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Abstract1

Feature selection consists of choosing a smaller number of variables to work with when analyzing high-dimensional data

sets. Recently, several visualization tools, techniques, and feature relevance measures have been developed in order to help

users carry out the feature selection. Some of these approaches are based on radial axes methods, where analysts perform1

backward feature elimination by discarding features that have a low impact on the visualizations. Similarly, in this paper, we2

propose a new feature relevance measure for star coordinates plots associated with the class of linear dimensionality reduction

mappings defined through the solutions of eigenvalue problems, such as linear discriminant analysis or principal component

analysis. We show that the approach leads to enhanced feature subsets for class separation or variance maximization in the3

plots for numerous data sets of the UCI repository. Lastly, in practice, the tool allows analysts to decide which features to4

discard by examining their relevance and by taking into account previous domain knowledge.5
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1 Introduction13

Data preprocessing is an important operation in the fields14

of statistics, data mining, or machine learning. Nowadays,15

many data sets contain hundreds or thousands of features,16

many of which can be redundant or irrelevant [25]. Thus,17

an initial data set is typically simplified in order to work18

with an alternative one that contains a smaller number of19

features. There are two main approaches for reducing the20

dimensionality of the data: feature transformation [29] and21

feature selection [28]. Feature transformation (in the context22
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of dimensionality reduction) consists of mapping the orig- 23

inal data features to a new space of lower dimensionality. 24

In contrast, feature selection is concerned with choosing a 25

subset of original features to work with. This preprocessing 26

step can be beneficial since using the resulting smaller sub- 27

set of features can reduce overfitting, enhance performance, 28

shorten computational runtimes, or lead to simpler and more 29

interpretable models [38]. 30

Finding an optimal subset of features generally requires 31

examining an exponential number of subsets. Thus, most 32

feature selection approaches rely on efficient greedy algo- 33

rithms [13,28] that select or discard features progressively. 34

In this paper, we focus on combining automatic procedures 35

with interactive visualization approaches, where analysts 36

can make decisions regarding which features to discard by 37

considering both the output of an automatic method and 38

their previous domain knowledge. Specifically, we study 39

feature selection aided by star coordinates (SC) [22,23], 40

which is a multivariate visualization method based on radial 41

axes [10,11,37]. SC not only generates linear projections of 42

the data onto a two-dimensional plane, but also displays a 43

set of axis vectors associated with the features. This provides 44

additional information about the features’ relation to the data 45

samples and to themselves. In practice, users can select and 46
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A. Sanchez Campos et al.

