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Abstract

In statistics, machine learning, and related fields, feature selection is the process of

choosing a smaller subset of features to work with. This is an important topic since se-

lecting a subset of features can help analysts to interpret models and data, and to decrease

computational runtimes. While many techniques are purely automatic, the data visualiza-

tion community has produced a number of interactive approaches where users can make

decisions taking into account their domain knowledge. In this paper we propose a new

visualization technique based on radial axes that allows analysts to perform feature selec-

tion effectively, in contrast to previous radial axes methods. This is achieved by employ-

ing alternative scaled axes that provide insight regarding the features that have a smaller

contribution to the visualizations. Therefore, analysts can use the technique to carry out

interactive backwards feature elimination, by discarding the least relevant features accord-

ing to the information on the plots and their expertise. Our approach can be coupled with

any linear dimensionality reduction method, and can be used when performing analyses of

cluster structure, correlations, class separability, etc. Specifically, in this paper we focus on

combining the proposed technique with methods designed for classification. Lastly, we il-

lustrate the effectiveness of our proposal through a case study analyzing high-dimensional

medical chronic conditions data. In particular, clinicians have used the technique for de-

termining the most important features that discriminate between patients with diabetes and

high blood pressure.
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1. Introduction1

The analysis of high-dimensional data sets is a complex and common problem in fields2

such as statistics, data mining, or machine learning. In practice, data sets may contain3

hundreds or thousands of features, many of which can be irrelevant, redundant, or simply4

add noise. Feature selection consists of the process of discarding those features. The5

topic is important since analyzing or using the resulting smaller subset can provide several6

benefits such as: simpler models that are easier to interpret, reduced overfitting, enhanced7

performance, or shorter computational runtimes.8

While many feature selection techniques rely on purely automatic procedures (Guyon9

& Elisseeff, 2003), the data visualization community has produced a number of interactive10

approaches where users are integrated into the analysis process with the goal of benefiting11

from their perceptual capabilities, flexibility, and domain knowledge. With these visual-12

ization tools analysts are able to steer the selection process according to their expertise,13

obtaining subsets of features adapted to the specific problem and application domain, in14

contrast to automatic methods.15

In this paper we focus on interactive visualization methods based on radial axes (Kan-16

dogan, 2000, 2001; Rubio-Sánchez et al., 2017), which map high-dimensional samples17

onto a two-dimensional space. The transformations are defined through a set of radial18

axis vectors, each associated with a feature, which users can modify interactively in or-19

der to carry out diverse exploratory tasks, such as analyzing correlations, cluster structure,20

or class separation, or searching for outliers or data with desired characteristics. How-21

ever, performing feature selection with these methods is cumbersome. On the one hand,22

a forward selection is impractical, especially for efficiency reasons. On the other hand,23

while a backwards selection could be implemented with current techniques, the size of the24

axis vectors and the scale of the plots complicate determining which features should be25

discarded, from both a visual and an interactive point of view.26

Alternatively, in this paper we introduce a new approach based on radial axes that is27

designed to facilitate performing backwards feature elimination, where users can progres-28

sively discard features with a small influence either on the visualizations or on a specific29

task (e.g., class or cluster separation). Specifically, this is accomplished by employing a30

set of scaled radial vectors that provide a clearer visual guidance for determining which31

features have the least impact on the low-dimensional plots, and therefore represent rea-32

sonable candidates to be discarded in a backwards elimination process. In practice, ana-33

lysts determine the contribution of the features to the plots and their related analysis tasks34
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by examining the lengths and orientations of the axis vectors. Moreover, they can also35

take into consideration their expertise when deciding whether a feature should belong to36

the final selected subset. Lastly, we illustrate the effectiveness of our approach through a37

case study related to a real medical chronic conditions data set. Concretely, clinicians have38

used the technique, in combination with their expert domain knowledge, in order to ob-39

tain insight regarding the discriminative power of the data features for classifying diabetes40

and/or high blood pressure patients.41

The rest of the paper is organized as follows. Section 2 describes the most relevant42

methods related to our proposal. In Section 3 we describe our approach based on scaled43

axes, illustrating how the proposal can be used to perform visual feature selection. Sec-44

tion 4 shows its capabilities through the case study related to medical data. Finally, Sec-45

tion 5 presents a discussion with the main benefits and limitations of the proposal, while46

Section 6 presents the conclusions and future work.47

2. Related work48

In this section we present a brief introduction to feature selection methods (with em-49

phasis on visual techniques), and describe the most relevant radial axes methods for mul-50

tivariate visualization related to our proposal.51

2.1. Feature Selection52

There is a vast literature on automatic feature selection techniques (Blum & Langley,53

1997; Guyon & Elisseeff, 2003; Chandrashekar & Sahin, 2014). Feature ranking methods54

sort the features according to some criteria and then select the features progressively (for-55

ward selection), consider all of the features initially and discard them sequentially (back-56

wards elimination), or simply apply some threshold to select the top-ranked features. If the57

ultimate goal is classification, these strategies are also called filters, and discard features58

as an independent preprocessing step before training a classifier. Alternatively, wrapper59

methods select subsets of features according to the accuracy of classification algorithms,60

which can be regarded as black boxes that score subsets of features. Lastly, embedded61

methods use a hybrid strategy that incorporates the feature selection process when training62

a particular classifier.63

The method proposed in this paper can be regarded as a feature ranking procedure64

for backwards elimination feature selection. However, instead of defining an automatic65

algorithm, it relies on interactive visualizations of data where users can apply their domain66

knowledge to steer the process of discarding features. Recently, the data visualization67

community has developed several visual feature selection methods and tools that also take68

into account user interaction. Most of the approaches propose graphical user interfaces that69
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show several visualizations simultaneously. Some contain well-known graphics in order70

to show overviews or properties of the data, while others constitute novel visualization71

methods. In order to perform feature selection many of these methods rely on quality72

metrics, which are measures that extract meaningful information about data. While some73

of these metrics are popular statistical estimates (correlation, Fisher score, or entropy gain,74

among others), many others constitute heuristic measures (May et al., 2011).75

Several of the earliest proposals are due to Yang et al., which developed hierarchi-76

cal methods for visual feature reduction. Yang et al. (2003a) proposes a dimensionality77

reduction method based on InterRing visualizations (Yang et al., 2002), which groups78

features hierarchically according to their similarity. The method was later extended to79

rank and filter out features (Yang et al., 2003b). Guo (2003) describes an interactive tool80

using several visualizations (e.g., parallel coordinates (Inselberg & Dimsdale, 1990) and81

entropy matrices) to identify subspaces and high-dimensional (hierarchical) clusters. The82

approach uses various heuristics, including a measure of the “goodness of a clustering”,83

and orderings related to paths on minimal spanning trees (MST). An interactive framework84

for ranking features based on ordering histograms and scatter plots is proposed in Seo &85

