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Abstract

Multidimensional data sets are becoming more frequent in practically all research

fields, and require complex data analysis techniques in order to extract knowledge

from them. In this paper, we propose an interactive visualization tool for perform-

ing exploratory data analysis. The tool combines unsupervised and supervised

dimensionality reduction methods, such as linear discriminant analysis, or t-SNE,

with clustering and classification techniques. Analysts can use several machine

learning methods for extracting data structure, and can group data into clusters

interactively or through clustering algorithms. In addition they can visualize pro-

jections of the data to evaluate the quality obtained clusters, and to analyze the

performance of classification methods. We have applied this tool to analyze a

clinical data set related to patients with dermatologic conditions that are under

photodynamic therapy. The analysis allowed medical doctors to identify several

clinically interesting patient groups. In addition, clinicians discovered a greater
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efficacy in the treatment of patients with the photosensitizer 5-aminolaevulinic

acid nanoemulsion gel compared to those treated with methyl-5-aminolaevulinate

cream.

Keywords: Dimensionality Reduction, Clustering, Classification, Visual

Analytics, Dermatology, Photodynamic Therapy

1. Introduction

The generation of multidimensional data sets, with a large number of observa-

tions and attributes, is increasingly common in a wide range of research fields such

as healthcare, demography, or economics. The great complexity of these data sets

has made it necessary in many cases to use sophisticated data analysis methods5

in order to extract knowledge from them.

A common issue when working with high-dimensional data is the well-known

curse of dimensionality. It is related to the sparsity of the data as the dimension-

ality of the data increases (Bellman, 1957), and negatively affects the performance

of data analysis and machine learning (ML) methods. One of the main strategies10

for tackling this problem is to pre-process the data in order to reduce its dimen-

sionality (Friedman et al., 2001). Many dimensionality reduction (DR) methods

have been proposed in the literature, and can focus on different goals such as pre-

serving the structure of the data or maximizing class separation (van der Maaten

et al., 2009). These methods define either linear or nonlinear mappings from the15

high-dimensional data space onto a low-dimensional space. In general, although

nonlinear mappings are more powerful in the sense that they can represent data

more faithfully, it is usually difficult to understand the role of the original features

in the mapping. Alternatively, while linear mappings are simpler, it is possible to

use visualization techniques to depict information about the features, which can20

be used to obtain insight regarding how they affect nonlinear mappings.
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When the data is reduced to three or less features it is possible to visualize

the transformed data in a Cartesian coordinate system. These data visualizations,

which constitute a corner stone of exploratory data analysis, allow analysts to com-

bine their domain knowledge with their ability to visually understand relationships25

and properties of the data. Moreover, it is acknowledged that user interaction is

often essential for visual analytics, since it facilitates and speeds up tasks related

to formulating hypotheses, making decisions, or drawing conclusions. Thus, in-

teractive visualizations can facilitate and guide data analysis processes, and carry

out diverse tasks such as exploration, feature selection, clustering, etc.30

This paper describes an exploratory data analysis tool where users can visu-

alize and interact with several two-dimensional plots of data that has been trans-

formed through a DR method. Specifically, the tool implements (but is not limited

to) linear methods like Principal Component Analysis (PCA) (Jolliffe & Cadima,

2016), Linear Discriminant Analysis (LDA) (McLachlan, 2004), and Locality Pre-35

serving Projections (LPP) (He, 2005), as well as nonlinear techniques such as

Locally Linear Embedding (LLE) (Roweis & Saul, 2000), Multidimensional Scal-

ing (MDS) (Cox & Cox, 2000), t-Distributed Stochastic Neighbor Embedding (t-

SNE) (van der Maaten & Hinton, 2008) and Uniform Manifold Approximation and

Projection (UMAP) (McInnes et al., 2018). Among other analysis tasks, the tool40

allows users to: i) obtain insight regarding the structure of the data through the

DR methods; ii) understand the importance of features on diverse tasks; iii) parti-

tion the data, either with an automatic clustering algorithm or manually through

the interactive components of the tool; and/or iv) build a classifier.

To the best of our knowledge, it is the only interactive tool that couples cluster-45

ing, classification, and several DR techniques simultaneously in the same interface.

Domain experts can perform different exploratory data analysis tasks combining

supervised and unsupervised methods to work with both labeled and unlabeled
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data, which are common in medical records. In particular, we demonstrate the

usefulness of our tool through a case study analyzing a data set related to der-50

matologic conditions. Clinicians have used the tool, together with our support,

to obtain insight about how different photosensitizers behave, find interesting pa-

tient groups, learn the discriminatory power of the features to classify patients, and

discover a greater efficacy of photosensitizer 5-aminolaevulinic acid nanoemulsion

(ALA) compared to methyl-5-aminolaevulinate (MAL).55

This paper is organized as follows. Section 2 analyzes related visualization

tools. Section 3 describes the proposed interactive interface, the algorithms em-

ployed to perform DR, and how users can interact with the data and mappings to

carry out data analysis tasks. Section 4 presents a specific data analysis pipeline

as a case study analyzing dermatological patients under photodynamic therapy.60

Lastly, in Section 5 we draw the main conclusions and propose future work.

