. Cluster 3 best 3 models (left) and final combined predictions (right).

Cluster 4

The representative in Cluster 4 is Stop 309, which has a smaller number of boardings
than those in clusters 2 and 3 but reaches almost twice as many passengers as Cluster 1.
The forecasts from each model are shown in Figure 14, where, as above, the predictions are
shown together with the real number of boardings, as well as the last two previous days of
the historical data.

The MAEs and MSEs are shown in Table 5, together with the errors for the combina-
tion of the best three models, which are SVM, TBATS and Holt–Winters again. The best
combination is, again, the weighted average of Bates and Granger. The best three models
and final best predictions are shown in Figure 15.
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Figure 14. Cluster 4: three last days of historical data plus one-day predictions and real values (left).
On the (right), a close-up of the predictions and real values is shown.

Table 5. MAEs and MSEs for each model in Cluster 4 for one-week historical and one-day predictions,
and for the different combinations of the best three models.

Models ARIMA H-W KNN ARNN SVM TBATS

MAE 6.06 5.12 7.71 14.47 5.40 5.76
MSE 51.47 40.06 168.65 486.35 36.87 62

Best 3 Comb. AM B&G CLS

MAE 5.46 5.26 5.40
MSE 43.87 40.06 38.70
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Figure 15. Cluster 3 best 4 models (left) and final combined predictions (right).

4.3. Cointegration Study

The Johansen trace test [37], with a 5% level, reflects the existence of cointegration
relationships between all the data from the stops belonging to the same cluster with its
representative, denoted R1, R2, R3 and R4, respectively. Therefore, it is not necessary to
repeat the analysis shown in Section 4.2 for every series in each cluster, since the predictions
of each one of them can be made using the cointegration equations. Table 6 shows a
summary of the two stops of each cluster with the highest determination coefficient R2. It
should be noted that the minimum R2 is still greater than 70% in all cases. Furthermore, the
regression residuals are stationary, indicating the goodness of the fits. Figure 16 shows the
fitted values of the stop with the highest R2 in each cluster with respect to its representative
and the residuals.
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Table 6. Cointegration equations for two stops in each cluster and their representative.

Cointegration Equation R2

CLUSTER 1 Stop(73) = 13.48 + 1.54R1 0.8354
Stop(268) = 6.76 + 1.55R1 0.8619

CLUSTER 2 Stop(128) = 4 + 0.94R2 0.7434
Stop(91) = 1.46 + 0.36R2 0.8821

CLUSTER 3 Stop(101) = −0.64 + 0.05R3 0.8854
Stop(138) = −1.84 + 0.19R3 0.9123

CLUSTER 4 Stop(116) = 2.47 + 0.46R4 0.7000
Stop(136) = 1.11 + 0.39R4 0.7718

Figure 16. Fitted values from cointegration equations for one stop in each cluster, together with the
real values and the residuals of the model.

5. Conclusions

The bus stops from the city of Salamanca (Spain) have been grouped attending to
passenger demand and location. The clustering analysis results in four large groups
with 27, 79, 44 and 93 stops each, respectively. The stops in each cluster have their own
characteristics, as can be seen in Figure 6. The flow of passengers is determined not only
by the location of the stop but also by the time slot, which is a true reflection of the daily
activity of the city. Different models and methods have been applied to study the hourly
passenger demand. The models used allow for robust predictions of passenger data on
the bus network. Moreover, the combination of forecasts from conceptually different
models (machine learning and traditional methods) effectively reduces prediction errors
and, therefore, provides an improvement in accuracy. Finally, for the rest of the stops
in each cluster, instead of repeating the whole process of forecasting, the cointegration
equations calculated can be used.

The modification performed to the SVM method, with the incorporation of time
dummies combined with autoregressive and moving averages, shows that SVM provides
the best fitting model, independently of the slightly different pattern that each cluster may
have, followed by more traditional methods such as Holt–Winters exponential smoothing.
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When it comes to the combination of different predictions, the weighted means,
specifically Bates and Granger, have been shown to reduce the errors better than the
simpler arithmetic mean, although the differences are not very large. In this case, it is also
clear that the weights are all in favour of the values predicted by SVM, which are already
accurate before the combination. Future research may include the exploration of other
different combinations.

The methodology used, and the results obtained provide valuable information re-
garding the restructuring of the transport network in the city, which is immersed in a
process of change with the opening of the new hospital and the expansion of the peripheral
neighbourhoods. The approach proposed not only categorises the bus network’s stops
but also enhances hourly predictions of the number of passengers. With this data, the
frequency of buses may be increased at times when there is a high influx of users, routes can
be modified, extended, etc. Knowing the behaviour of the passengers helps make decisions
such as the modification of current stops or the suspension of those with low user counts.

The production of large volumes of massive data, big data, opens interesting pos-
sibilities to understand the mobility flows of our cities. The proposed steps (clustering,
choosing a representative, combinations of predictions, and cointegration techniques) ease
the understanding of passenger demand in bus networks and can be extrapolated to other
cities where the bus network is the only public transport route too. Future lines of research
include completing the analysis by taking into account the different bus lines that pass
through each stop, which would increase the complexity since it would multiply the num-
ber of series. Moreover, it could be interesting to compare these results (pre-pandemic) and
those after the social distancing measures have been relaxed, to evaluate whether the use
of public transportation is back to normal after the pandemic.
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