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We describe a mechanism whereby random noise can play a constructive role in the manifestation

of a pattern, aperiodic rotations, that would otherwise be damped by internal dynamics. The

mechanism is described physically in a theoretical model of overdamped particle motion in two

dimensions with symmetric damping and a non-conservative force field driven by noise. Cyclic

motion only occurs as a result of stochastic noise in this system. However, the persistence of the

cyclic motion is quantified by parameters associated with the non-conservative forcing. Unlike sto-

chastic resonance or coherence resonance, where noise can play a constructive role in amplifying a

signal that is otherwise below the threshold for detection, in the mechanism considered here, the

signal that is detected does not exist without the noise. Moreover, the system described here is a lin-

ear system. Published by AIP Publishing. https://doi.org/10.1063/1.5018443

In recent years, there have been a handful of model sys-

tems that have been proposed where the presence of noise

can play a constructive role, amplifying coherent signals or

giving rise to motions that can perform work. Here, we

have introduced another model system in which noise plays

a constructive role. The model system is a linear over-

damped system, and in the absence of noise, the system

approaches a steady state. However, when noise is applied

to this system, over very long times, a winding motion

becomes established with a well-defined average number of

windings over a given time interval. We have provided the

mathematical analysis to understand this behaviour.

Similar behaviour has been observed in the motion of

particles trapped by highly focussed laser beams.

I. INTRODUCTION

In a very general sense, random noise typically degrades

the quality of patterns. An exception is stochastic resonance1

which occurs when a weak coherent signal is amplified by

moderate levels of noise. In this case, noise may play a con-

structive role. A signal which is below the threshold for detec-

tion in the absence of noise may become above the threshold

for detection in the presence of moderate levels of noise. The

conventional setup for stochastic resonance involves a peri-

odic forcing coupled with noise, and the signal is a periodic

response. A different but related phenomenon is the so-called

coherence resonance in which the auto-correlations, or coher-

ence, may become more pronounced by increasing the noise

to moderate levels.2 More recently, it has been shown that

noise can not only amplify signals but may actually be used to

perform work. The canonical model for this has been

described as Brownian vortexes.3,4 In these systems, noise

coupled to a non-conservative force field gives rise to steadily

circulating currents that do not exist without the noise.3–5

Noise-induced circulation, manifesting as cyclic probability

currents, has been observed in optical tweezers experiments5

and in simulations of stochastic population dynamics with two

species.6 In each of these examples, the deterministic compo-

nent of the dynamical system is nonlinear.

Here, we consider a simple two-dimensional linear

dynamical system in which noise is required for the pattern

to appear. The dynamical system describes overdamped par-

ticle motion in a non-conservative restoring force field under

the influence of Gaussian noise. In the absence of noise, the

particle is simply attracted to an origin. The noise gives rise

to two different types of signals: oscillations, which could be

observed as a non-zero peak in the power spectrum, and a

persistent aperiodic cyclic motion that does not manifest as a

peak in power spectrum analysis.

Aperiodic cyclic motion has been observed in simula-

tions of a model equation for a nanowire trapped by optical

tweezers in a non-conservative force field.7 It was found that

the nanowire does not exhibit cyclic motion if a conservative

force is considered, implying that the response is a conse-

quence of a non-conservative nature of the optical force.7

The analysis in Ref. 7 suggested that the cyclic motion could

be expected for non-symmetric particles with linear restoring

forces. The phenomenon that we describe here is qualita-

tively similar to that proposed in Ref. 7, and we have rein-

forced the conclusions of this paper by providing

mathematical results for the mean velocity of the cyclic

motion as a function of the system parameters. Noise

induced periodic motions in a theoretical model for a nano-

wire trapped by optical tweezers were reported in Ref. 8.

Noise induced periodic motions and aperiodic motions have

been experimentally observed in the motion of optically

trapped nanowires.8,9
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The remainder of this paper is organized as follows: In

Sec. II, we introduce the model of a two-dimensional over-

damped dynamical system with noise, described by a

Langevin equation. In Sec. III, we carry out a change in vari-

ables in order to facilitate the calculations of the power spec-

trum for the oscillations, as well as the mean phase velocity

of the aperiodic motion. In Sec. IV, parameters are chosen to

characterise the simplified system. The power spectrum and

dominant oscillation frequency are obtained in Sec. V. In

Sec. VI, we derive the expression for the mean phase veloc-

ity of the aperiodic motion. In Sec. VIII, we carry out numer-

ical simulations of the Langevin equations for a range of

parameters in the model and we compare theoretical predic-

tions with the simulations. We conclude with a summary and

a discussion of more general results in Sec. IX.