2. Related Work

Multidimensional visualization tools differ in how to transform the data into

visual representations, and how analysts can interact with the visualizations. In

this section we first describe several visual interfaces that employ DR mappings to65

visualize the data in a two or three-dimensional space. Subsequently, we present

other visual tools that have been designed specifically for clustering or classifica-

tion.

2.1. Visual Interfaces for Dimensionality Reduction

Multiple visual interfaces have been developed that incorporate different meth-70

ods of DR to analyze multidimensional data. Most of them focus on a single

method (Jeong et al., 2009; Molchanov & Linsen, 2014) or rarely allow users to

select one technique among several possible options. For instance, iPCA (Jeong

et al., 2009) is an interactive data analysis system that offers the possibility of
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adjusting data items, deleting data elements, or modifying the dimension con-75

tribution, but is limited only to PCA mappings. Analogously, Molchanov et al.

(2015) propose to use PCA as a first step of an interactive supervised classification

task of medical images. iVisClassifier (Choo et al., 2010) uses LDA linked with

other visualizations, such as parallel coordinates (Inselberg & Dimsdale, 1987)

and heat maps, to analyze class separation. This drives a visual analysis pipeline80

where users can ultimately compare the distance between two data instances on

the heat map and manually alter their labels (classes). Our proposal also provides

an analysis pipeline but does not suffer from the space limitations associated with

parallel coordinates when working with a large number of features, or with the use

of a single DR technique. Alternatively, our tool relies on a flexible and interactive85

coordination of views of different linear and nonlinear DR algorithms.

The tool developed by Turkay et al. (2011) also uses coordinated visualizations

of various mappings of multidimensional data (e.g., PCA, MDS, or LDA). It allows

users to focus on instances of interest to extract information and to cluster the

data. However, although user interaction is a central part of the exploratory90

data analysis process (Liu et al., 2017), it only offers a limited set of interactive

operations. In addition, it does not support classification tasks.

A recent review of the state of the art by Sacha et al. (2017) points out a

few visual interactive interfaces (Mao et al., 2007; Rieck & Leitte, 2015; Nam &

Mueller, 2013; Liu et al., 2014) that enable the selection of various DR methods.95

None of these tools are designed for classification tasks, and only the last two

can be used for clustering. For instance, Persistent Homology (Rieck & Leitte,

2015) allows analysts to compare different DR methods, such as PCA, t-SNE or

LLE, by ranking them according to several proposed quality measures. However,

in contrast with our proposal, the tool does not provide functionality to carry out100

data analysis tasks.
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Choo et al. (2013) present a tool for clustering and knowledge discovery where

analysts can group unlabeled data or generate visualizations composed of several

coordinated (i.e., linked) DR plots. Nonlinear DR methods (especially t-SNE)

have been used as starting points for clustering (Gisbrecht et al., 2013). The105

process applies algorithms based on the Dunn index on representations in R2. Our

proposal goes in the same direction but also allows analysts to interactively validate

and modify the obtained clusters. In addition, it enables users to create pipelines

that can employ the information obtained from nonlinear transformations, e.g.

clusters, to try to provide meaning to the resulting groupings with the aid of110

linear DR mappings. In any case, in contrast to our proposal, these tools and

many others (Mao et al., 2007; Bradel et al., 2014; Molchanov & Linsen, 2014) do

not support classification.

2.2. Visual Interfaces for Data Analysis

In this section we describe several visual interfaces that focus mainly on clus-115

tering and classification, but do not rely on DR methods.

The Hierarchical Clustering Explorer (Seo & Shneiderman, 2002) is an early

proposal to use visualization tools in clustering tasks. It uses heat map visualiza-

tions to group gene expression by building hierarchical clustering trees. Another

work proposes a framework to visualize clusters in a variant of parallel coordi-120

nates that is designed to reduce clutter (Zhou et al., 2008). ClusterSculptor is

an interactive application for finding cluster hierarchies that are represented in

radial dendrograms. Specifically, it is based on k-means and visualizations of

inherent characteristics of the high-dimensional data (Nam et al., 2007). Cluster-

vision (Kwon et al., 2017) allows users to use different projections to understand125

the cluster structure. In addition, analysts can visualize the groupings obtained by

automatic clustering algorithms, and update their hyperparameters interactively.

Likewise, Lai et al. (2018) propose a method to discern and refine clusters trough

6



projections based on the analysts’ points of interest, which can be a single instance

or a cluster of data. Several projections can be analyzed by observing different130

features of the points of interest, while maintaining the rest as context.