Shneiderman (2005). The work relies on numerous heuristics related to the distributions86

that appear in the visualizations (e.g., uniformity, number of outliers or gaps, or modality).87

Similarly, Johansson & Johansson (2009) uses heuristics related to the importance of a88

feature for correlation, outlier, and cluster detection. By weighting these measures inter-89

actively, users can generate feature orderings and reduce the number of features. Ingram90

et al. (2010) presents the DimStiller system for feature reduction and analysis. It uses91

abstractions (e.g., operators, expressions, or workflows) to combine different visualization92

techniques, and structure and guide the data analysis process. In particular, the approach93

can be used to determine whether features are meaningful, relationships between features,94

or the validity of detected clusters. May et al. (2011) proposes an interactive visualiza-95

tion technique denoted as SmartStripes for guiding the feature selection process, which96

can be used with categorical features. Tatu et al. (2012) examines clusterings in different97

sets of subspaces, which can be interactively explored by relying on subspace similar-98

ity and interestingness measures. The visualization tool allows to visualize features and99

subsets of features at various levels of detail, through parallel coordinates, lists of scatter100

plots, or multidimensional scaling (MDS) (Cox & Cox, 1994) visualizations. Krause et al.101

(2014) describes the INFUSE system, which is designed to help interpret how predictive102

features are ranked across feature selection algorithms and classifiers. For each feature,103

the tool displays a circular glyph depicting information related to several feature selection104

methods, which are based on measures of information gain, Fisher score, odds ratios, and105

relative risks. In addition, the tool depicts the results of several classification algorithms106

for the feature selection methods, across several cross-validation folds. Lastly, Rauber107
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Method Task Reduction approach Auxiliary visualizations Quality metric

Yang et al. (2003a) Dimensionality Subset selection InterRing Similarity

reduction

Yang et al. (2003b) Feature ranking Subset selection InterRing Similarity

Importance

Guo (2003) Feature insight Feature reduction Entropy matrix Goodness of clustering

Clustering Subset selection Parallel coordinates Maximum conditional entropy

Interactive histograms MST ordering

Bar and line charts

Seo & Shneiderman Feature ranking Feature reduction Score matrix 1 and 2-dimensional metrics

(2005) Histograms Modality

Scatterplots Outlierness

Box plots Gaps

Johansson & Johansson Feature ranking Feature reduction Score matrix Correlation

(2009) Scatter plot matrix Distribution density

Parallel coordinates

Ingram et al. (2010) Feature insight Feature reduction Scatter plot matrices Intrinsic dimensionality

Cluster validation Correlation matrices Variance and correlation

Scree plots MDS stress

May et al. (2011) Feature insight Subset selection Histograms Mutual information

Tatu et al. (2012) Clustering Subset selection Parallel coordinates Subspace redundancy

Scatterplot lists Subspace interestingness

MDS of subspaces

Krause et al. (2014) Feature insight Feature reduction Glyphs Information gain

Classification Subset selection Bar charts Fisher score

Odds ratio

Relative risk

Rauber et al. (2015) Classification Feature reduction Scatterplots RFE

LSP Random forests

Table 1: Summary of visual feature selection methods in the literature.

et al. (2015) proposes a tool for interactive image feature selection including five different108

views (observation, projection, feature, group, and feature scoring) that show information109

at various levels of detail. The tool uses recursive feature elimination (RFE) (Guyon et al.,110

2002) and an ensemble of randomized decision trees (Geurts et al., 2006), and the projec-111

tion view employs the least square projection (LSP) (Paulovich et al., 2008) dimensionality112

reduction technique.113

Table 1 presents a brief summary of the previous visual feature selection methods. In114

particular, the table considers: (a) the goal or task they are designed for, (b) the reduc-115

tion approach, which can consist of progressively discarding features one by one, or of116

selecting entire subsets of features in a single step, (c) the auxiliary visualization methods,117

and (d), the quality metrics used. It is worth mentioning that the capability of a tool for118

feature selection not only depends on the different graphics and the associated interaction119

techniques, but also on the nature of the data set, and on the quality metrics used to rank120
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the features (or feature subsets), which are remarkably diverse. Bertini et al. (2011) carries121

out a thorough literature review in order to provide a unified picture of proposed quality122

metrics for high-dimensional data visualization).123

2.2. Radial axes methods124

In this paper we propose a new approach based on radial axes visualizations that allows125

analysts to perform feature selection effectively. Radial axes methods are popular mul-126

tivariate visualization techniques that produce dimensionality reduction mappings. The127

simplest method is star coordinates (SC) (Kandogan, 2000, 2001), which is an extension128

of the scatterplot for more than two features, and has been used for exploratory tasks such129

as analyzing cluster structure, outliers, or trends. Let X be an N × n data matrix, con-130

taining N samples, each characterized by n features. The method maps high-dimensional131

samples x ∈ R
n onto a plane by relying on a set of n axis vectors vi ∈ R

2, for i = 1, . . . ,n,132

with a common origin point. Each vi is associated with the i-th feature. In particular, the133

low-dimensional representation p ∈R
2 (also denoted as an “embedded point”) of a sample134

x = [x1,x2, · · · ,xn]
T is a linear combination of the vectors vi. Formally,135

p = x1v1 + x2v2 + · · · + xnvn = VTx, (1)

where V is the n×2 matrix whose rows are the vectors vi. The method therefore generates136

linear mappings specified by V. In SC, the orientation of an axis vector determines the137

direction in which a feature increases, while the length is related to its contribution to the138

plot. For illustration purposes, Fig. 1(a) shows an example using four features (‘Accelera-139

tion’, ‘Horsepower’, ‘Displacement’, and ‘MPG’) of the Auto MPG data set, available at140

the UCI Machine Learning Repository (Lichman, 2013). The axis vectors have been cho-141

sen to search for cars with large values of ‘Horsepower’ and ‘Acceleration’, but low values142

of ‘MPG’, which would be represented as dots at the top of the plot. The visualization also143

includes an axis vector for ‘Displacement’, which plays a role horizontally. It is important144

to note that although the length of its axis vector is smaller than the remaining lengths,145

its contribution to the plot is important since it has a larger component in the horizontal146

direction.147

In practice, users can modify the axis vectors interactively in order to carry out diverse148

analysis tasks. However, another possibility is to automatically obtain sets of axis vectors149

from linear methods such as principal component analysis (PCA) (Jolliffe, 2010), inde-150

pendent component analysis (ICA) (Hyvärinen et al., 2001), linear discriminant analysis151

(LDA) (McLachlan, 2004), and so forth. Consider a linear method that maps data points152

onto a plane through p = Ax, where A is a known 2× n matrix. Clearly, we can build a153

SC model that generates the same plot by setting V = AT, due to (1). In other words, we154
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Figure 1: Radial axes plots of the Auto MPG data set: (a) SC plot; (b) ARA plot, where the axis vectors

have been selected to generate the PCA projection of the data onto a plane.