II. DYNAMICAL MODEL

In physical terms, the model that we consider describes

the overdamped dynamics of a system with two degrees of

freedom in the vicinity of a stable equilibrium position when

it is subject to an attractive force, viscous drag, and noise.

The model equations are approximated to the first order by

the Langevin equation

�C _q � Kqþ fðtÞ ¼ 0: (1)

In this equation, q ¼ ½q1ðtÞ; q2ðtÞ� are the dynamical varia-

bles, �Kq is an external restoring force, characterised by the

stiffness matrix K, �C _q is the generalized viscous drag

force, characterised by the viscous drag coefficient matrix C,

and fðtÞ is the time-uncorrelated white noise.

The stiffness coefficient matrix K is symmetric if the

force is conservative and non-symmetric otherwise. In the

following, we assume that the viscous drag coefficient matrix

C is symmetric, positive definite, and, thus, invertible. The

noise is assumed to have a spatial correlation function given

by the Stokes-Einstein equation10

hfðtÞi ¼ 0; hfðtÞfðt0ÞTi ¼ 2jBTCdðt0 � tÞ; (2)

where jB is the Boltzmann constant, T is the temperature,

and dðt0 � tÞ is the Dirac Delta function. The spatial correla-

tion can be seen more clearly by writing the auto-correlation

in Eq. (2) in component form

hfjðtÞfkðt0ÞTi ¼ 2jBTCjkdðt0 � tÞ: (3)

The model equations can be written as stochastic differ-

ential equations (SDEs)

dq ¼ �M q dtþ dW (4)

by defining M ¼ C�1K and the Wiener process

dWðtÞ ¼ C�1fðtÞdt. In this formulation, the Wiener process

dW is governed by the Ito Calculus conditions

hdWi ¼ 0; dW dWT ¼ Hdt; dt dW ¼ 0; (5)

where H ¼ 2jBTC�1. It is assumed that the equilibrium

point q ¼ 0 is stable; thus, M is invertible and its eigenvalues

are either real and positive or complex with a positive real

part. The probability density function for the position of a

particle at time t obeying the Langevin equation, Eq. (4), is

governed by a Fokker-Planck equation whose stationary

solution is a standard bivariate distribution.11

III. DIMENSIONLESS MODEL EQUATIONS

In order to facilitate the subsequent calculations, trans-

formation to dimensionless variables is useful. We consider

a transformation based on the covariance matrix in the sto-

chastic equilibrium

C ¼ covsðqÞ ¼ lim
t!1
h qðtÞ � hqðtÞi½ � qðtÞ � hqðtÞi½ �Ti; (6)

where the angle brackets denote an expected value. The

covariance matrix satisfies the following condition:11

MCþ CMT ¼ H: (7)

Furthermore, for the two-dimension system of linear SDEs

defined by Eqs. (4) and (5), it can be shown that

C ¼ 1

2trðMÞ H þ ½trðMÞI �M�H trðMÞI �M½ �T

detðMÞ

( )
; (8)

where I is the 2� 2 identity matrix. We also note that the

covariance matrix, which is symmetric and positive-definite,

can be written as

C ¼ RDRT ; (9)

where R is a rotation matrix (R�1 ¼ RT and detðRÞ ¼ 1) and

D is a diagonal matrix with non-negative entries. For a sys-

tem that exhibits noise driven fluctuations in its coordinates,

the entries are strictly positive. Thus, the diagonal matrixffiffiffiffi
D
p

can be defined as the diagonal matrix whose entries are

the square roots of the entries of D, and its inverse, along

with R, is used to define new, dimensionless variables and

parameters as follows:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p
t; (10a)

x ¼
ffiffiffiffi
D
p �1

RTq; (10b)

w ¼
ffiffiffiffi
D
p �1

RTW; (10c)

K ¼
ffiffiffiffi
D
p �1

RTMR
ffiffiffiffi
D
pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðMÞ
p : (10d)