Clustrophile (Demiralp, 2016) was a first approach to coordinate the repre-

sentation of scatter plots with discrete heat maps for evaluating clusters. This

research work has evolved into the recently published Clustrophile 2 (Cavallo &

Demiralp, 2019), a user-guided clustering tool that allows analysts to evaluate the135

quality of the resulting clusters. It is a powerful tool that incorporates numerous

clustering methods, but our proposal allows users to additionally group the data

interactively according to their own perception. Furthermore, our tool not only

focuses on clustering, but also uses the obtained clusters to feed supervised ML

methods.140

Regarding classification, visualizations are seldom combined with ML algo-

rithms. In general, automatic classifiers do not include information related to the

users’ domain knowledge. Instead, the few existing interactive data visualization

tools for classification attempt to incorporate the users’ expertise into the learning

process (Choo et al., 2010). The particular interactive approaches depend on the145

ML technique employed. For instance, there are some visually guided classifica-

tion methods (Ankerst et al., 1999; Teoh & Ma, 2003) where analysts can explore

visualizations to split the data set and manually build a decision tree through a

recursive process. The process described in Andrienko et al. (2009) first clusters

and labels two-dimensional geographic points and trajectories, and subsequently150

builds a distance-based classifier according to the clustering partition. Our tool

allows analysts to create a similar pipeline, but is not limited to two-dimensional

data sets, since it incorporates DR methods.
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3. Interactive Interface for Data Analysis

Our proposal aims to provide an interactive tool for knowledge discovery,155

where users can perform several data analysis tasks with the help of visualiza-

tions. Our tool, which we call DRCC (Dimensionality Reduction for interactive

visual Clustering and Classification), combines DR mappings, unsupervised and

supervised ML methods, and user interaction. In addition, it provides the usual

tasks (overview, zoom and filter, details-on-demand) of the well-known Informa-160

tion Seeking Mantra (Shneiderman, 1996; Heer & Shneiderman, 2012). During an

exploratory analysis, users can filter by category, get detailed information using

the hover tool, hide/show classes by clicking on their legend entries, zoom in/out,

select entries to highlight them or group them to create a cluster, export the ob-

tained views, etc. To facilitate user interaction, the different views of the interface165

are linked and synchronized. Thus, any change in configuration parameters of DR

or ML methods affects all active views.

We have developed our tool in Python, which is a well-known high-level pro-

gramming language widely used in data analysis. The interface uses the package

pandas to manage data structures, scikit-learn to perform dimensionality reduc-170

tion, clustering and classification, Plotly to build interactive graphics, and Dash

to manage interactions between the graphical elements and to create the web in-

terface. Since the application will be freely available, visualization experts will be

able to extend it to contain new features or adapt existing ones to their needs.
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Figure 1: DRCC interface. On the left it shows different types of dimensionality reduction plots, together with a histogram and an

interactive table with descriptive statistics. The panels on the right allow users to select hyperparameters (related to dimensionality

reduction and clustering algorithms) and to choose a subset of variables to work with.
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Figure 1 shows the interface of DRCC. The mappings in the top left (the group175

of four plots in the example) correspond to different DR methods. The interface

is reactive to changes in the data set or the configuration parameters (right dialog

box), which is crucial for exploring the data set efficiently. In addition, it is possible

to recover information from the data samples quickly (in particular, attribute

values, and predicted and true classes) by hovering the mouse over the projected180

points.

By using the coordinated views, users can obtain useful information about the

cluster structure of the data. For example, users can verify if the points that

appear to form a cluster in one mapping also form a cluster in the rest. This

would support the claim that the points do indeed constitute a cluster in the high-185

dimensional space. In addition, analysts can highlight individual points, or select

subsets of points by using a lasso tool. These groupings can be labeled and used

in subsequent classification tasks.

The interface also allows users to filter the data according to the class labels

(i.e., add or remove entire classes from the visualizations) by means of an interac-190

tive legend. This is useful when comparing a few classes, since users can filter out

irrelevant data points that would otherwise introduce noise.

Data elements are represented by different symbols that indicate whether they

belong to the training or test set for classification. Furthermore, users can visu-

alize a measure of cluster quality that is related to the classification error of the195

projected points, where the labels are associated with the cluster groupings. The

visualizations also use different symbols for the points to indicate whether they

are classified correctly or incorrectly. Concretely, on the right side of each map-

ping DRCC shows a table describing the classification accuracy values obtained for

the particular projection. Lastly, above each plot the interface shows interesting200

clustering and classification measures that can be used to compare the mappings.
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Underneath the projections we have included an interactive table of basic de-

scriptive statistics that are useful for characterizing the groups of data instances

and determining their homogeneity. Specifically, it shows the mean and standard

deviation of each data attribute (columns) in each of the groups (rows). In addi-205

tion, by clicking on a particular cell the interface shows the data distribution of

its associated attribute and group through a histogram. Finally, at the bottom of

the interface we can display another interactive table that we use for classification

prediction (see Section 3.1.4).

The panels on the right allow users to choose a data set (which can be stored210

in several formats), select DR methods, define a clustering process, configure clas-

sification options, and select the features to use. Once the data file is loaded users

can select the variable that contains the class labels that will be used as targets

in the classification process. For unlabeled data sets users create a new variable

C that can later be used to indicate cluster membership. The projected points215

can be colored according to these variables to show the classes or clusters, or to

any other data variable (for example, to observe the distribution of the attribute

values).