can recover the SC axis vectors (they would be the columns of A) that lead to the plot re-155

lated to the linear method. In the SC model, the possibility to visualize these axis vectors,156

together with the plotted points, allows us to determine relationships between the features157

and their contribution to the plots. Rubio-Sánchez et al. (2016) introduced this idea to158

analyze plots based on LDA. Recently, Wang et al. (2017) has denoted it as discriminative159

star coordinates, and it has also been applied to the results of unsupervised LDA (Ding160

& Li, 2007), which combines k-means clustering (MacQueen, 1967) and LDA. Lastly,161

these works carry out feature selection by only comparing the lengths of the axis vectors.162

In other words, they do not take advantage of their orientations, which should also be163

considered (see Section 3.5).164

Rubio-Sánchez et al. (2017) present a hybrid approach that bridges the gap between165

SC and principal component biplots (Gabriel, 1971; Gower et al., 2011) called adaptable166

radial axes (ARA) plots. In SC, users can update the axis vectors freely, but it is difficult167

to recover high-dimensional data values accurately, which is one of the main disadvan-168

tages of the method (Draper et al., 2009). Alternatively, with principal component biplots169

users can approximate the feature (i.e., data) values of an entire data set as accurately as170

possible (in a least squares sense) through projections of the embedded points onto ticked171

axes (see Fig. 1(b)). However, since the axis vectors are fixed in these visualizations, users172

cannot modify them in order to carry out several exploratory analysis tasks (e.g., search-173

ing for data with certain features, or creating different mappings in order to detect outliers174

or visualize clusters). In ARA plots analysts can update the axis vectors freely, and also175

approximate data values through projections onto ticked axes. Fig. 1(b) shows an exam-176

ple that uses standardized data. In this case, the means (which are 0) are represented at177

the origin, and the difference between consecutive tick marks corresponds to one standard178

deviation of the corresponding feature. Taking this interpretation into consideration, we179
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can approximately determine through orthogonal projections that the car associated with180

the darker blue point (which is also depicted in the SC plot) has a large value of ‘Acceler-181

ation’ (approximately 2.8), and low values of ‘MPG’, ‘Horsepower’ and ‘Displacement’.182

Although the estimated values are simply approximations, it is considerably simpler to ob-183

tain them visually using ticked axes than in the SC graphic (see Rubio-Sánchez & Sanchez184

(2014)). Additionally, it is also worth mentioning that, similarly to SC, it is possible to185

configure the axis vectors to generate any linear mapping. In this example, the particular186

choice of axis vectors leads to a PCA plot of the data.187

Formally, given a set of axis vectors coded in V, ARA plots find the low-dimensional188

embedded point p of a data point x by solving the following optimization problem:189

minimize

p ∈ R
2

‖Vp−x‖,
(2)

where Vp is the vector of approximated values for the data point x. Therefore, in ARA190

plots the approximated feature values are the dot products between the embedded points p191

and the axis vectors vi. In this scenario, the value represented at the endpoint of the axis192

vector is ‖v‖2. In addition, a unit of the original feature is located at 1/‖v‖ along the axis,193

which implies that the distance between tick marks separating consecutive integers is also194

1/‖v‖. Since the length of v does not correspond to a unit of a feature (unless ‖v‖ = 1),195

it cannot be used as a visual reference to indicate the location along the axis where a unit196

would be represented (see Fig. 2(a) for details). Therefore, the method requires drawing197

axis lines together with tick marks representing integers of the features. Without these tick198

marks, users would not be able to approximate data features properly, since it is difficult199

to visually estimate the reciprocal of the length of an axis vector (i.e., 1/‖v‖). Lastly,200

drawing these ticked axes can produce crowded plots even for a small number of features201

(see Section 3.4). The method proposed in this work mitigates this drawback.202

3. Scaled radial axes plots203

For the purpose of analyzing high-dimensional data and carrying out visual feature204

selection, we propose here a new radial axes method called Scaled Radial Axes (SRA)205

plots. In this section we describe the approach and indicate the main differences with206

other techniques based on radial axes.207

3.1. Description and mathematical formulation208

Users in SRA plots will also be able to recover feature values (xi) by relying on or-209

thogonal projections onto axes, similarly to ARA plots. In ARA the approximated values210

correspond to dot products between embedded points and axis vectors, which require axes211
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Figure 2: Relationships between approximated values (indicated on the upper part of the horizontal line) and

distances in the plots (shown on the lower part of the horizontal line) for: (a) ARA, and (b) SRA. Note that

ARA requires axes lines and tick marks (in red) to indicate the values of the approximations.

lines and tick marks to indicate the locations associated with integer approximations. Al-212

ternatively, in SRA we consider a more intuitive strategy that uses scaled axes, where a213

unit of a feature is located exactly at the endpoint of its axis vector. Therefore, in this214

scenario the length of an axis vector determines the distance between consecutive integers215

of its corresponding feature. This is illustrated in Fig. 2, which shows the relationships216

between the distances on the plots and the corresponding approximations on the axes, for217

ARA and SRA.218

In SRA the idea is implemented by recovering the i-th data feature of a data point219

through the following scaled dot product:220

vT

i p

‖vi‖2
.

By dividing by the squared Euclidean norm of an axis vector, its endpoint now represents221

a unit of its associated feature, as shown in Fig. 2(b). This allows us to omit drawing222

line axes when the approximations are small (see Section 3.4). Therefore, we define SRA223

9



formally through the following optimization problem:224

minimize

p ∈ R
2

‖V̄p−x‖2
2, (3)

where V̄ is similar to V, but in this case each row is divided by its squared norm. Specifi-225

cally, the rows of V̄ are:226

v̄i =

{

vi

‖vi‖2
2

if vi 6= 0,

0 if vi = 0.
(4)

The optimal solution to (3) is given by:227

p = V̄†x, (5)

where † denotes the Moore-Penrose pseudoinverse. The method therefore builds a linear228

mapping from the data space onto the observable plane characterized by the matrix V̄†.229

We can define the projection of an entire data set in matrix notation through:230

P = X(V̄†)T, (6)

where P is the N ×2 matrix whose rows consist of the embedded points. In practice it can231

be computed very efficiently, even for large values of n and N (see Section 5). Finally,232

when V̄ has full column rank (i.e., when the axis vectors are not all aligned along the same233

direction), V̄† = (V̄TV̄)−1V̄T.234

3.2. Influence of the axis vectors on the plots235

Using V̄ not only determines how the axes are scaled, but it also affects how the axis236

vectors influence the plots, and how users must interact with them. It is important to notice237

that shorter vectors will have a stronger impact on the SRA plots, in contrast to longer238

vectors when using other radial axes plots. Observe that, when searching for the optimal239

embedded point p, the optimization problem in (3) naturally focuses on minimizing errors240

on shorter axis vectors. In particular, note that the objective function in (3) can be rewritten241

as:242

n

∑
i=1

(

1

‖vi‖2
·vT

i p− xi

)2

. (7)