Equation (4) can now be written as a dimensionless equation

of motion

dx ¼ �K x dsþ dw; (11)

and using Eqs. (5), (7), (9), and (10), it can be shown that

hdwi ¼ 0; dw dwT ¼ ðKþ KTÞds; ds dw ¼ 0: (12)

It follows from Eqs. (9) and (10b) that covsðxÞ ¼ I, and

hence, the stationary probability density is the standard

bivariate normal distribution

043101-2 Ortega-Piwonka et al. Chaos 28, 043101 (2018)



psðxÞ ¼
e�

1
2
jxj2

2p
: (13)

IV. SPACE OF PARAMETERS

It is convenient at this stage to set a choice of effectively

independent parameters of the systems. Since Kþ KT is

symmetric, a system of orthogonal axes can be chosen in a

way that the aforementioned matrix is diagonal. Under this

choice, K can be written as

K ¼ k1 k0

�k0 k2

� �
: (14)

Also, the axes can be chosen so that k1 � k2. Since detðKÞ
¼ 1 [see Eq. (10d)], the dimensionless system has only two

effectively independent parameters. Our choice of parame-

ters will be l ¼ trðKÞ and � ¼ k0. From equations detðKÞ
¼ 1 and l ¼ trðKÞ, the coefficients k1 and k2 are expressed

in terms of the parameters l and �

k1 ¼
1

2
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4ð�2 � 1Þ

ph i
; (15a)

k2 ¼
1

2
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 4ð�2 � 1Þ

ph i
: (15b)

The parameters l and � are restricted by a band of condi-

tions. Since Kþ KT is positive-definite, k1 and k2 must be

positive real numbers, which implies that ðl
2
Þ2 þ �2 � 1 and

j�j < 1. Also, since the field force is restoring, the eigenval-

ues of K are either positive or complex with positive real

numbers, which is possible only if l > 0. Note that �¼ 0

corresponds to the case where the matrix k is symmetric

(regardless of the choice of orthogonal axes); in other words,

the restoring force is conservative.

V. POWER SPECTRUM ANALYSIS

The power spectral density (PSD) of a stochastic variable

describes the distribution of the power related to a given sig-

nal over the range of frequencies (x) the signal oscillates

with. For an n-coordinate stochastic variable, the PSD is for-

mally defined as a matrix function of x. In the Langevin linear

system described by Eqs. (1) and (2), this matrix is given by11

SðxÞ ¼ 1

2p
ðM þ ixIÞ�1Cþ CðMT � ixIÞ�1
h i

; (16)

where C is the covariance matrix defined in Sec. VI. In the

case of the dimensionless system governed by Eqs. (4) and

(5), we need to substitute M and C by K and I, respectively,

SðxÞ ¼ 1

2p
ðKþ ixIÞ�1 þ ðKT � ixIÞ�1
h i

: (17)

We are interested in the individual spectral densities of x1

and x2 [i.e., S11ðxÞ and S22ðxÞ], which are computed from

Eq. (17). This results in

SðxÞ11 ¼
k2 þ k1x2

p ð1� xÞ2 þ ðlxÞ2
h i ; (18a)

SðxÞ22 ¼
k1 þ k2x2

p ð1� xÞ2 þ ðlxÞ2
h i : (18b)

The critical frequencies of S11, other than x¼ 0, are found

by solving the equation dS11

dðx2Þ ¼ 0. This equation is equivalent

to a quadratic equation for x2, with the following solutions

written in terms of the system parameters l and �

x2
6 ¼
�k26lj�j

k1

¼ lð62j�j � 1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ 4ð�2� 1Þ

p
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ 4ð�2� 1Þ

p : (19)

Note that the square roots in the above equation are real in

the space of parameters and x2
� < 0 is unphysical. Thus, this

solution is not accepted. It is possible to demonstrate that

x2
þ > 0 only if the following conditions apply

j�j > 1

2
; l2 < 1þ 1

j�j : (20)

Under these circumstances, S11ðxÞ has three critical frequen-

cies, the roots of x2
þ and zero. Since S11ðxÞ is a positive, sym-

metric, and decaying function, no second order derivative

analysis is necessary to infer that 6xþ maximize S11ðxÞ,
while 0 minimizes it. If the conditions in (20) do not apply,

then x¼ 0 is the only critical frequency. Thus, it is maximal.