Analysts can then choose different DR methods, their hyperpameters (a tooltip

explains briefly each of the DR methods and their goal), and the features to work220

with (through the panel at the bottom right). Since the projections are visual-

ized simultaneously in different plots, users will be able to compare and relate

the mappings in order to better understand the structure of the data. For exam-

ple, analysts can obtain information from linear methods that can be useful for

understanding more sophisticated nonlinear mappings (see Section 3.1.3).225

3.1. Data Analysis Tasks

In this section we describe several data analysis tasks that can be performed

with our tool.

11



(a) Perplexity = 5

(b) Perplexity = 40

Figure 2: t-SNE mappings of the Seeds data set for different perplexity values. We can appreciate

the presence of clusters.
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3.1.1. Extracting data structure through nonlinear mappings

Our tool currently implements several nonlinear DR methods such as LLE,230

MDS, t-SNE and UMAP, but it can be easily extended to incorporate other tech-

niques. Nonlinear DR methods can outperform linear ones regarding the ability

to represent the structure of the data (e.g., nonlinear manifolds whose intrinsic

dimensionality is two, or cluster structure) more faithfully. In addition, some un-

supervised nonlinear methods (e.g., t-SNE or UMAP, which group data elements235

according to their similarity), despite not using information about class labels,

often produce plots in which the classes appear better separated than in map-

pings generated through linear methods, such as LDA, which do make use of class

membership information (Rubio-Sánchez et al., 2017) (see Section 3.1.3). Figure 2

shows two t-SNE mappings of the Seeds data set, available at the UCI Machine240

Learning Repository (Dheeru & Karra Taniskidou, 2017). The data is obtained

from the analysis of three varieties of wheat (classes), 210 balanced instances of

seven features (‘area’, ‘perimeter’, ‘compactness’, ‘length of kernel’, ‘width of ker-

nel’, ‘asymmetry coefficient’, and ‘length of kernel groove’). The t-SNE method

does not use the class variable (‘wheat’), but we can observe the presence of a few245

groups in the plots, which could be associated with the classes. When working

with t-SNE, analysts must experiment with several perplexity parameters, since

they can lead to different plots. For example, in Figure 2 it is easier to distinguish

three groups in the plot associated with a perplexity value of 40. Our tool allows

users to modify hyperparameters interactively in order to obtain different views of250

the data, which could reveal different properties of the data.

3.1.2. Clustering

If analysts suspect the presence of clusters in one of the two-dimensioal plots

shown in the interface, they can either apply an unsupervised clustering algorithm

(DBSCAN, spectral clustering, etc.) or trust their perception and domain knowl-255
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edge to group the data. In case they want to use a clustering algorithm they

simply have to select the specific DR representation and set the parameters of the

clustering algorithm. This will form different groups of data elements whose mem-

bership will be encoded in a new clustering variable C. Alternatively, users can

create their own clusters by relying on the DR plots. In order to create a cluster260

they first select a subset of points by using a lasso tool, and then click on the

‘Cluster’ button. This creates a new cluster label for the selected data elements,

which is specified in the variable C. Lastly, they can color the projected points in

all of the DR mappings according to the found clusters.

When users cluster the data visually they rely exclusively on two-dimensional265

information. In this regard, automatic clustering methods can use the original

high-dimensional data, or the two-dimensional projected points. In our tool we

run the automatic algorithms on the projected data mainly for efficiency, which

is important in interactive applications. Currently the tool can cluster data au-

tomatically through two DBSCAN (Ester et al., 1996) or Spectral Clustering (Ng270

et al., 2001). It is important to note that both do not include points in clusters if

they interpret that they correspond to noisy samples.

Figure 3 shows several ways to cluster the data according to the t-SNE mapping

in Figure 2(b). Firstly, users can employ automatic clustering algorithms. Fig-

ures 3(a) and (b) show the result of applying Spectral Clustering and DBSCAN,275

respectively. Spectral Clustering determines the presence of seven clusters, while

DBSCAN detects only 4 using as hyperparameters ε = 3.0 and samples = 20.

Alternatively, in (c) the particular clustering is specified by the user through the

lasso tool, by considering the arrangement of the projected points, possible domain

knowledge, and information gathered from the plots in (a) and (b). In this regard,280

the clusters obtained through an automatic clustering algorithm can be refined

through user interaction. For example, the clustering in (c) stems from modifying
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the one in (b). In particular, we have chosen three clusters by assigning a cluster

label to the points that were considered to be noisy samples, and by merging the

orange and brown clusters. Moreover, in our tool all of the mappings are linked.285

Thus, when users select and highlight a set of points in one mapping, these also

(a)

(b) (c)