Therefore, if the i-th axis vector vi is long, 1/‖vi‖2 will be small and the choice of p will243

barely affect the i-th term of the sum in (7). The scaled axis vectors are useful for visual244

backwards feature selection since it is easier to spot the longest vectors, associated with245

features with a small influence on the plots.246
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However, the length of an axis vector is not the only factor determining the contribution247

of a feature to a plot. To illustrate this, in this work we compute the average displacement248

of the low-dimensional points when a feature is discarded as:249

f (vi) =
1

N

N

∑
j=1

‖p( j)−q
( j)
vi
‖, (8)

where N is the cardinality of the data set, p( j) is the embedded point of the j-th data sample250

for a particular radial axes method, and q
( j)
vi

is the corresponding low-dimensional point251

when removing the feature associated with the axis vector vi.252

Fig. 3 shows an example of these average displacements for SC, ARA, and SRA plots.253

Specifically, we generated a random set of n = 50 axis vectors, and a random data set of254

N = 100 points. The components of the axis vectors and the values of the data points255

were drawn from a standard normal distribution. Subsequently, we computed the low-256

dimensional points associated with the three methods, and obtained their average displace-257

ments. The dots on the graphics represent pairs (‖vi‖, f (vi)) and illustrate the average258

displacement of the mapped points when vi is removed from a radial axes plot, as defined259

in (8). The trend for SC and ARA is clearly increasing, but dots do not follow a strictly in-260

creasing pattern as ‖vi‖ grows. Thus, there are features with longer axis vectors that do not261

contribute as much as others with shorter ones. Similarly, f (vi) does not strictly decrease262

as ‖vi‖ increases for SRA. For instance, the feature with the second shortest axis vector263

has less impact on the plot than the features with the third to sixth shortest axis vectors.264

Therefore, besides the length of an axis vector, it is necessary to take into account other265

factors such as the orientation of the axis vectors, the arrangement of clusters or classes in266

the plots, or domain knowledge (see Section 3.5). We emphasize this consideration since267

previous works in the literature have only focused on analyzing the lengths of the axis268

vectors.269

3.3. Arbitrary linear mappings270

Similarly to SC and ARA, it is also possible to select a set of axis vectors in SRA to271

generate any linear mapping from the data space onto the plane. Let A be a known 2×n272

matrix defining the linear transformation to reproduce. Due to (5), we would need to find273

a set of axis vectors for which V̄† = A. This can be accomplished by first computing the274

pseudoinverse of A, which provides V̄:275

V̄ = A†, (9)
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Figure 3: Example of the contribution of axis vectors to plots (in terms of the average displacement of

mapped points when removing a feature) depending on their length, for SC, ARA and SRA.

since M = (M†)† for any matrix M. Subsequently, the axis vectors (that form V) can be276

recovered through:277

vi =

{

v̄i

‖v̄i‖2
2

if v̄i 6= 0,

0 if v̄i = 0,
(10)

which follows from (4), since it defines an involution. The axis vectors are therefore the278

rows of the pseudoinverse of A, divided by their squared length. The special case in (10) is279

included by considering that A can be any matrix, where some rows of V̄ could be equal to280

0. In those cases, the corresponding axes cannot be specified for the features. Thus, their281
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Figure 4: Radial axes plots that produce the LDA mapping of the Iris data set for: (a) SC, (b) ARA, and (c)

SRA. The embedded points are colored according to their class. The axis vectors in the ARA plot are very

short and are depicted in black near the origin.

axis vectors are set to 0, and the features are ignored when determining the optimal p.282

Fig. 4 shows radial axes plots that produce the LDA mapping of the well-known Iris283

data set (Lichman, 2013). It contains four data features (‘petal length’, ‘petal width’,284

‘sepal length’, ‘sepal width’) and three classes (‘setosa’, ‘versicolour’, ‘virginica’) that285

identify three species of the iris flower. In particular, we generated the LDA transformation286

automatically (using standardized data) to separate the three classes, and recovered the287

layout of axis vectors that would generate that mapping for SC, ARA, and SRA, in (a), (b),288

and (c), respectively. Note that the plotted points are the same in the three visualizations.289

The SC plot does not incorporate line axes, and therefore users cannot recover feature290

values accurately. The ARA plot mitigates this issue by including ticked axes (but can lead291

to cluttered visualizations for data sets that contain more features). In SRA, the ticked line292

axes are not necessary and the visualization also allows users to recover feature values by293

using the vectors instead of line axes (the endpoints of the vectors indicate the location of294

the units on the axes). Moreover, it is easier to visually identify the less relevant features295

for the class separation task in SRA (longest vectors) than in ARA (shortest vectors), which296

is useful for backwards feature selection. Moreover, in this example the axis vectors in the297

ARA plot are barely visible.298

3.4. Clutter reduction299

The scaling of the axes is a key contribution regarding the usability of SRA: since300

the vector length visually encodes a unit of the particular feature, it provides the same301

information as the first tick mark on an ARA plot. This allows us to omit drawing line302

axes and their corresponding tick marks when values of the data features are small, which303

reduces clutter considerably.304

Fig. 5 illustrates an example with the Wine data set available in Lichman (2013). This305
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Figure 5: Projection of the Wine data set, composed of 13 features, considering: (a) ARA plot, with axis

vectors barely visible due to their small size (depicted in black near the origin), and axes with tick marks;

(b) SRA plot using V̄, where the axis vectors provide enough visual information to recover original feature

values. The clutter reduction when using SRA is apparent (due to the absence of axis lines).

data set contains 13 features corresponding to the chemical analysis of three types of wine,306

which we have standardized in a preprocessing stage. The visualization in Figure 5(a) is307

an ARA plot, where we have selected the axis vectors to obtain the PCA projection of308

the data onto a plane. The application of SRA in Fig. 5(b) points out some weaknesses309

of ARA: (1) greater overlap in the ARA plot due to the necessity of drawing the axis310

lines; (2) though the directions of axis vectors are provided by the axis lines, their specific311

orientations are barely visible; and (3) axes can share the same or very similar directions in312

some configurations (e.g., in regular layouts that are often used in the literature), making it313

difficult to distinguish which tick marks are associated with which features. This last issue314

is illustrated in Fig. 5(a), where the colored darker axes exhibit almost identical directions.315

Note that without colors it would not be trivial to identify which tick marks correspond to a316

particular axis. Alternatively, the analogous SRA plot in Fig. 5(b) is less cluttered since it317

does not contain line axes. We have also colored the two vectors that share almost identical318

directions for reference, though this coloring is not necessary in SRA for distinguishing319

the axes and approximating values of the corresponding features. Lastly, when axes are320

omitted it can be easier to incorporate names of features into the plots.321

In practice, the absence of tick marks in the SRA plot in Fig. 5(b) does not hamper322

users’ ability to visually compute projected values severely, in comparison with the radial323

ticked axes plot in Fig. 5(a), which requires them. Note that in radial axes methods the324

features should share a similar scaling, since otherwise features with larger ranges would325
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Figure 6: Average distance from embedded points to the origin, for random configurations of vectors and

data whose components were drawn from a standard normal distribution.