Summarizing, the characteristic oscillation frequency of

x1ðsÞ is given by

jx1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2j�j � 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4ð�2 � 1Þ

p
l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4ð�2 � 1Þ

p
s

j�j � 1

2
and l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

j�j

s

0 �
:

8>><
>>: (21)

The analysis to find the characteristic oscillation frequency of x2ðsÞ is quite similar

jx2j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lð2j�j � 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4ð�2 � 1Þ

p
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 4ð�2 � 1Þ

p
s

j�j � 1

2
or l �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

j�j

s

0 �
:

8>><
>>: (22)

Figure 1 illustrates the color maps of jx1j and jx2j on the

space of parameters. The critical frequency x1 is zero almost

everywhere except at the left corners of the space of parame-

ters. On the other hand, x1 is zero in a relatively small
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region, given by the inequalities, l
22

� �
þ �2 � 1 and

l �
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

j�j

q
. This region encloses the line �¼ 0, where the

restoring force is conservative. Note that both oscillation fre-

quencies cannot be bigger than 1 given the time re-scaling in

Sec. III [Eq. (10a)].
The procedure described here is valid for any bivariate,

first-order Langevin system.

VI. PHASE VELOCITY FOR APERIODIC MOTION

In this section, we show that the stochastic system

defined by Eqs. (11) and (12) gives rise to a persistent aperi-

odic cycling motion that can be characterised by a phase

velocity hd/
dt i, where / is the angular displacement in the

phase space co-ordinate shown schematically in Fig. 2.

Referring to Fig. 2, the infinitesimal angular displacement is

given by

d/ ¼ xðsÞ � xðsþ dsÞ
jxðsÞjjxðsþ dsÞj ¼

x

jxj �
dx

jxþ dxj ; (23)

where “�” denotes the scalar cross-product between two

two-dimensional vectors, i.e., a� b ¼ a1b2 � a2b1. The

right hand of Eq. (23) comes from noting xðsÞ ¼ x and

xðsþ dsÞ ¼ xþ dx. The phase velocity can be found by

expanding the right hand side to first order in dt. It follows

from Eqs. (11) and (12) that d/ has to be expanded to second

order in dw. This is achieved by expanding 1
jxþdxj to first

order in dx. Explicitly, we have

d/ ¼ x

jxj �
1

jxj �
x

jxj3
� dxþOðdx2Þ

" #
dx

¼ x

jxj �
dx

jxj �
ðx � dxÞdx

jxj3

" #
þOðdx3Þ; (24)

where “�” denotes the inner scalar product a � b ¼ a1b1

þa2b2. Equations (11) and (12) can be used to further

expand d/. Note that Oðdx3Þ becomes Oðds2Þ with no terms

dwn involved, and we have

d/ ¼ x

jxj �
�K x dsþ dw

jxj � ðKþ KTÞ x ds

jxj3

" #
þOðds2Þ

¼ K x� x

jxj2
þ ðKþ KTÞ x� x

jxj4

" #
dsþ x� dw

jxj2
þOðds2Þ:

(25)

It is useful to express this in terms of the components xn, dwn

k1, k2, and � in which case

d/ ¼ � þ ðk1 � k2Þ
x1x2

x2
1 þ x2

2

þ 2ðk1 � k2Þ
x1x2

ðx2
1 þ x2

2Þ
2

� �
ds

þ x1dw2 � x2dw1

x2
1 þ x2

2

þOðds2Þ: ð26Þ

We now consider the expected value of d/ in the stochastic

equilibrium. Using the result that under Ito Stochastic

Calculus, xðsÞ and any analytical function of it are stochasti-

cally independent of dwðsÞ, we can write

hd/is ¼ �þ ðk1 � k2Þ
x1x2

x2
1 þ x2

2

� �
s

"

þ2ðk1 � k2Þ
x1x2

ðx2
1 þ x2

2Þ
2

* +
s

#
ds

þ x1

x2
1 þ x2

2

� �
s

hdw2i �
x2

x2
1 þ x2

2

� �
s

hdw1i þ hOðds2Þis;

(27)

where given an analytical function f ðxÞ

hf ðxÞis ¼
ð ð
R2

f ðxÞpsðxÞ dx1 dx2: (28)

Using the stationary distribution ps given by Eq. (13),

together with symmetry arguments, it is possible to infer that

FIG. 1. Color maps of the critical fre-

quencies of (a) S11ðxÞ and (b) S22ðxÞ,
over the space of parameters. The

curve l ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

j�j

q
is included in both

maps, as it serves as a delimiter for the

zero level set of both critical

frequencies.