place the axis vectors arbitrarily in the plot in order to gener-47

ate any linear mapping. In this work, we focus on a different48

alternative that consists of computing the axis vectors through49

automatic procedures related to linear dimensionality reduc-50

tion algorithms [35], such as principal component analysis51

(PCA) [21] or linear discriminant analysis (LDA) [31].52

Recently, several works have proposed feature reduction53

procedures that take into account the length of the axis vectors54

to determine the importance of a data variable in SC plots [35,55

43]. In addition, the work in [38] measures the influence of56

a variable in a visualization by computing a measure of the57

displacement of the plotted points when a feature (i.e., an axis58

vector) is eliminated from the data set. In short, it measures59

how much a plot would change when discarding features.60

While the previous approaches are valid for arbitrary SC61

plots, we present a feature relevance measure for enhancing62

the feature elimination process for several commonly used63

SC visualizations. Specifically, we propose a strategy for64

determining the influence of features in SC plots associated65

with linear dimensionality reduction transformations that are66

the result of solving eigenvalue problems. The approach not67

only takes into account the magnitude and the orientation68

of the axis vectors, but it also considers the eigenvalues69

associated with the eigenvectors that solve the problem and70

constitute the linear mapping. The results show that the pro-71

posed measure outperforms related approaches based on SC72

plots described in the literature.73

Lastly, we describe a simple graphical interface that ranks74

the features according to their relevance and allows users75

to visualize the SC plots and to discard variables interac-76

tively. Our proposal offers the analyst a better estimate of77

the importance of each feature in the linear mapping. This78

allows domain experts to acquire insight into the data and79

guides them toward obtaining a reliable set of features.80

The rest of the paper is organized as follows. Section 281

describes the most relevant methods related to our proposal,82

while Sect. 3 includes basic background. In Sect. 4, we83

describe our measure for determining the importance of a84

feature in a SC plot for eigenvalue problems, while Sect. 585

presents the results. Finally, Sect. 6 presents the conclusions.86

2 Related work87

The previous work on feature selection has mainly focused88

on automatic techniques [4,5,13]. However, recently, the data89

visualization community has developed methods that involve90

interactive visualizations and graphical interfaces, in order91

to integrate users and their expertise into the data analy-92

sis process. There are different ways to categorize visual93

methods for feature selection. Firstly, their goal can be to94

choose smaller sets of variables for: classification [26,32],95

clustering [2,12,18,20,40,41,47], outlier detection [20], gain-96

ing insight regarding features or relations among them [8,18, 97

20,26,30], or simply to rank variables [30,39,45]. In addi- 98

tion, some methods rank the features in order to carry out 99

the attribute selection [18,20,26,32,39], but others are aimed 100

at searching for subsets of variables without relying exclu- 101

sively on a particular ranking [2,6,12,41,45,47]. A more 102

complete state-of-the-art review of these techniques can be 103

found in [38]. 104

Many of these techniques rely on different quality metrics 105

and heuristics (including estimations of feature similarity, 106

goodness of a clustering, uniformity, interestingness, number 107

of outliers, entropy, and many others) and are, therefore, very 108

diverse (see [3] for an overview of some of these approaches). 109

Some of them can also be regarded as feature ranking meth- 110

ods, since they sort the data attributes according to some 111

measure, and either select or discard them progressively. 112

In this paper, we present an approach that falls within this 113

category of feature selection methods. Thus, we focus here 114

on feature ranking methods that use measures of feature rel- 115

evance, which are not just based on quality metrics on the 116

visualizations [19,40]. Yang et al. present interactive hier- 117

archical displays [46,47] to visualize large multivariate data 118

sets. Users can group similar features to display data with a 119

lower set of dimensions in parallel coordinates, star glyphs, 120

scatterplot matrices, and dimensional stacking. Another pro- 121

posal for ranking features [39] relies on different heuristics, 122

such as uniformity or number of outliers. Specifically, it is 123

based on ordering histograms and scatter plots. The work 124

in [20] proposes a tool based on parallel coordinates where 125

the order and number of axes can be interactively manipu- 126

lated according to a ranking algorithm. The method combines 127

user-defined and weighted quality metrics like measures of 128

correlation, or outlier and cluster detection. The method pro- 129

posed in [1] sorts features in RadViz by comparing the results 130

of a cluster density metric on visualizations obtained by 131

adding a single new feature to an existing plot. INFUSE [26] 132

helps users to understand how features are ranked. The tool 133

displays a circular glyph for each feature, showing informa- 134

tion related to various measures commonly used for feature 135

selection such as the Fisher score or the information gain. 136

Finally, it is important to note that the feature ranking mea- 137

sures used in the literature are usually specific for certain data 138

analysis tasks (classification, clustering, etc.). In contrast, the 139

measure that we propose in the paper is general in the sense 140

that it applies to SC visualizations, which can be used for a 141

wide variety of analysis tasks. 142

3 Background 143

Dimensionality reduction mappings can be categorized as 144

linear or nonlinear. In general, although nonlinear mappings 145

may be able to represent data more faithfully, it is usually dif- 146
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Feature selection based on star coordinates plots associated with eigenvalue problems