Figure 3: Clustering process over t-SNE mapping on Seeds data set seen in Figure 2. Black

points are considered as noise. (a) Spectral Clustering. The silhouette scores 0.27. (b) DBSCAN

clustering with hyperparameters ε = 3.0 and samples = 20. The silhouette scores 0.53. (c) Own

clustering refining (b). The silhouette increases to 0.60.
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appear highlighted in the rest of the projections. This allows analysts to use in-

formation from all of the mappings when assigning cluster labels. Lastly, in this

example all of the points belong to some cluster. However, users can also define

unlabeled points for which the cluster membership is not clear.290

Finally, we have implemented the silhouette score (Rousseeuw, 1987) to inter-

pret and evaluate cluster separation, with the aim of allowing analysts to compare

different clustering processes. It measures the similarity of a sample to its own

cluster, compared to the similarity to other clusters. The silhouette score can be

between -1 and 1, where 1 indicates a perfect class separation.295

3.1.3. Feature importance in linear mappings

Linear mappings from Rn to R2 are characterized by 2 × n matrices. Most

software libraries that compute linear mappings (such as PCA or LDA) will not

only provide the coordinates of the projected points, but also the transformation

matrix. Since each of its columns is a two-dimensional vector it is possible to rep-300

resent these vectors together with the projected points. This is the main principle

of Star Coordinates (SC) (Kandogan, 2000), which is a visualization technique

based on radial axes that simply defines a linear mapping from Rn to R2, and

shows both the projected points and the two-dimensional “axis” vectors (with the

same origin point) of the transformation matrix in a single graphic.305

Since each of the axis vectors is associated with a data variable, we can ana-

lyze their lengths and orientations to gain insight about their role and importance

in the DR mapping. In particular, the vectors point towards directions in which

the original attribute values of the projected points generally increase. In addi-

tion, longer vectors have a greater influence on the visualizations (Rubio-Sánchez310

et al., 2016; Wang et al., 2017), although their orientation can also influence their

importance (Sanchez et al., 2018).

Figure 4 shows the SC plot associated with the LDA mapping of the Seeds data
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Figure 4: SC plot associated with the LDA mapping of the Seeds data set, where the labels were

obtained from the visual clustering process related to Figure 3(c). The length and orientation

of the axis vectors indicate the relevance of the features on the mapping (Sanchez et al., 2018).

The axis vectors ‘perimeter’ and ‘area’ are clearly larger than the rest. Thus, those variables are

the most relevant for separating the three groups.

set. Since LDA is a supervised method we have used the cluster labels identified

in Figure 3(c) as the class variable. The plot not only shows the projected points,315

but also the axis vectors (as red line segments), together with their associated

variable names. Since the goal of LDA consists of separating the three groups, the

longer axis vectors indicate which variables are likely to be the most relevant for

distinguishing the groups (i.e., the most discriminant features). In this case, the

axis vectors ‘perimeter’ and ‘area’ are clearly larger than the rest, and therefore320

correspond to the most relevant variables for separating the three groups. How-

ever, other features such as ‘length of kernel’ or ‘length of kernel groove’ are also

important for separating the orange and green groups. Lastly, the blue group has
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larger values of ‘area’ and smaller values of ‘perimeter’. This can also be verified

through the interactive table that allows users to select and visualize histograms325

of particular variables for specific groups of data.

In the previous example we have determined the most relevant variables for a

given linear mapping. In general, it is difficult to understand the role the variables

in nonlinear mappings. However, note that the classes used in the LDA projection

were obtained through the t-SNE nonlinear mapping (the original data does not330

contain class labels). If the classes are separable in the LDA plot we infer that the

most important variables identified in that visualization are also relevant for the

t-SNE plot. In this regard, a linear mapping has helped us to understand relevant

features for a nonlinear projection.

3.1.4. Classification335

The tool also allows analysts to work with labeled data. The labels can be

part of the data set, they can stem from a clustering algorithm, or they can be

created by the user interactively through the process described in Section 3.1.2.

In these cases users can obtain insight regarding the performance of classifiers for

specific DR mappings. Firstly, the projected points in the plots can be colored340

according to the different classes or cluster labels in the data. This allows users to

visually estimate the degree of overlap between the different groups, and therefore

to assess the difficulty to classify correctly, given a particular set of features. This

idea can be used to perform feature selection, since analysts can add or remove

data variables to determine which ones help to separate the groups, and which345

simply add noise.

In addition, users can build classifiers. In this case users first divide the data

set into a train and test subsets randomly, where the size percentages of these

subsets are specified through a slider. Analysts can then choose the classification

algorithm, set its parameters, and predict the classes of new data points. The350
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interactive table at the bottom left of the interface allows users to specify the new

point to classify, which are represented in each mapping through a triangle colored

according to the predicted class. For some dimensionality reduction algorithms

the two-dimensional coordinates of the new points can be obtained by simply

applying the model (e.g., linear methods that provide the projection matrix) to355

the new point. Instead, other nonlinear methods may require implementing out-

of-sample approaches (Pezzotti et al., 2016b). Analysts can then evaluate and

compare different classifiers according to their accuracy on the test set (i.e., the

proportion of true predictions among the total number of cases tested). Lastly,

note that some clustering algorithms do not necessarily assign labels to all of the360

data samples (e.g., if they consider that samples are noisy). In these cases the

classification algorithms simply ignore the unlabeled data.

The interface shows both training and test sets by displaying the projected

points through different shapes (circles for training data and star diamonds for

test). In addition, the test samples that are correctly classified are presented by365

the color of their corresponding class, while the incorrectly classified samples are

displayed in red. This allows users to observe the prediction errors pre-attentively.