FIG. 2. Schematic illustration of an infinitesimal angular variation d/ for an

infinitesimal time ds in the space of dimensionless coordinates.
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x1

x2
1þx2

2

� �
s

¼ x2

x2
1þx2

2

� �
s

¼ x1x2

x2
1þx2

2

� �
s

¼ x1x2

ðx2
1þx2

2Þ
2

* +
s

¼ 0:

(29)

From the Ito rules, Eq. (12), we also have hdw1i ¼ hdw2i
¼ 0. Finally, using the above results in Eq. (27), dividing by

ds, and taking the limit ds! 0, the stationary expected

phase velocity is found to be given by

d/
ds

� �
s

¼ � ¼ k12 � k21

2
: (30)

The phase velocity is thus zero if the matrix K is a symmetric

matrix.

VII. PHASE VELOCITY IN THE PHYSICAL SYSTEM

In this section, we find an expression for the phase

velocity in terms of the physical parameters of the system.

First, we note that the phase velocities of both qðtÞ and xðsÞ
should be the same. This follows from the transformation

Eq. (10b) which simply involves a rotation of the axes q1

and q2 (given by RT), followed by each axis being elongated

or contracted separately (given by
ffiffiffiffi
D
p �1

). In both frames,

the number of cycles over a very long period of time will be

the same. Moreover, since the system under study is ergodic,

the expected phase velocity is equal to the average angular

velocity in both the physical and dimensionless frames. Thus

hxis¼
d/
dt

� �
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p d/
ds

� �
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p
atrðKÞ

2
; (31)

where we have defined atrðAÞ ¼ a12 � a21 for a 2� 2 matrix.

Given two 2� 2 matrices A and B, it can be shown that

atrðABATÞ ¼ detðAÞatrðBÞ: (32)

Using Eqs. (9) and (10d), we can write

K ¼
ffiffiffiffi
D
p �1

RT

	 

MC

ffiffiffiffi
D
p �1

RT

	 
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðMÞ

p ; (33)

and then using Eqs. (32) and (33), we can write

hxis ¼
1

2
det

ffiffiffiffi
D
p �1

RT

	 

atrðMCÞ ¼ detðRÞatrðMCÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðDÞ

p
¼ atrðMCÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðCÞ

p : (34)

In obtaining the above result, we used the intermediate

results that C ¼ RDRT ; R�1 ¼ RT , and detR ¼ 1.

We can multiply Eq. (8) by M from the left and use the

property M�1 ¼ 1
detðMÞ ðtrðMÞI �MTÞ, valid for any invertible

2� 2 matrix, to write

MC ¼ 1

2
H þMH � HMT

trðMÞ

" #

¼ 1

2
H þ 1

trðMÞ
0 atrðMHÞ

�atrðMHÞ 0

� �� �
: (35)

We have also used the property that H is symmetric and

MH � HMT is anti-symmetric. We can now write

atrðMCÞ ¼ atrðMHÞ
trðMÞ (36)

and

detðCÞ ¼ detðMCÞ
detðMÞ ¼

1

4detðMÞ detðHÞ þ atrðMHÞ
trðMÞ

� �2
( )

:

(37)

Substituting these results into Eq. (34), the stationary mean

phase velocity is found in terms of M and H, viz.,

hxis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðMÞ
trðMÞ2detðHÞ þ atrðMHÞ2

s
atrðMHÞ: (38)

An expression for hxis in terms of the physical parame-

ters K, C, and jBT still remains to be found. As stated in Sec.

II, M ¼ C�1K and H ¼ 2jBTC�1. Provided that all the matri-

ces are 2� 2, it follows that

trðMÞ ¼ trðCÞtrðKÞ � trðCKÞ
detðCÞ : (39)

Substituting this final result into Eq. (38) leads to

hxis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðKÞ
½trðCÞtrðKÞ � trðCKÞ�2 þ detðCÞatrðKÞ2

s
atrðKÞ:

(40)

This expression shows that if the viscous drag is symmetric,

then noise in this system produces an aperiodic cyclic motion

if and only if the stiffness coefficient matrix K is non-

symmetric, i.e., if and only if the external force is non-

conservative.