ficult to understand the influence of the original features in147

the mapping. Thus, in this paper, we employ SC plots, which148

generate linear projections of the data and also show infor-149

mation about the features, which allows users to understand150

how they affect the linear mappings.151

In particular, SC is an exploratory data analysis technique152

that has been used to inspect correlations, cluster structure,153

class separation, or searching for outliers or data with desired154

characteristics. Specifically, it is a projection method that155

maps high n-dimensional data points (i.e., individual sam-156

ples) linearly onto a plane. In particular, the linear mapping157

is defined through a set of n 2-dimensional axis vectors vi,158

for i = 1, . . . , n, where vi is associated with the i th data159

variable. The representation p ∈ R
2 of a data point x ∈ R

n
160

is a linear combination of the vectors vi . Formally:161

p = x1v1 + x2v2 + · · · + xnvn = VTx, (1)162

where V is the n × 2 matrix whose rows are the vectors vi ,163

and xi , for i = 1, . . . , n, are the attribute values of x. It164

is important to note that the linear mapping is completely165

specified by the matrix V. Lastly, the mapping of an entire166

data set of cardinality N can also be expressed in matrix form167

as:168

P = XV, (2)169

where X is the N × n data matrix and P is the corresponding170

N × 2 matrix of projected points.171

There are two ways to choose the axis vectors (i.e., the172

matrix V) when working with SC. On the one hand, they173

can be specified manually and interactively by analysts,174

for instance, through some graphical user interface. In this175

regard, it would be possible to generate any linear mapping176

of the data onto a plane, since users can choose arbitrary177

axis vectors that define matrix V. On the other hand, we178

can also obtain a 2 ×n transformation matrix A that maps n-179

dimensional data points onto a plane through some automatic180

procedure (e.g., PCA). In that case, we can build a SC plot181

that produces the same mapping by setting V = AT, where182

the axis vectors would simply be the columns of A, due to (1).183

Thus, given any linear projection, possibly obtained through184

some sophisticated computational procedure, we can always185

build an analogous SC plot. The resulting visualization will186

not only show the projected points, but will also depict infor-187

mation regarding the n original features in the form of axis188

vectors.189

There are numerous linear techniques that can be useful190

for data analysis, data mining, and machine learning tasks,191

such as projection pursuit [16] or independent component192

analysis (ICA) [17]. In this paper, our focus will be on linear193

mappings that are the result of solving eigenvalue problems.194

Here, we detail the methods used to better understand their 195

objective functions, which we maximize. 196

One of the most common methods is PCA, which can be 197

interpreted in several ways from an optimization point of 198

view (see [33]). PCA is appealing for data analysis since the 199

projected points will represent the best rank-2 approxima- 200

tion of the high-dimensional data. In particular, PCA finds 201

the orthogonal n × 2 matrix V that solves the following opti- 202

mization problem: 203

maximize

V ∈ R
n×2 Tr

[

1
N−1

VTXTXV
]

subject to VTV = I

(3) 204

where Tr denotes trace, I is the (2 × 2) identity matrix, and 205

X is the N × n data matrix that has been previously centered 206

(i.e., the mean of the original data has been subtracted from 207

each data point). The solution to (3) is the matrix whose 208

columns are the two eigenvectors associated with the two 209

largest eigenvalues λ1 and λ2 of the sample covariance matrix 210

of the data XTX/(N −1) (see [24]). These eigenvalues repre- 211

sent the maximum variances of the data along the orthogonal 212

directions specified by the eigenvectors in the data space. 213

They also represent the variances along the canonical axes 214

of the SC plot. Lastly, the optimum value of the objective 215

function in (3) will be the sum of the eigenvalues: λ1 + λ2. 216

Another popular linear approach that can be used when 217

the data is categorized (i.e., labeled) into C different classes 218

is LDA. The technique projects the data onto a subspace 219

of lower dimensionality in an effort to achieve good class 220

separability. Specifically, LDA tries to maximize a ratio of a 221

measure of the between-class scatter over a measure of the 222

within-class scatter. For visualization purposes on a plane 223

(which requires C > 2), LDA finds an orthogonal projection 224

matrix V that solves the following optimization problem: 225

maximize

V ∈ R
n×2 Tr

[

VTSbV

VTSwV

]

subject to VTV = I

(4) 226

where Sb and Sw are between-class and within-class scatter 227

matrices, respectively. If Sw is nonsingular, then the columns 228

of the matrix V that optimizes (4) will be the two eigenvec- 229

tors associated with the two largest eigenvalues λ1 and λ2 of 230

S−1
w Sb (see [24]). For LDA, the eigenvalues indicate a mea- 231

sure of the class separability along the directions specified by 232

their corresponding eigenvectors. Thus, the classes will tend 233

to be more separated along the direction of the first eigen- 234

vector. Lastly, as in PCA, the optimum value of the objective 235

function (4) is λ1 + λ2. 236

Finally, if analysts are interested in obtaining a reduced 237

set of m features that approximate the data as well as possi- 238

ble in PCA, or that better separate the classes in LDA, they 239
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A. Sanchez Campos et al.