We have currently implemented the K-NN classifier (Altman, 1992; Duda et al.,

2001), which is based on distances. Specifically, the predicted class for a given

sample is obtained through a majority vote of its k closest training samples. We370

have used k =
√
N by default where N is the number of samples in the training

set (Dasarathy, 1991). However, users can modify this value in order to analyze

how it affects the classification accuracy. This is important since there is no rule

for selecting a specific k that achieves optimal results for most data sets (Hassanat

et al., 2014).375

Figure 5 shows an example of the elements of the training (75%) and test (25%)

sets for the t-SNE and LDA mappings in Figures 3(c) and 4, respectively. Note
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(a)

(b)

Figure 5: Visual validation through a K-NN classifier of the classes in the t-SNE (a) and LDA

(b) mappings of Figure 3(c) and Figure 4, respectively. The plots show the training data (75%)

through circles, and the correctly and incorrectly classified test samples with star diamonds and

red crosses, respectively.
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that the cluster labels are chosen interactively by the user (they are not the labels

included in the original data set). The panel to the right of the plots indicates

the accuracy of the K-NN classifier for the default value of k, which in this case is380

15 (since the data set contains N = 210 samples). Specifically, the classification

accuracies are 98.11% and 92.45% for the t-SNE and LDA mappings, respectively.

We have also implemented the Normalized Mutual Information (NMI) (Strehl

& Ghosh, 2003), which is another measure to compare sets of labels that consti-

tutes an alternative to classification accuracy. Specifically, it returns a value in385

[0, 1], where 0 indicates no mutual information between the sets of labels, and 1

signifies perfect correlation. Analysts can use these measures to compare different

clusterings, but can also rely on the visualizations to observe cluster separation.

In the example of Figure 5 t-SNE outperforms LDA.

4. Case Study390

In this section, we describe a case study for analyzing a complex medical data

set using DRCC. Specifically, we use data obtained from cancer patients under

photodynamic therapy (PDT), which is a widely used within the field of der-

matology. It consists of the topical administration of a photosensitizer, which

accumulates selectively in certain cells or tissues, so that, when illuminated, in395

the presence of oxygen, with a light of adequate wavelength and in sufficient

dose, produces the photooxidation of biological materials and the subsequent can-

cerogenous cell death (Fritsch & Ruzicka, 2006; Babilas et al., 2005). Currently,

5-aminolaevulinic acid nanoemulsion gel (BF-200 ALA, Ameluz R©) and methyl-5-

aminolaevulinate cream (MAL, Metvix R©) are the two most employed photosensi-400

tizers in Europe and USA. PDT has been shown to be effective in the treatment

of non-melanoma neoplasms, including actinic keratosis (Reinhold, 2017), Bowen’s

disease (Tarstedt et al., 2016; Alique-Garćıa et al., 2019a), and superficial basal
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Figure 6: Proposed pipeline to carry out an exploratory data analysis during the case study.

The interaction between users and the interface is essential in our approach and occurs in every

step of the process.

cell carcinoma (Fernández-Guarino et al., 2014; Alique-Garćıa et al., 2019b). In

addition, promising results have been obtained in recent years in the treatment405

of other tumors, inflammatory or infectious pathologies, as well as in cosmetic

treatments (Gilaberte et al., 2006; Park et al., 2013).

The data was provided by the dermatologic PDT specialized section of Hospital

Universitario de Fuenlabrada (HUF) in Madrid, Spain. It was collected by review-

ing the Electronic Health Records of all of the patients (1225) treated with PDT410

during the period from June 2009 to June 2018. The data set contains informa-

tion relative to patients’ demographic features (age, gender, and skin phototype),

diagnosis and lesions location, technical features of treatments (employed ALA

or MAL photosensitizer, number of sessions, average and total dose, and incuba-

tion times), post-treatment events (tolerance, side effects, specific medical cares),415

clinical response to PDT (initial response, recurrence, and final healing rate) and

“peri-treatment” measures (pre-treatment, support treatment, treatment of re-

currences, and follow-up). Each patient is described by a total of 31 features,
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where each one is a PDT event. Note that in our study we treat patients with

BF-200 ALA, which differs from the formulation in Tarstedt et al. (2016) that420

uses 5-aminolevulinic acid (Aminolevulinic acid hydrochloride 20% in standard

ointment, Unguentum Merck).

This case study combines all the functionalities described in the previous sec-

tion to assemble them in the data analysis pipeline shown in Figure 6. The goal

consists of identifying interesting groups of patients and determining which fea-425

tures are relevant in the PDT treatment. The analysis was carried out and driven

by clinicians belonging to the dermatology unit of HUF. We provided explanations

to them about the use of DRCC, as well as assistance throughout the data analysis

process.

The first step is to comprehend the structure of the data using a DR algo-430

rithm. For this purpose, clinicians preferred to use a nonlinear DR method to try

to observe cluster structure in the data. Specifically, they used an UMAP map-

ping (McInnes et al., 2018) with 35 neighbours and default values for the rest of

the parameters. They also discarded the healing feature (together with response

and relapse, since these two attributes are correlated with healing) in order to435

avoid its information when forming groups. Thus, they did not use any feature as

a class label.