have a greater impact on the resulting plots. Therefore, they are usually standardized,326

transformed to lie in the [0,1] interval, or centered and normalized to have unit range. In327

all of these cases the absolute values of the approximations corresponding to orthogonal328

projections onto the axes are generally lower than two. Therefore, users can approximate329

these values accurately by relying exclusively on the depicted axis vectors, whose end-330

points are equivalent to one tick mark in a ticked axis.331

Furthermore, the projections onto the axes in SRA are small not only because the data332

are standardized, but also due to the clumping effect of the projections, which tends to333

map points closer to the origin as the number of features increases. This effect is shown in334

Fig. 6, which shows average distances from embedded points to the origin as a function of335

the number of features (n). The results were averaged over 200 trials of random configu-336

rations of vectors, where we mapped 50 samples in each trial. The components of the axis337

vectors, and the values of the data points, were drawn from a standard normal distribution.338

Finally, standardization has two main benefits. Firstly, a unit of a feature represents339

one standard deviation. Thus, the length of an axis vector in SRA, or the location of the340

first tick mark in ARA, have a clear statistical meaning. This is important to simplify the341

graphics, since it allows us to omit numerical labels next to the tick marks (see Fig. 1(b)).342

Secondly, Rubio-Sánchez & Sanchez (2014) showed that the approximations are more343

accurate when the data are centered.344

3.5. Interactive visual feature selection for class separation345

Since the scaling introduced in SRA highlights the least important features, the tech-346

nique is appropriate for visual sequential backwards feature selection. In practice, users347

can eliminate features progressively by considering their contribution to a specific plot,348

which is affected by the lengths and directions of the axis vectors. They can also decide to349

maintain or discard features according to their domain knowledge.350
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Figure 7: Interactive visual feature selection. SRA plots related to LMNN for the Breast Cancer Wisconsin

Diagnostic data set: (a) considering all features, (b) after removing the ‘Symmetry1’ feature; and (c) when

removing features named ‘Smoothness3’, ‘Area1’, and ‘Concavity2’.

In addition, assuming the data are categorized into several classes, it is possible to351

recover the axis vectors in SRA to generate plots related to linear methods designed to352

enhance classification performance. The most popular linear method is LDA, which max-353

imizes the ratio between the inter-class and intra-class variance. In this paper we will also354

rely on metric learning approaches such as large margin nearest neighbor (LMNN) (Wein-355

berger & Saul, 2009), and neighbourhood components analysis (NCA) (Goldberger et al.,356

2005), whose goal consists of enhancing nearest neighbor classification. The resulting357

SRA plots will provide insight regarding the less discriminative features in the data.358

For instance, Fig. 7 shows an SRA plot associated with a LMNN mapping of the359

Breast Cancer Wisconsin Diagnostic data set (Alcala-Fdez et al., 2008), which includes360

30 features from a digitized image of a fine needle aspirate of breast mass, used to de-361

termine if a tumor is benign (darker blue dots) or malignant (lighter orange dots). The362

data set contains information regarding 10 characteristics (radius, texture, perimeter, area,363

smoothness, compactness, concavity, concave points, symmetry, and fractal dimension)364

of the cell nuclei present in the image. For each characteristic the data set includes three365

types of measurements: (1) mean, (2) standard error, and (3) the mean just considering the366

three largest values for each image. In the plots we have appended a numerical suffix to367

the names of the features to indicate the type of measurement. Fig. 7(a) shows an SRA plot368

when using the 30 features of the data set. In contrast to SC or ARA plots, features with369

long vectors can be easily detected in SRA, and discarded in a backwards feature selection370

process. In this case, the axis vector for ‘Symmetry1’ is clearly larger than the rest. This371

implies that it barely affects the plot, and it is likely the least discriminative feature. After372

discarding ‘Symmetry1’, the SRA plot is shown in Fig. 7(b), where axis vectors related to373
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Figure 8: SRA plots related to LMNN for the Breast Cancer Wisconsin Diagnostic data set: (a) zoom

of Fig. 7(c); (b) effect of removing the ‘Concave points1’ and ‘Concavity3’ features in (a); (c) effect of

discarding ‘Radius2’ and ‘Perimeter1’ in (a).

‘Smoothness3’, ‘Area1’, and ‘Concavity2’ are also longer than the rest. Thus, we can also374

omit these features by focusing on the lengths of the axis vectors, assuming it is appropri-375

ate according to domain knowledge. The resulting plot is shown in Fig. 7(c), where the376

locations of the points are very similar to those in Fig. 7(b).377

As previously indicated, the direction of an axis vector also constitutes a key factor378

regarding the importance of a feature in a plot. Note that the low-dimensional points will379

move roughly in the direction of an axis vector when the corresponding feature is removed.380

Thus, for separating classes (or clusters) in the two-dimensional plot, we can also discard381

features whose axis vectors are roughly perpendicular to the direction separating these382

classes, even if those axis vectors are short. Fig. 8 illustrates this idea. In particular,383

Fig. 8(a) is just a zoomed version of the plot in Fig. 7(c), where both classes are separated384

fairly well horizontally. Observe that there are several axis vectors whose orientations385

are roughly perpendicular to the class separation direction. Therefore, although omitting386

them could originate large displacements of the plotted points, the two classes should387

remain fairly separated. Specifically, in the plot in Fig. 8(b) we have removed the features388

‘Concave points1’ and ‘Concavity3’, which have relatively short axis vectors. The low-389

dimensional points therefore move vertically, but this barely alters the overlap between390

classes. Instead, in Fig. 8(c) we have eliminated ‘Radius2’ and ‘Perimeter1’, since their391

axis vectors point in the separation direction. In this case, although their lengths are similar392

to those for ‘Concave points1’ and ‘Concavity3’, the points move roughly horizontally.393

This substantially increases the overlap between the classes, which indicates that these394

features should belong to the final feature subset.395

The process can continue by considering the lengths and orientations of other axis396
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Cancer Wisconsin Diagnostic data set.

vectors (and possible domain knowledge), and by analyzing the class separation in the two-397

dimensional plots. The idea is to obtain a final subset of features that allows to separate398

classes reasonably well. Fig. 9 shows an example of an SRA plot where we have retained399

seven of the original thirty features of the Breast Cancer Wisconsin Diagnostic data set.400

Lastly, we measure the quality of SRA projections for class separation as carried out in401

Leban et al. (2006), by computing the leave-one-out accuracy of a voting k-nearest neigh-402

bor (k-nn) classifier (Duda et al., 2001) applied on the plotted two-dimensional points.403