can progressively discard the variables that contribute less to240

forming these plots. In other words, they can discard the fea-241

tures that reduce λ1 + λ2 the least when they are eliminated.242

Naturally, this greedy approach does not guarantee finding243

the optimal subset of exactly m features (note that finding an244

optimal subset of features is usually NP-hard [7]).245

4 Weighted displacement feature relevance246

measure247

The interpretation of how SC maps high-dimensional data248

onto a plane is fairly straightforward. Firstly, the orientation249

of an axis vector indicates in which direction a plotted point250

would move when increasing the value of the associated fea-251

ture. In addition, the relative magnitude of an axis vector,252

in comparison with the rest, provides intuition regarding the253

amount of contribution of a particular variable in the result-254

ing visualization, given that all variables are scaled similarly.255

Note that in SC the features should share a similar scaling,256

since otherwise the ones with larger ranges would have a257

greater impact on the resulting plots. In this paper, we work258

with standardized data (i.e., the features have zero mean and259

unit variance). Other possibilities include transforming each260

feature to lie in the [0,1] interval, or centering and normaliz-261

ing them to have unit range [36].262

The possibility to visualize the feature axis vectors in263

SC, and to determine their relative contributions to a plot,264

allows us to perform a visual feature selection. For instance,265

we can progressively discard the most irrelevant variables,266

while also maintaining others according to domain knowl-267

edge. Recently, several works in the literature have proposed268

measures for establishing this contribution or importance of269

a variable in a SC plot, and therefore, on the analysis task270

for which the visualization is intended. In [35,43], the fea-271

ture selection process is guided exclusively by the length of272

the axis vectors, where the shortest ones constitute the candi-273

dates to be discarded. Sanchez et al. [38] propose the average274

displacement of the low-dimensional points when a feature275

is discarded as a measure to determine the influence of that276

variable in the plot. Specifically, this measure is defined as:277

f (vi ) =
1

N

N
∑

j=1

‖p( j) − q
( j)
vi

‖ , (5)278

where p( j) is the projection of the j th sample and q
( j)
vi

is279

the corresponding low-dimensional point when removing the280

feature associated with the axis vector vi . Note that it is also281

possible to use the median point displacement, which is more282

robust. However, in the remainder of the paper, we will use283

the definition in (5), since it is the one described in [38].284

Instead, we propose a new measure to guide the process of 285

visual feature selection. The following result shows how on 286

any SC plot the average point displacement when a feature is 287

discarded depends not only on the axis vector length, but also 288

on the mean of the absolute values of the associated feature 289

components of all of the data samples. 290

Proposition 1 In SC, the average displacement of the low- 291

dimensional points when a feature is discarded is f (vi ) = 292

αi‖vi‖, where vi is the SC axis associated with the feature 293

and αi is the mean of the absolute values of the i th component 294

of all the data samples. 295

Proof Let x( j) =
(

x
( j)
1 , . . . , x

( j)
n

)

, for j = 1, . . . , N , be 296

the samples in our data set, then: 297

q
( j)
vi

=

n
∑

k=1, k �=i

x
( j)
k vk = p( j) − x

( j)
i vi , (6) 298

is the low-dimensional location of x( j) when discarding the 299

i th feature from the SC model. In that case, the average point 300

displacement can be expressed as: 301

f (vi ) =
1

N

N
∑

j=1

‖p( j) − q
( j)
vi

‖ 302

=
1

N

N
∑

j=1

‖p( j) −
(

p( j) − x
( j)
i vi

)

‖ 303

=
1

N

N
∑

j=1

‖x
( j)

i vi‖ =
1

N

N
∑

j=1

|x
( j)

i | ‖vi‖ 304

= ‖vi‖
1

N

N
∑

j=1

|x
( j)
i | = αi‖vi‖. (7) 305

306

⊓⊔ 307

Note that even if each feature is standardized to have mean 308

0 (and standard deviation 1), αi is generally different for each 309

feature as it is the mean of the absolute values of the i th 310

component. 311

When the SC projection is given by a linear dimensionality 312

reduction algorithm like LDA or PCA (based on eigenvalue 313

problems), the horizontal and vertical axes of the SC plot 314

represent the optimal directions (defined by the eigenvectors) 315

associated with the optimization problem. Therefore, λ1 and 316

λ2 represent the variance (for PCA) or a measure of class 317

separability (for LDA) in the X and Y axes of the SC plot, 318

respectively. Our approach is based on the key insight that 319

if λ1 > λ2 then a larger point displacement on the X axis 320

(after removing a feature) is likely to have a stronger impact 321

on the problem’s objective function. Therefore, our proposed 322

novel measure will take into account the relative importance 323
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Feature selection based on star coordinates plots associated with eigenvalue problems

