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Abstract

Food-related disorders are increasingly common in developed societies, and the psychological component of 
these disorders has been gaining increasing attention. Both overnourishment with high-fat diets and perinatal 
undernourishment in mice have been linked to a higher motivation toward food, resulting in an alteration in 
food intake. Clusterin (CLU), a multifaced protein, is overexpressed in the nucleus accumbens (NAc) of over-
fed rats, as well as in those that suffered chronic undernutrition. Moreover, an increase of this protein was 
observed in the plasma of obese patients with food addiction, suggesting the implication of CLU in this eating 
disorder. To characterize CLU’s cellular mechanisms, in vitro experiments of undernutrition were performed 
using dopaminergic SH-SY5Y cells. To mimic in vivo dietary conditions, cells were treated with different fetal 
bovine serum (FBS) concentrations, resulting in control (C group) diet (10% FBS), undernourishment (U 
group) diet (0.5% FBS), and undernourishment diet followed by restoration of control diet (UC group) (0.5 + 
10% FBS). Undernourishment compromised cell viability and proliferation, and concomitantly increased 
CLU secretion as well as the cytosolic pool of the protein, while decreasing the mitochondrial level. The res-
toration of normal conditions tended to recover cell physiology, and the normal levels and distribution of 
CLU. This research study is a step forward toward the characterization of clusterin as a potential marker for 
food addiction and nutritional status.

Keywords: clusterin; food addiction; undernutrition; mitochondria; cell survival

Received: 31 October 2020; Revised: 23 February 2021; Accepted: 7 March 2021; Published: 4 May 2021

Obesity has become a worldwide public health prob-
lem as its prevalence continues to rise dramati-
cally. Studies suggest that more than 30% of the 

world population will be overweight and 20% will become 
obese by 2030 (1, 2, 3). Obesity is caused by an energy 
imbalance between the calories consumed and the calories 
expended, resulting in an excess body weight. The central 

nervous system (CNS) plays an essential role in controlling 
energy homeostasis through the integration of hormonal 
and nutritional metabolic signals, thereby establishing the 
central control of food ingestion (4, 5). New theories have 
introduced the idea of a compulsive behavior for food in-
gestion, leading to the concept of food addiction (6). In 
fact, drug and food addictions share neurobiological and 

Popular scientific summary
•  Perinatal undernourishment is linked to higher motivation toward food, resulting in food intake 

alterations.
•  Clusterin is overexpressed in the nucleus accumbens of  animals that suffered chronic undernutrition 

and their levels were increased in the plasma of obese patients with food addiction. This postulates 
clusterin as a potential biomarker for food addiction.

•  In vitro undernourishment resulted in a reduction of cell viability and distinct alterations in specific 
cellular forms of clusterin. Normal diet treatment restored both cell viability and clusterin 
expression. 
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behavioral similarities. According to this hypothesis, me-
solimbic dopaminergic hypofunction may underlie both 
drug and food addictions in humans and animal models 
(7, 8). Hence, food and drugs may have analog effects on 
the activity of the reward system. As a result, some indi-
viduals are more prone to develop eating disorders, lead-
ing to obesity. Among foods, those that are more palatable 
increase the release of dopamine in the nucleus accumbens 
(NAc) as drugs of abuse do, leading to pleasant sensation 
(9, 10). Moreover, high-fat and sugar diets produce neuro-
chemical modifications in the NAc, such as decrease of D1 
and D2 dopamine receptors, leading to an alteration in the 
reward system pathway (8, 11, 12) and lowest D2 values in 
individuals with the largest body mass index (BMI) (13). 
However, undernourishment during perinatal periods has 
been described to cause changes in reward-related brain 
structures, leading to an increase in addiction vulnerability 
and rewarding potential of both drugs of abuse and palat-
able foods (11, 14–16).

These findings highlight the idea that ‘food addiction’ 
may be responsible for some types of obesity and eating 
disorders. Indeed, it has been found that 40% of obese 
patients seeking bariatric surgery have food addiction, ac-
cording to psychological parameters (17). Therefore, the 
identification of novel biomarkers associated with food 
addiction could be essential for the correct diagnosis and 
treatment of obesity.