Specifically, we used k =
√

N, where N is the number of samples in the data set, as sug-404

gested by Dasarathy (1991). Thus, for the Breast Cancer Wisconsin Diagnostic data set we405

chose k = 24, since it contains N = 569 samples. We obtained a quality of class separation406

of 96.66% when considering the plot in Fig. 7(a) that involves all of the 30 features in the407

data set. The score only dropped to 93.32% when considering the plot in Fig. 9, which408

uses the reduced set of seven features.409

4. Case study: analyzing chronic conditions410

In this section we describe a case study in which clinicians used SRA for visual feature411

selection related to chronic conditions.412

4.1. Chronic conditions fundamentals413

Chronic diseases constitute a well-known problem in current societies, mainly due to414

the major demographic changes throughout the world over the past few years. On the one415
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hand, the percentage of people over 65 years of age is expected to increase in developed416

regions (McNicoll, 2002). On the other hand, it is estimated that by the year 2050 about417

20% of the whole world population will exceed 65 years. There are also clear positive418

correlations between age, chronic conditions, and the use of health services. According419

to Organization et al. (2005), chronic diseases account for 60% of global deaths, and trig-420

ger 75% of public health expenditure. Therefore, it is important to determine the diseases421

that present the highest prevalence, and to identify the factors that best characterize them.422

Two diseases that highly contribute to the complex chronic patient group are diabetes423

mellitus (DM) and high blood pressure (HBP, also called essential arterial hypertension).424

Not only are they notoriously widespread, but their frequency increases with age, and pa-425

tients maintain their chronic condition until their death. Specifically, DM is one of the426

leading chronic diseases in developed countries. It entails many consequences, both from427

a clinical and social viewpoint, since it increases the risk of many serious health prob-428

lems. For example, vascular disease is the diabetes complication that can have a more429

severe prognosis, since it can be accompanied by damage to the coronary arteries, which430

may lead to myocardial infarction or limb amputation. Other complications of diabetes431

include kidney problems and blindness. HBP, which is diagnosed when diastolic/systolic432

blood pressure is 140/90 mmHg or greater, appears among 18% of those who suffer from433

chronic conditions (Organization, 1999). It can be associated with the onset of other med-434

ical conditions such as chronic kidney disease, and it is also related to DM. The simulta-435

neous presence of chronic diseases (comorbidities) can have dramatic consequences. For436

instance, HPB in patients with DM raises the risk of cardiovascular disease.437

4.2. Chronic conditions data438

In this case study we used data provided by Hospital Universitario de Fuenlabrada439

(HUF) in Madrid, Spain. In order to identify patients with certain chronic diseases, a440

Patient Classification System (PCS) was applied. In essence, a PCS is a medical decision441

tree with clinically validated rules, which groups patients according to their health status442

and resource consumption. Berlinguet et al. (2005) analyzed different PCS and concluded443

that the so-called Clinical Risk Groups (CRGs) offered the best performance according to444

three criteria: clinical relevance of the grouping, resource prediction, and ease of use. This445

was the reason for using the CRGs (Averill et al., 1999; Hughes et al., 2004) to determine446

a patient’s health status. CRGs are hierarchically organized into nine core categories, from447

CRG-1 (healthy user) to CRG-9 (catastrophic).448

Our data set contains information relative to demographic features (age and gender),449

diagnoses from primary and specialized care centers, and pharmaceutical drug dispen-450

sation during one year. Diagnoses were coded by considering three digits, as stated in451

the International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-452
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CM) (Centers for Disease Control and Prevention, 2011). Medical drugs were specified453

through five characters, according to the Anatomical Therapeutic Chemical (ATC) Classi-454

fication System (Norwegian Institute of Public Health, 2017) used in Europe. CRGs used455

this information to assign each patient to a single mutually exclusive health status or risk456

group.457

In this paper we analyzed three chronic conditions (i.e., categories): crg-5192 (HBP),458

crg-5424 (DM), and crg-6144 (DM and HBP). The first digit of the CRG-code refers to the459

core group, while the next three digits are associated with the chronic condition category.460

Specifically, HUF provided us with data of 17792 patients associated with the three chronic461

statuses of interest during the year 2012: 12447 for crg-5192, 2166 for crg-5424, and 3179462

for crg-6144. Since class-imbalance is a well-known issue in medical research (Soguero-463

Ruiz et al., 2016; Fernández-Sánchez et al., 2017), we adopted an undersampling strategy464

taking into account the size of the minority group. Thus, we randomly selected 2166465

patients from each group.466

In a previous study we performed a descriptive analysis of diagnosis codes and demo-467

graphic features in the group of only chronic hypertensive patients (Fernández-Sánchez468

et al., 2017). Regarding the features in the current work, we have also considered medical469

drugs apart from diagnosis. Each code of diagnosis and medical drug has been considered470

as a different feature. In particular, each patient is described by a total of 1517 features471

for diagnoses, and 746 for medical drugs. The features are integers that count the number472

of times that a particular patient has been diagnosed with a certain condition, or has been473

dispensed a particular drug. Around half of the features had a zero count for every single474

patient, and were therefore discarded. In addition, we reduced the data set even further by475

computing the entropy gain of each feature according to Rauber & Steiger-Garção (1993),476

and by selecting the 50 features with the highest gain. According to the domain knowl-477

edge of the clinicians who participated in the case study, the resulting subset of features478

contained the most relevant features related to the chronic conditions under study.479

4.3. Visual feature selection with SRA480

Since the dimensionality of the data (50) is still high, further feature selection proce-481

dures can be useful for identifying features with a greater clinical relevance for character-482

izing the chronic conditions. In our case study, the medical doctors used SRA, coupled483

with linear methods for classification, as a basis for performing a sequential backwards484

visual feature selection. Specifically, the goal was to determine which features were more485

helpful for discriminating between health statuses: (i) HBP, (ii) DM, and (iii) HBP and486

DM. Therefore, the clinicians used SRA to graphically identify different health groups,487

and to evaluate or confirm (in consonance with domain knowledge) the impact of each488

feature on the plots designed for class separation. Since clinicians were not experts in data489
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Figure 10: SRA plots related to LMNN for patients with hypertension (darker points, crg-5192) and dia-

betes (lighter points, crg-5424) considering 50 and 16 features, in (a) and (b), respectively. The plot in (c)

represents a zoom of (b), and in (d) we show the (minor) effect of removing the feature ‘Age’.

visualization methods, we provided explanations of the main properties of SRA, as well490

as assistance throughout the process.491

Firstly, the medical doctors analyzed which features contributed more to distinguishing492

between the hypertensive and diabetic groups (crg-5192 vs. crg-5424). This is the simplest493

scenario when considering chronic conditions, since the health statuses are characterized494
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by only one chronic condition. Fig. 10 shows SRA plots associated with the LMNN map-495

ping of the (standardized) data set, where the lighter (yellow) and darker (blue) points496

represent patients with DM, and HBP, respectively. In Fig. 10(a) we used the initial 50497

features. The clinicians then progressively discarded features by relying on the visualiza-498

tions and their own expertise until obtaining the plot in Fig. 10(b), which only contains499