The second step is to cluster the data set. In this case the clinicians applied

DBSCAN over the UMAP mapping, which is shown in Figure 7. DBSCAN iden-

tifies the seven groups (silhouette score: 0.56) illustrated through different colors,440

where initially unlabeled patients marked as noise by DBSCAN were assigned to

the group of their nearest labeled neighbor.

The clinicians then used linear dimensionality reduction methods to try to un-

derstand and characterize the obtained clusters and the importance of the features.

Specifically, they applied LDA to separate and describe the clusters as shown in445
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Figure 7: Clusters resulting from applying DBSCAN over the UMAP mapping. The algorithm

detects 7 different clusters (group 0 in orange, 1 pink, 2 green, 3 light green, 4 light blue, 5 navy,

and 6 yellow).

Figure 8, where the plot in (b) is simply a zoomed-in version of (a). In this case

the class labels correspond to the seven cluster groups obtained through DBSCAN

and UMAP. It is worth noting that in this case we included the healing feature

when computing the mapping. The LDA plot shows the configuration of axis

vectors, which provides information regarding the importance of the features for450

characterizing the cluster (patient) groups. The most discriminative features for

this data set are the photosensitizers applied for the PDT (ALA and MAL), and

MAL pre-treatment. Other features such as support treatments, diagnosis, gen-

der, and healing play a minor role (the axis vectors of the rest of the features are

imperceptible).455

The clinicians then characterized all patient groups by examining the interac-

tive table containing their means and standard deviations, and the corresponding
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(a)

(b)

Figure 8: LDA mapping for characterizing patient groups through the length and orientation of

the feature axis vectors. The class labels used by LDA correspond to the seven clusters obtained

by applying DBSCAN over the UMAP mapping (see Figure 7). The plot also includes results of

a K-NN classification (k = 29), where the red crosses are classification errors. The plot in (b) is

simply a zoomed-in version of (a).
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frequency histograms. The description of the clusters is as follows: group 0 (or-

ange) is composed of patients treated mostly with ALA that obtained an average

healing rate of 89%. It is a heterogeneous group in terms of diagnosis. Neverthe-460

less, the proportions of patients with actinic keratosis, Bowen’s disease, superficial

basal cell carcinoma, and other diagnoses, are similar to the ones across the en-

tire data set. There are also no relevant differences for this group in terms of

gender. Group 6 (yellow) is very similar to the previous one. The majority of

these patients were treated with ALA (the average healing response was 90%),465

and did not exhibit a predominance of a specific diagnosis. Regarding differences,

the percentage of males was higher and, interestingly, about 90% of the patients

were previously treated with MAL. In other words, it is a group of patients that

were treated at first with MAL but did not heal, and were subsequently rescued

with ALA with very good clinical response. Given the similarity between groups 0470

and 6 the clinicians decided to join them in a single group that we will call group

7 in the remainder of the paper. The rest of the groups are composed mostly (95-

100%) of patients treated with the MAL photosensitizer. In groups 1 (pink) and 2

(green) we find patients diagnosed with actinic keratosis (98% group 1, 90% group

2), which are homogeneous with respect to the rest of their characteristics, except475

for the previous application of cryotherapy (<1% group 1; >99% group 2), which

results in very different healing rates (10% in group 1 and 41% in group 2). Since

these percentages are both low from a clinical point of view, the medical doctors

decided to merge both groups, creating group 8. Groups 3 (light green), 4 (light

blue) and 5 (navy) are very similar to each other, except for gender. Thus, they480

are patients treated with MAL, without predominance of any particular diagnosis,

and with final healing rates between 40 and 60%. The main difference is that in

group 3 all of its members are male, in group 4 the majority are women (91%), and

in group 5 the male-female ratio is essentially one. Regarding the healing rates,
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60% of patients are free of lesions in group 3, 40% in group 4, and 42% in group485

5. Taking into account these clinical differences, the doctors decided to maintain

the initial cluster groups.

In summary, the clinicians refined the automatically obtained clusters (as the

proposed analysis pipeline is a visually interactive process), reducing the seven

initial groups to five according to their clinical criteria. Figure 9(a) shows the490

updated clusters (silhouette scores 0.48) in the UMAP mapping, while Figure 9(b)

shows the LDA representation that results from using the new patient groups (i.e.,

new class labels). The ALA axis vector is the most important one that points

towards the right and is therefore key for separating group 7 from the rest. The

patient groups associated with MAL are on the left side, where their separation495

is due to the axes that are roughly parallel to the Y-axis, specifically diagnosis,

cryotherapy treatment, support and post treatments, and gender. For instance,

group 8 is pushed down in the mapping primarily due to cryotherapy treatment.

We can also color the points in the plots according to the values of a particular

feature. Figure 10 shows the same LDA mapping as in Figure 9(a), but the points500

are colored according to the ‘healing’ feature. From a clinical perspective the

plot suggests that the ALA compound obtains better results than MAL regarding

patient healing. This is because the ALA group (7) is barely affected by the rest

of the analyzed features. Note that the only two relevant axis vectors that point

towards the right are ‘healing’ and ‘ALA’. However, for the groups of patients505

treated through MAL some feature axes (such as ‘diagnosis’ or ‘post-treatment’)

take on a remarkable importance, influencing the final visualization.