Using a proteomic-based study, we have recently iden-
tified clusterin (CLU) as a potential candidate to measure 
food addiction. Clusterin levels were found to be higher 
in the plasma of patients with morbid obesity and un-
controllable food intake compared with those with better 
eating control (18). Clusterin is an extracellular chaper-
one that also showed a strong correlation with changes in 
body fat mass (19). In the hypothalamic areas that con-
trol energy metabolism and body weight, CLU mRNA is 
highly expressed. Among its several functions, CLU was 
identified as a plasma leptin-binding protein, regulating 
the hypothalamic leptin pathway. Leptin, a regulatory 
weight hormone, acts on the hypothalamus, reducing the 
food intake and increasing the energy expenditure (20, 
21). Intracerebellar (ICV) administration of CLU in mice 
produced weight loss, acting as an anorexigenic molecule, 
whereas its inhibition stimulated food intake and weight 
gain (20).

CLU is a multifaced protein, encoded from a single 
gene located in chromosome 8 in humans, which is highly 
conserved among species and expressed in multiple tis-
sues (17). The role of CLU is not well understood, but it 
seems to be highly dependent on its localization. Secreted 
CLU is a heterodimeric complex of two 40−45 kDa sub-
units (α- and β-subunits) interlinked by disulfide bonds 
(22, 23). Extracellular CLU acts as a chaperone exerting 
a scavenging and clearance activity under physiological 

and pathological conditions (24–26). Apart from secreted 
CLU, several intracellular isoforms and post-splicing 
modifications that play different roles have been reported 
(27–31). Among these, a hypoglycosylated form of CLU is 
produced under endoplasmic reticulum stress and trans-
located to the mitochondria using the chaperone BiP 
(GRP78), where induces apoptosis (32). This anti-apop-
totic role of intracellular CLU has been linked to its in-
teraction with apoptosis-related proteins, Bax and Bcl-xL 
(33–36).

In this study, we aim to establish a relationship between 
CLU cellular localization and undernutrition status in a 
human neuronal in vitro model to clarify the potential role 
of CLU in an undernourished brain.

Materials and methods

Cell cultures and treatment
Human neuroblastoma cells SHSY-5Y were cultured in 
Roswell Park Memorial Institute medium (RPMI) sup-
plemented with 10% (v/v) of heat-inactivated fetal bovine 
serum (FBS), penicillin or streptomycin (100 U/mL), and 
2 mM L-glutamine at 37°C under a humidified atmo-
sphere with 5% CO2. 

The FBS content in culture medium was modified to 
mimic underfeeding conditions of proteins, lipids, micro-
nutrients, and growth factors. Two consecutive treatments 
were established for such modifications: first treatment 
of 48 h incubation and a second treatment of 72 h incu-
bation. Briefly, control (C) cells were incubated with the 
medium containing 10% FBS for 48 h followed by a sec-
ond treatment with fresh medium containing 10% FBS 
for 72  h. Undernourished (U) cells were incubated with 
the medium containing 0.5% FBS for 48 h followed by 
a second treatment with fresh medium containing 0.5% 
FBS for 72 h. Undernourished-control (UC) cells were 
incubated with the medium containing 0.5% FBS for 48 
h followed by a second treatment with fresh medium con-
taining 10% FBS for 72 h. Control-overnourished cells 
were incubated with the medium containing 10% FBS for 
48 h followed by a second treatment with fresh medium 
containing 45% FBS for 72 h (CO). In addition, under-
nourished-overnourished cells were incubated with the 
medium containing 0.5% FBS for 48 h followed by a sec-
ond treatment with fresh medium containing 45% FBS for 
72 h (Undernourished-Overnourished [UO])