16 features. The quality of class separation only decreased from a score of 98.66% (when500

using the initial 50 features) to 98.61% when considering just 16 features (in this case we501

used the voting 66−nn classifier, since there are N = 4332 samples).502

The plot in Fig. 10(c) is simply a zoom of Fig. 10(b), where we can gain insight regard-503

ing the most relevant features for classifying patients with a single chronic condition. In504

this example, these features are mainly those oriented horizontally, since classes are sep-505

arated along that direction. For instance, the features related to the drug codes ‘G04CA’506

(alpha-adrenoreceptor antagonists) and ‘C09AA’ (angiotensin-converting-enzyme inhibitors,507

plain) point towards the crg-5192 class, as expected by the clinicians. Analogously, sev-508

eral axis vectors are oriented towards the crg-5424 class. Their contribution to the plots, as509

suggested by their lengths and orientations, was in accordance with the clinician’s back-510

ground knowledge. For example, the axis vectors for drug codes ‘A10AB’ (insulins and511

analogues for injection, fast-acting), ‘A10AE’ (insulins and analogues for injection, long-512

acting), ‘A10BA’ (biguanides), or ‘A10BD’ (combinations of oral blood glucose lowering513

drugs) all have positive components along the plot’s X axis, since they point towards the514

first quadrant. Thus, they are clearly related to diabetes. The feature for the diagnosis515

code ‘250’ (DM) also appears pointing towards the diabetic group, and has a higher con-516

tribution than the ATC codes, since its axis vector is shorter. Clinicians also suggested to517

retain the drug code ‘C10AA’ (HMG CoA reductase inhibitors) in spite of the long length518

of its axis vector, since it could have some relation with diabetic patients. Finally, regard-519

ing the ‘Age’ feature, the length of its axis vector is similar to that of the remaining ones.520

However, it does not play a key role in separating the crg-5192 and crg-5424 groups, since521

its axis vector is roughly perpendicular to the direction that separates the classes. This522

also occurs for other features like the diagnosis code ‘401’ (essential hypertension). If the523

‘Age’ feature is removed (as shown in Fig. 10(d)), the classes remain clearly separated,524

and the quality of class separation is enhanced to 99.01%.525

For comparison purposes, in Fig. 11 we show SC and ARA plots related to the LMNN526

mapping, with the initial 50 features. In both cases shorter vectors have a weaker impact527

on the resulting plots. Thus, in practice it is required to zoom in several times to be able528

to identify the features to be removed. In the example, the initial SC plot is shown in529

(a), while (b) and (c) show 4x and 40x zooms, respectively. Similarly, (d) is the initial530

ARA plot, while (e) and (f) show 20x and 100x zooms, respectively. Observe that the531

axis vectors (and the axis lines in ARA) overlap considerably, which makes it difficult532
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(a) (b) (c)

(d) (e) (f)

Figure 11: SC and ARA plots related to the SRA plot in Fig. 10 (a) with 50 features. The initial configuration

of the SC plot is shown in (a), while (b) and (c) show 4x and 40x zooms, respectively. Analogously, (d)

contains the initial ARA plot, while (e) and (f) show 20x and 100x zooms, respectively. On the one hand

the axis vectors (and axes lines) overlap considerably. On the other hand, we can lose the distribution of the

plotted points when zooming.

to visualize and select the shortest axis vectors. In addition, depending on the scale of533

the data, the projected points may fall outside of the plot. Thus, we can lose the overall534

picture of the data set, which is necessary for considering the orientations of the vectors535

(in this case, the direction that separates the classes). In our experiments, all clinicians536

were able to immediately obtain the longest axis (‘N02BB’) using SRA, and agreed to537

remove it (see Fig. 10(a)). However, when using SC and ARA they had to zoom in several538

times, obtaining the plots in (c) and (f), before deciding on the least relevant features.539

Most importantly, they did not agree on the feature to be removed, as some vectors were540

of similar size.541

In the next study the data set was expanded by including a third health status encom-542

passing both chronic conditions, diabetes and hypertension (crg-6144). In this case, we543

selected a total of 6498 patients (2166 of each health status), and tested our approach by544
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Figure 12: SRA plots related to NCA for patients with just hypertension (darker blue points, crg-5192),

just diabetes (lighter orange points, crg-5424), and both comorbidities (mid-range green color, crg-6144)

considering 50 and 9 features, in (a) and (b), respectively. The plot in (c) is a zoom of (b), and in (d) we

show the (strong) effect of removing the features ‘Age’ and ‘C10AA’.
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relying on the NCA mapping of the data set. Fig. 12 shows several SRA plots associ-545

ated with NCA, where the lighter (yellow), darker (blue), and mid-color (green) points546

represent patients with DM (crg-5424), HBP (crg-5192) and both chronic conditions (crg-547

6144), respectively. Similarly to the first study, we generated an initial plot by using all548

of the 50 features, as shown in Fig. 12(a). The quality of class separation according to a549

nearest neighbor classifier was 92.67% (we used k = 81, since N = 6498). Subsequently,550

the clinicians progressively eliminated features by relying on the visualization and their551

domain knowledge until obtaining the plot in Fig. 12(b), which only contains 9 features552

and provides a quality of class separation of 87.17%.553

We can observe the axis vectors (and their contribution) more clearly in Fig. 12(c),554

which is a zoom of Fig. 12(b). On this occasion, clinicians did not select the diagno-555

sis code ‘401’ because there were other features with more influence for separating both556

groups. Instead, although in the first study the drug code ‘C10AA’ (HMG CoA reductase557

inhibitors) did not contribute much in distinguishing between hypertensive and diabetic558

patients (according to the layout of vectors obtained when reproducing LMNN), the clin-559

icians suggested to retain it since in their opinion it had a clear relation to diabetes. In560

this case, it is apparent that the feature ‘C10AA’ is key for separating the groups (note561

that its axis vector is one of the shortest ones). This confirms the medical knowledge that562

reductase inhibitors are related to diabetic patients. Likewise, the feature ‘Age’ does have563

a strong impact on class separation, since individuals in CRGs with chronic comorbidi-564

ties (crg-6144) tend to be older than patients with just one chronic condition (crg-5192 or565

crg-5424). ‘Age’ is especially relevant for patients with diabetes, which supports existing566

knowledge about juvenile diabetes. Finally, in order to visually confirm the importance of567

both features (‘C10AA’ and ‘Age’) we discarded their axis vectors. The resulting plot is568

shown in Fig. 12(d), where the lighter (crg-5244) and mid-color (crg-6144) classes clearly569

overlap. In this case, the quality of class separation dropped to 75.45%.570

The study carried out, involving clinicians and a real medical data set, shows that571