of each of the canonical axes when determining the influence324

of each original feature.325

To compute this measure, we first break down the average326

displacement when a feature is discarded into horizontal and327

vertical components. These displacements will depend not328

only on the length of the axis vector to discard, but also on329

its direction, and on the associated feature’s values (i.e., its330

probability distribution). The following proposition provides331

simplified expressions of the displacements.332

Proposition 2 In SC, the average horizontal and vertical333

displacements of the low-dimensional points when the i th334

feature is discarded are f1(vi ) = f (vi ) | cos(θi )| and335

f2(vi ) = f (vi )| sin(θi )|, respectively, where θi is the angle336

between vi and the (1,0) vector (i.e., the positive horizontal337

axis).338

Proof Let x( j) =
(

x
( j)
1 , . . . , x

( j)
n

)

, for j = 1, . . . , N , be339

the samples in our data set. According to (7), the average340

horizontal and vertical displacements of the low-dimensional341

points when a feature is discarded can be computed as:342

f1(vi ) =
1

N

N
∑

j=1

|p
( j)
1 − q

( j)
vi ,1

| =
1

N

N
∑

j=1

|x
( j)
i vi,1|343

= |vi,1|
1

N

N
∑

j=1

|x
( j)
i | = ‖vi‖ | cos(θi )|

1

N

N
∑

j=1

|x
( j)
i |344

= ‖vi‖ | cos(θi )| αi = f (vi ) | cos(θi )|. (8)345
346

Similarly,347

f2(vi ) =
1

N

N
∑

j=1

|p
( j)
2 − q

( j)
vi ,2

| = f (vi )| sin(θi )|, (9)348

349

where p
( j)
k , q

( j)
vi ,k

, and vi,k are the kth components of p( j),350

q
( j)
vi

, and vi , respectively. ⊓⊔351

Having decomposed the total displacement into horizontal352

and vertical components, we propose using a weighted sum353

of each displacement. Specifically, the weights correspond to354

the eigenvalues associated with the plot’s axes, which encode355

the importance of these canonical directions. Formally:356

g(vi) = λ1 f1(vi ) + λ2 f2(vi )357

= f (vi ) ( λ1| cos(θi )| + λ2| sin(θi )| )358

= ‖vi‖αi ( λ1| cos(θi )| + λ2| sin(θi )| ) . (10)359
360

Since λ1 ≥ λ2, the horizontal displacement will usually361

have more relevance than the vertical one for the algorithm’s362

objective. Thus, although the length of an axis vector plays363

a role in determining the importance of a feature (and there-364

fore has been used in [35,36,44]), its orientation should be365

considered as well. For example, if λ1 is substantially greater 366

than λ2 then a feature with a long axis vector that is nearly 367

perpendicular to the horizontal axis may not be particularly 368

relevant for the algorithm’s objective (e.g., to separate classes 369

when using LDA). Note that in that case cos(θi ) ≈ 0 while 370

| sin(θi )| ≈ 1, and therefore g(vi) ≈ ‖vi‖αiλ2. Similarly, if 371

the feature’s axis vector vi is nearly horizontal (i.e., perpen- 372

dicular to the Y axis) then g(vi) ≈ ‖vi‖αiλ1. 373

Figure 1a shows the LDA projection of a four feature sub- 374

sets (I0, DA, DR, P) from the breast tissue data set of the UCI 375

repository [9], which contains 106 samples categorized into 376

six classes. We automatically scale the figure to make the 377

data (colored dots according to their class label) and the axis 378

vectors (red line segments) occupy all of the available space. 379

Our tool also includes a unit circle that can be useful in other 380

SC plots (e.g., the length of the axis vectors in orthographic 381

star coordinates [27] must be at most 1). The eigenvalues are 382

λ1 = 13.46 and λ2 = 0.90, which represent 92% and 6%, 383

respectively, of the sum of the four eigenvalues. This means 384

that the horizontal axis is an order of magnitude more impor- 385

tant than the Y axis for separating the classes, according to the 386

objective function of LDA. This is also noticeable in Fig. 1a, 387

where if the points are projected onto the horizontal axis it is 388

still possible to separate the “adi” (blue) and “con” (green) 389