Additionally, the clinicians evaluated the homogeneity of the clusters on the

two-dimensional projections by measuring the performance of K-NN classifiers

(with a default value of k =
√
N) that consider the cluster groups as class labels.510

For this purpose, they split the data set into 70% for training and 30% for testing,
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(a)

(b)

Figure 9: Projections involving the user refined clusters. The UMAP plot in (a) shows the

resulting groups of patients under PDT treatment classified on 5 categories after the clinical

analysis (group 3 in light green, 4 light blue, 5 navy, 7 orange, 8 green). (b) LDA mapping

to characterize the patient groups by the length and orientation of the feature axes. K-NN

classification is made with k = 29.
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Figure 10: Analysis of healing through the same LDA mapping as in Figure 9(b). In this case

the points are colored according to the ‘healing’ feature. Dark dots indicate cured patients,

while lighter grey dots correspond to non-cured patients. Note that the ‘healing’ and ‘ALA’ axis

vectors point towards similar directions (which usually indicates a positive correlation between

the features). In this example, there is a higher proportion of cured patients on the right side of

the plot, which are mainly the ones treated with ALA.

and analyzed the K-NN classification accuracy on the test set. The clinicians used

this approach to compare the automatically generated clusters in Figure 8(a) and

the refined clusters Figure 9(b). The graphics indicate the obtained classification

accuracy in the panel to the right of the plots. In addition, the NMI (clustering515

quality) score is also shown above the mappings. As can be seen, the clustering

created by the domain experts provides better results on LDA projections (74.30%,

NMI = 0.61) than those obtained by DBSCAN (65.89%, NMI = 0.54). The clas-

sification accuracies on the UMAP mappings (see Figure 7 and 9(a)) are higher

(97.68%, NMI = 0.95-0.96) as expected, since they usually capture the cluster520

structure of the data better.
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5. Conclusions and Future Work

In this work, we have presented an interactive visual interface for data analysis

of both labeled and non-labeled data based on DR projections. The tool allows

users to import data sets and visualize them in a parallel and coordinated way525

with linear and nonlinear DR methods. In addition, they can carry out diverse

data analysis tasks such as feature selection, clustering, and classification.

In comparison with other tools described in the state of the art, our method

couples dimensionality reduction, clustering and classification through interaction

and visualization. Similarly to other tools, we also allow users to cluster the530

data automatically in a low-dimensional space. However, with our interactive

interface it is also possible to define clusters manually, by taking advantage of

user perception and domain knowledge. In addition, our proposal complements

unsupervised exploratory analysis with supervised (predictive) analysis, which can

also be used to evaluate model performance.535

We have presented a case study for analyzing a medical data set about patients

with dermatologic conditions. The analysis of the data, which was carried out by

clinicians of the HUF, revealed relevant information. In particular, the clinicians

discovered that patients treated with ALA and MAL compounds obtained a global

clinical healing rate close to 90%, and between 40-60%, respectively, according to540

the different analyzed groups. Therefore, the data analysis clearly suggests that the

ALA drug obtains better results than the MAL drug in terms of clinical healing.

Although new studies are required to validate these results, this would be an

interesting finding, since there are no research works in the literature (with a large

number of patients) comparing the ALA treatment (BF-200 ALA; Ameluz R©) to545

the MAL (Metvix R©) treatment.

We have published the tool and its source code (in Python, using Dash, Plotly,

scikit-learn, pandas, and other packages) online (http://monkey.etsii.urjc.
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es/drcc/visual_cluster_classification_tool) so that analysts can use it and

data analysis experts can extend it and adopt it to their needs.550

Finally, we have noticed that we are running several complex ML algorithms

at once. If the data set is huge it can be time consuming to generate the visu-

alizations or execute the algorithms. As future work, we are currently planning

on implementing more scalable solutions, like Hierarchical-SNE (Pezzotti et al.,

2016a) instead of t-SNE, or running the algorithms using big data technologies.555

Finally, we plan to introduce additional methods for training and validation, in-

cluding bootstrap, cross validation, etc.
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Cavallo, M., & Demiralp, Ç. (2019). Clustrophile 2: Guided visual clustering

analysis. IEEE Trans. Vis. Comput. Graph., 25 , 267–276.590

Choo, J., Lee, H., Kihm, J., & Park, H. (2010). iVisClassifier: An interactive visual

analytics system for classification based on supervised dimension reduction. In

2010 IEEE Symposium on Visual Analytics Science and Technology (pp. 27–34).

Choo, J., Lee, H., Liu, Z., Stasko, J., & Park, H. (2013). An interactive vi-

sual testbed system for dimension reduction and clustering of large-scale high-595

32



dimensional data. In Proc. SPIE 8654, Visualization and Data Analysis 2013

(p. 15). International Society for Optics and Photonics volume 865402.

Cox, T. F., & Cox, M. (2000). Multidimensional Scaling, Second Edition. (2nd

ed.). Chapman and Hall/CRC.

Dasarathy, B. V. (1991). Nearest Neighbor (NN) Norms: NN Pattern Classification600

Techniques . Los Alamitos, CA: IEEE Computer Society Press.
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