Biochemistry analysis
For Western blotting analysis of the whole-cell content, 
cells were lysed with Radioimmunoprecipitation assay 
buffer (RIPA) buffer (2% Sodium Dodecil Sulphate 
(SDS), 150 mM NaCl, 2 mM Ethylenediaminetetraacetic 
acid (EDTA), and 10 mM Hepes, pH 7.4). For Western 
blotting analysis of subcellular fractions, total cell lysate 
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was fractioned by differential centrifugation as previously 
described (37). Protein concentration was measured using 
the Bradford protein assay method. Equal amounts of 
protein were subjected to 10% Tris-HCl SDS-PAGE gels. 
The gels were blotted onto 0.2 mm nitrocellulose mem-
branes (Trans-Blot-Turbo transfer Pack, Bio-Rad) using 
a Transblot-Turbo Transfer System (Bio-Rad). Western 
blotting signals were detected using the enhanced chemi-
luminescence reagent (ECL Prime Western Blotting Re-
agent, GE Healthcare, Amersham, UK). Quantifications 
were performed using ImageLab software (Bio-Rad). 
Antibodies used were anti-clusterin (NBP1-68308 1:1000, 
Novusbio, Littleton, CO, USA), anti-β-actin (Santa Cruz 
Biotechnology, Dallas, TX, USA), anti-rabbit (Santa 
Cruz Biotechnology, Dallas, TX, USA) and anti-mouse 
(Santa Cruz Biotechnology, Dallas, TX, USA).

ELISA assay
The determination of extracellular CLU was carried out 
by enzyme-linked immunosorbent assay (ELISA) (ELISA 
kit ERCLU- Thermo-Fischer Scientific, Frederick, MD, 
USA) following manufacturer’s instructions.

Cellular viability and proliferation
MTT, NR, and LDH tests were used to evaluate the effects 
of undernourishment on cell proliferation and viability. 
Cell viability of C cells, U cells, and UC cells were mea-
sured by absorbance at 570 nm (MTT) and 540 nm (NR 
test) using a Versamax plate reader (BioNova Científica). 
An LDH test was performed following the manufacturer’s 
instructions (CytoTox96 Non-Radioactive Cytotoxicity 
assay, Promega, MD, USA) 

Mitochondrial membrane potential assay
The mitochondrial membrane potential (ΔΨm) was de-
tected using a MitoPTJC-1 detection kit (Immunochem-
istry Technologies) according to the manufacturer’s 
protocol, and fluorescence was quantified using a fluores-
cence plate reader (Varioskan Flash, Thermo Fisher Sci-
entific). Positive control cells were induced by incubation 
for 75 min with [(3-chlorophenyl) hydrazono] malonitrile 
provided in the kit. 

Morphological study
In the morphological study, cells were seeded in a 12-well 
plate, 50,000 cells/well. After treatment, cells were washed 
twice with Phosphate-buffered saline (PBS) and stained 
with crystal violet solution at 0.5% in 20% ethanol for 
5 min. Then, the crystal violet solution was removed, and 
the cells were rinsed with 96% ethanol. Finally, cells were 
mounted on glass slides and observed under an optical in-
verted phase-contrast microscope (Nikon Eclipse TS1000, 
40× magnification)with a digital camera (Nikon Digital 
Sight).

Statistical analysis
Descriptive statistics are presented as means ± SEM. One-
way analyses of variance (ANOVAs) followed by Bonfer-
roni’s test were performed for multiple comparison with 
GraphPad Prism 7. Results were considered to be sta-
tistically significant when P < 0.05. All the experiments 
presented here were repeated independently at least three 
times.

Results

Both cell viability and proliferation are decreased by 
undernourishment without mitochondrial alterations
SH-SY5Y cells were treated with FBS-restricted me-
dium to mimic an under-protein diet, mainly based on 
the major protein content in FBS, albumin. After control 
(C), undernourishment (U) and undernourishment-con-
trol (UC) treatments, cells were stained with crystal vi-
olet dye, and no macroscopic difference was observed 
(Supplementary Fig. 1). After undernourishment diet, 
cell viability and proliferation were reduced, as shown by 
NR, LDH and MTT tests (Fig. 1a−c). These effects of 
undernourishment were partially or totally reverted after 
restoration of control conditions (Fig. 1a−c). A slight re-
duction of mitochondrial functionality was also observed 
in undernourished cells; however, this tendency did not 
reach statistical significance based on the mitochondrial 
membrane potential measured using the Mitotracker 
assay (Fig. 1d).