classes from the rest. Instead, it would be difficult to separate 390

any of the classes where the points had been projected onto 391

the vertical axis. 392

In this example, not only the lengths of the axis vectors 393

related to features I0 and P are very similar, but the total 394

average displacement after eliminating each one is also sim- 395

ilar. Nevertheless, P has a smaller impact on the visualization 396

since λ1 is considerably greater than λ2, and because its asso- 397

ciated axis vector is almost perpendicular to the horizontal 398

axis. Concretely, our proposed measure g(v) for I0 is 4 times 399

that P, as is shown in Table 1. We can observe this graphi- 400

cally in Fig. 1b, c. In (b), we have ignored P and created a 401

new LDA plot. In this case, the classes are separated nearly 402

as well as in (a). However, in (c), the classes are not as well 403

separated when removing feature I0: the “con” class (green), 404

which was fairly well separated in (a) and (b), now overlaps 405

with several other classes. Lastly, for this data set, our met- 406

ric recommends removing DR, which is associated with the 407

smallest value of g(v) (see Table 1). 408

Finally, in practice, it is typical to discard various features 409

at the same time. If that is the case, the total relevance of a sub- 410

set of features can also be characterized by the displacement 411

of the low-dimensional points when discarding that subset 412

of features. A naive approach for selecting k variables to 413

remove consists of computing the displacements when dis- 414

carding the entire subsets of features. However, this would be 415

time-consuming since it would require computing n choose 416

k linear mappings, where in this case n is the number of 417

variables that remain (i.e., that have not yet been discarded) 418
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Fig. 1 SC plots related to LDA of subsets of the breast tissue data set.

In a, the plot uses features I0, DA, DR, P. In b, the feature P is discarded

while in c I0 is eliminated. The classes are separated better in b than in

c as suggested by our proposed metric, since g(v) is smaller for P

Table 1 Feature relevance measures for the SC plot in Fig. 1a, which

is an LDA projection of a subset of four features (I0, DA, DR, P) of the

breast tissue data set

Feature (v) ‖v‖ f (v) g(v)

I0 12.84 11.12 66.52

P 12.03 10.10 14.73

DA 3.19 2.42 14.00

DR 3.27 2.45 4.23

at a certain stage of the feature selection process. Instead, a 419

faster approach that only requires computing n new plots con- 420

sists of using sums of our proposed measure when applied to 421

individual features. The theoretical foundation for this faster 422

strategy relies on the fact that the weighted displacement 423

measure g applied to some set of features is bounded above 424

by the sum of g applied on the individual features of the set, 425

as we show in the following result. 426

Proposition 3 Let S = {vi1 , . . . , vik
} represent a set of k 427

axis vectors in a SC plot, where I = {i1,…,ik} simply con- 428

tains the feature indices. When the features related to S 429

are discarded simultaneously, the measure g(S) is bounded 430

above by the sum of the g(v) measures for each feature, i.e., 431

g(S) ≤ g(vi1) + · · · + g(vik
). 432

Proof Firstly, let: 433

q
( j)
S =

n
∑

k=1, k /∈I

x
( j)
k vk = p( j) −

∑

ik∈I

x
( j)
ik

vik
(11) 434

denote the low-dimensional point when discarding the fea- 435

tures included in S. In that case, the average horizontal 436

displacement of the low-dimensional points can be expressed 437

as: 438

f1(S) =
1

N

N
∑

j=1

|p
( j)
1 − q

( j)

S,1| 439

=
1

N

N
∑

j=1

|x
( j)
i1

vi1,1 + · · · + x
( j)
ik

vik ,1| 440

≤
1

N

N
∑

j=1

|x
( j)
i1

vi1,1| + · · · + |x
( j)
ik

vik ,1| 441

= f1(vi1) + · · · + f1(vik
) , (12) 442

443

where q
( j)

S,1 is the horizontal component of q
( j)