SRA can be a valid tool when it is used by domain experts without previous experience572

in interactive visual data analysis tools. The visualizations have allowed the clinicians at573

HUF to confirm previous medical knowledge, and to obtain new insight into the area of574

application.575

5. Discussion576

In practice, analysts can use radial axes plots for visual feature selection by studying577

the impact of the features on a plot. However, it is problematic to use these visualizations578

in a sequential forward selection process, mainly due to the large number of plots that579

users would have to analyze. Note that having a subset of m < n features, it would be580
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necessary to visualize the n−m additional plots that include one more feature in order to581

expand the subset. Since this procedure would be carried out multiple times, the number of582

visualizations would be excessive in a practical setting. In particular, this approach would583

require (m+1)(n−m/2) visualizations for obtaining a subset of m features. Alternatively,584

users in a sequential backwards elimination procedure analyze a single plot to discard one585

of the features. Thus, this approach requires analyzing n−m visualizations in order to586

choose a subset of m features, which is much smaller than the number required by the587

sequential forward selection scheme. Thus, if m is some percentage of n (i.e., αn=m, with588

α ∈ (0,1)), then the forward selection strategy requires on the order of n2 visualizations,589

while the backwards approach needs on the order of n plots. Moreover, when performing590

a backwards selection it is also possible to identify an entire group (i.e., set) of features to591

discard by analyzing a single plot, which can speed up the selection process notably when592

the initial number of features is large.593

In SRA a backwards feature selection is implemented by removing longer axis vec-594

tors, which are easy to spot. In SC and ARA it is possible to perform a similar feature595

elimination by discarding shorter axis vectors. However, as shown in Fig. 11, it is more596

difficult to identify these axis vectors. In practice, analysts may need to zoom in on the597

plots considerably, which is not only time-consuming, but the overall view of the data can598

be lost in the resulting graphic, since many of the projected points may not appear in the599

plot. Therefore, in SC and ARA it can be harder to take advantage of the directions of the600

axis vectors.601

Although methods based on radial axes can represent as many variables as desired, in602

practice n is usually small (see (Gabriel, 1971; Kandogan, 2000, 2001; Chen & Liu, 2004;603

Zhang et al., 2006; Tsai & Chiu, 2008; Sun et al., 2008)). Note that if n is large a feature604

reduction process would be time-consuming and cumbersome, mainly due to the overlap605

between the axis vectors. In that case one solution consists of carrying out a preliminary606

feature reduction with an automatic method (in Section 4.2 we have used the entropy gain607

to reduce the number of features). Another possibility is to generate an SRA plot and608

eliminate the features related to long axis vectors, according to a length threshold, or to a609

particular number of features the analysts may wish to retain before applying the proposed610

feature reduction approach. Another limitation of the approach is related to the type of611

data it can support. In particular, all of the radial axes methods described in this paper612

require using numerical data (it is possible to use binary features).613

In order to evaluate the method’s potential for data analysis, we have developed a614

data visualization prototype in MATLABr using the toolbox for dimensionality reduc-615

tion (Maaten, 2015). In preliminary usability tests, users were able to carry out: i) tasks616

directly related to the technique like classification, clustering, feature selection, outlier617

detection, or attribute value estimation; and ii) other basic data analysis tasks like those618
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Figure 13: Average runtimes for computing the axis vectors (V) given some initial linear transformation

matrix through (9) and (10), and for calculating 10000 embedded points (P) through (6).

described in Amar et al. (2005) and Yi et al. (2007), such as retrieving values, determining619

correlations, filtering, etc.620

Regarding the efficiency of the approach, it is worth mentioning that the key factor621

depends on the computational cost of the chosen linear method (e.g., LDA, LMNN, NCA,622

etc.), which provides a particular 2× n matrix A. The process of determining the axis623

vectors V through (9) and (10), as well as computing the embedded points (P) through (6)624

can be carried out in the order of microseconds, even for a large number of features (n),625

since these operations can be carried out in linear time with respect to n. Figure 13 shows626

average runtimes needed to compute V given some random initial matrix A, and to project627

N = 10000 random high-dimensional points (X), for several values of n. The results were628

averaged over 1000 trials, and the components of A and X were drawn from a standard629

normal distribution. In particular, the simulation was carried out on a personal computer630

with a fourth generation Intelr CoreTM i7-4712HQ 3.3 GHz processor and 16 GB of RAM.631

It is apparent that the calculations can be carried out in real time.632

Finally, the proposed visualization method is an exploratory data analysis tool that633

can lead to interesting and possibly unexpected discoveries in an overview phase of a634

data mining process (Shneiderman, 1996; Witten & Frank, 2005). However, it is worth635

pointing out that analysts must confirm the findings through appropriate statistical and636

scientific procedures. In this regard, the insight obtained through the user study with637

chronic conditions data only provides an initial guidance for a further analysis, which is638

clearly out of the scope of the paper.639

6. Conclusions640

This paper has introduced and analyzed a multivariate visualization method called641

SRA, which is based on a set of radial axis vectors that represent data features, and can gen-642
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erate any linear projection of high-dimensional data points onto a two-dimensional plane.643

On the one hand, unlike SC, SRA plots allow users to approximate high-dimensional data644

values. On the other hand, in comparison with ARA, SRA provides less cluttered plots,645

and allows users to analyze the axis vectors and all of the projected points simultaneously.646

Moreover, in SRA longer axis vectors generally represent features that have a smaller in-647

fluence on a projection. Since it is easier to identify these vectors, the technique can be648

used to carry out an interactive backwards feature selection effectively, where users pro-649

gressively eliminate vectors from the plots. Additionally, in contrast to other works in the650

literature, we argue that analysts should consider not only the lengths of the axis vectors,651

but also their orientations, and expert domain knowledge.652

In particular, we have used SRA to carry out visual feature selection procedures with653

a real-world data set associated with medical chronic conditions of high prevalence in our654

society. Results show that SRA allows us to visualize groups of chronic patients with one655

or two chronic conditions (DM and/or HBP), while showing the contribution of different656

clinical features for discriminating among health statuses. These kinds of visualizations,657

which in principle are designed for performing exploratory data analyses, can be very658

valuable for experts in the clinical domain. In particular, the visual identification of drugs659

and diagnoses somehow related to chronic conditions may be of great value for a better660

understanding of these conditions, and may even reveal potential new relationships among661

diagnoses and drugs. Therefore, the method proposed in this work can be of great help662

to clinicians and health managers for planning care and health resources allocation. This663

could lead to an improvement of the health care system, both from an economical and664

social point of view.665

Finally, as future research, we plan to work with time series data in order to find chronic666

patient trajectories. This could allow experts to identify the risk factors associated with the667

onset or evolution of a chronic condition. As a consequence, health managers could estab-668

lish prevention programs according to the risk of a patient of suffering certain conditions.669
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