VIII. NUMERICAL SIMULATIONS

In this section, we have carried out numerical simula-

tions of the Langevin equation, Eq. (4). The phase angle was

measured from the simulations, and measurements of the

mean phase velocity of aperiodic motion were compared

with the theoretical result in Eq. (40).

In the numerical simulations, with the Wiener Process

dW governed by Eq. (5), we considered M ¼ C�1K and

H ¼ 2jBTC�1, with

K ¼
2 1þ 1

2
Dkc

1� 1

2
Dkc 3

2
664

3
775; C ¼ 31 11

11 4

� �
: (41)

Here, Dkc ¼ atrðKÞ is a parameter that accounts for the non-

symmetry of the stiffness matrix K. Figure 3(a) illustrates the

evolution of the phase angle over time for each integer value

of Dkc between –10 and 10. Each simulation has a total of

106 steps separated by dt ¼ 10�2. The figure shows that the
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phase angle has a fluctuating behaviour with rises and drops.

However, it can be seen that it changes at a mean constant

rate when observed over a sufficiently long period of time.

The mean phase velocity has the same sign as Dkc.

A more precise estimation of the mean phase velocity,

hxis, was obtained by running 100 simulations of Eq. (4) for

every integer value of Dkc between –10 and 10. The phase

angle was computed from each simulation, and a linear

regression was carried out. The mean phase velocity was

estimated as the average between the slopes of the regres-

sions. The results are summarized in Fig. 3, with error bars

from the standard deviation of the slopes.

A theoretical prediction for hxis can be inferred from

Eqs. (40) and (41)

hxis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 1

4
Dk2

c

792 þ 3Dk2
c

vuuut Dkc: (42)

The plot of hxis versus Dkc is included in Fig. 3(b), thus

showing that the numerical estimations of hxis are in excel-

lent agreement with the theoretical prediction.

IX. SUMMARY AND DISCUSSION

In this work, we derived expressions for the frequency

of oscillations of periodic motions and for the mean phase

velocity of cyclic aperiodic motion in a two-dimensional

overdamped system with noise and linear restoring forces.

The periodic motions and the cyclic aperiodic motion do not

arise in the corresponding deterministic system without

noise. Our mathematical result for the mean phase velocity

of cyclic aperiodic motion, Eq. (39), shows the dependence

on the linear restoring forces and the viscous drag coeffi-

cients. We carried out numerical simulations of the Langevin

equation for the model system, and we obtained excellent

agreement with the theoretical result. In particular, it can

readily be seen from Eq. (39) that a non-conservative force

field is required for the cyclic aperiodic motion to occur in

this system. In this sense, the model shares features with

Brownian vortexes.4 However, unlike Brownian vortexes,

the cyclic aperiodic motion that is reported here occurs in a

linear system.

Our results for the cyclic aperiodic motion are also con-

sistent with the observations reported in Ref. 7 on simula-

tions of a model nanowire trapped by optical tweezers in a

non-conservative force field. A key observation in this work

was that the mean phase velocity of the cyclic motion

increases approximately linearly with the optical trapping

power. This is consistent with Eq. (39) because the optical

forces and torques, and hence the components of the stiffness

matrix, are linearly proportional to the beam trapping power.

Finally, it should be remarked that the result in Eq. (39)

was derived considering an overdamped system with a sym-

metric viscous drag, and correlated noise can be applied to

an overdamped system with time- and space-uncorrelated

white noise by considering the special case, C ¼ I. In this

case, the stochastic system, Eq. (3), simplifies to

dq ¼ �Kqdtþ fðtÞdt (43)

and the mean phase velocity simplifies to

hxis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðKÞ
trðKÞ2 þ atrðKÞ2

s
atrðKÞ: (44)

An interesting aspect of this result is that the aperiodic cyclic

motion does not simply arise by uncorrelated noise perturb-

ing a stable node, or stable spiral, in a planar dynamical sys-

tem, i.e., trðKÞ > 0 and detðKÞ > 0. The non-conservative

nature of the restoring force is also fundamental, i.e.,

atrðKÞ 6¼ 0.
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FIG. 3. (a) Computations of the phase angle over time from simulations of the physical system described in Sec. II, where the matrices K and C are given by

Eq. (41). (b) Numerical estimations of the mean phase velocity in terms of the non-symmetry parameter, Dkc, together with the theoretical prediction, Eq. (42).
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