Undernutrition increases the release of clusterin
To elucidate whether CLU is involved in diet-related 
cell viability and proliferation, both the extracellular 
and intracellular levels of  CLU were measured. After 
C, U, and UC treatments, cell supernatant was collected 
for ELISA quantification of  secreted CLU, and cells 
were lysed for Western blot analysis of  intracellular 
CLU. Analysis of  the total CLU content did not show 
any differences among the treatments (Fig. 2a), while 
U treatment increased three times the content of  CLU 
in the extracellular medium (Fig. 2b). Secreted CLU 
returned to control levels after undernourishment was 
discontinued (UC treatment). To check out that CLU 
overexpression is specifically triggered by undernour-
ishment, we also analyzed extracellular levels of  CLU 
after overnutrition (O) in two additional treatment 
groups: CO cells and UO cells. Extracellular levels of 
CLU in both CO and UO cells remain similar to C cells 
(Supplementary Fig. 2).

Undernourishment shifts intracellular localization of clusterin 
from mitochondria to cytosol
As different localizations of  CLU determine its cel-
lular role, we performed a cellular fractionation of 
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Fig. 1. Undernutrition decreases cell viability and proliferation. (a)  Neutral Red Uptake test. n = 4 independent experiments. 
(b) MTT test. n = 4 independent experiments; (c) LDH assay. n =5 independent experiments; (d) Mitotracker assay. n = 5 inde-
pendent experiments. C, control; U, undernourishment; UC, undernourishment control. 

mitochondria or cytosol and posterior analysis of  CLU 
content. Cytosolic CLU was increased six times by un-
dernutrition (Fig. 3a), while mitochondrial CLU de-
creased 10 times (Fig. 3b) over the control diet. Both 
cytosolic and mitochondrial up-regulated levels of  CLU 
were restored when cells returned to control conditions 
(Fig. 3a and b).

Discussion and conclusion
As far as we know, this is the first attempt to establish 
an in vitro model of undernutrition to study changes of 
CLU in undernourished neuronal cells. The idea is based 

on our previous in vivo results showing evidence that CLU 
may play a role in food addiction and can potentially be 
considered as a biomarker.

In neuronal dopaminergic cells, as SH-SY5Y, CLU is 
highly secreted in response to protein undernutrition and 
its levels return to baseline upon restoration of normal 
conditions. The essential role of extracellular CLU is as 
a chaperone with protective effects, and therefore, this 
increase could be interpreted as part of a homeostatic 
reaction to counteract the negative effects of undernu-
trition on cell viability and proliferation. In agreement 
with this idea, previous in vivo studies showed an increase 
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Fig. 2. Undernutrition increases the levels of extracellular clusterin. (a) Western blot analysis of the whole cell content of clus-
terin. n = 4 independent experiments. Loading control: β-actin. (b) Extracellular clusterin quantification by ELISA assay; n = 3–4 
independent experiments. Quantification of clusterin was corrected by total protein content in the extracellular media. C, con-
trol; U, undernourishment; UC, undernourishment-control. Graphs: means ± SEM, one-way ANOVA was used.
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Fig. 3. Nutrition-dependent intracellular localization of clusterin. Western blot analysis of clusterin after cytosolic or mitochon-
drial fractionation. (a) Cytosolic fraction and (b) mitochondrial fraction. C, control; U, undernourishment; UC, undernourish-
ment-control; Loading control protein: β-actin. n = 3−4 independent experiments. Graphs: means ± SEM, one-way ANOVA 
was used.
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of mRNA CLU in the brain in response to the oxidative 
damage produced by calory restrictions (38, 39). We did 
not detect any global change in the intracellular levels of 
CLU, but a specific increase in the cytosolic content and a 
specific decrease in the mitochondrial level. These changes 
could be due to a translocation of CLU from mitochon-
dria to cytosol or due to an increase in the synthesis of 
the canonical cytosolic isoform associated with a decrease 
in the synthesis of the other intracellular isoforms. Ad-
dressing this point is not easy as there is no consensus yet 
about different mRNA isoforms or post-splicing forms of 
CLU (29). 

Along with previous human and rodent studies, these 
new data support the relationship between nutrition and 
CLU, and highlight the potential importance of extra-
cellular CLU levels and intracellular trafficking of the 
protein in maintaining cell homeostasis under adverse 
conditions. 
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