S . Analogously, 444

the vertical displacement is bounded as follows: 445

f2(S) ≤ f2(vi1) + · · · + f2(vik
). (13) 446
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Feature selection based on star coordinates plots associated with eigenvalue problems

Finally, the total relevance of the group of features associated447

with S is bounded by the sum of the relevance of each feature:448

g(S) = λ1 f1(S) + λ2 f2(S)449

≤ λ1 f1(vi1) + · · · + λ1 f1(vik
)450

+ λ2 f2(vi1) + · · · + λ2 f2(vik
)451

= g(vi1) + · · · + g(vik
). (14)452

453

⊓⊔454

Therefore, although it is possible to find a set of k fea-455

tures to discard that minimizes g, an approximate but more456

efficient strategy consists of minimizing upper bounds on g.457

5 Results458

We have developed a tool using plotly, dash, scikit-learn,459

and pandas that shows SC plots and enables users to observe460

the influence of features in the SC projection by using an461

additional bar chart. The tool includes point-and-click and462

selection mechanisms to interact with the bar chart, which463

allow analysts to make decisions easily regarding which fea-464

tures to remove.465

The bar chart shows, for every feature at a particular stage466

of the feature selection process, the value of the proposed467

measure g(v). In addition, for the purpose of this paper, the468

bar chart can include the average displacement measure f (v)469

(see 5), and the length of the axis vectors ‖v‖, which allow470

us to compare the different feature relevance measures. The471

tool allows us to sort the features according to one of the472

three measures. Furthermore, in order to compare the met-473

rics effectively, we normalize each one by dividing it by474

its maximum value. Thus, the values of the metrics will be475

between 0 and 1, where 1 represents the greatest contribution476

to the SC plot for a particular metric. Lastly, each time the477

analyst removes features, the linear dimensionality reduction478

algorithm is applied again to the remaining features and the479

measures are recalculated. Figure 2 illustrates the bar chart480

through an example based on a PCA plot of the well-known481

Iris data set from the UCI repository [9].482

Figure 3 shows the effect of discarding features according483

to the different measures, and how this affects the max-484

imization of the variance (i.e., the objective function of485

PCA). Removing the least important variable modifies the486

projection, and therefore, the variance obtained in the low-487

dimensional space. The variance, as established by the sum488

of the two eigenvalues, is initially 3.86 when considering the489

four data variables. For this data set, the proposed approach490

recommends removing “sepal-width,” in which case the vari-491

ance decreases to 2.99. However, point displacement and axis492

length recommend removing “petal-width” (it is the small-493

Fig. 2 SC plot related to PCA of the Iris data set (setosa in purple,

versicolor brown, virginica yellow). The corresponding bar chart shows

the three different studied measures (the proposed approach g(vi) in

blue, the average point displacement f (vi) in orange, and the axis length

‖vi ‖ in green), which guide the feature selection process. In this case,

the features arranged according to g(vi) in decreasing order

est bar of the bar chart for both measures), which causes the 494

variance to drop to 2.95. 495

Figure 4 shows a more complex scenario which uses the 496

Olives data set [48], composed of information (8 features) 497

about 572 olive oils. It presents a flow chart showing the 498

greedy procedures that reduce the number of features from 499

eight to four, depending on each of the three metrics. At the 500

top, we show the initial PCA plot, its related variance, and 501

the bar chart with the three metrics for the whole feature 502

set. The ovals in the graphic indicate the least important fea- 503

ture regarding each metric (i.e., the shortest bar). The arrows 504

indicate the greedy decisions when the analyst follows the 505

recommendation to remove a selected feature. Subsequently, 506

a new SC plot related to PCA is computed with the remain- 507

ing features. For simplicity, we only show the resulting bar 508

chart together with the obtained variance. Note that in some 509

cases the least important feature is the same. For example, the 510

first feature to be discarded is “stearic” for the three metrics. 511

In practice, the decisions taken and the stopping criterion 512

depend on the metrics and on the user’s domain knowledge. 513

For illustration purposes, we have only shown all possible 514

decisions that lead to a subset of four features. Finally, the 515

PCA plots obtained for each metric are shown at the bot- 516

tom. Note that in this example g(vi) allows analysts to obtain 517

larger variance values. 518

Although the differences in the resulting variances may 519

seem small, they are relevant if we consider the largest vari- 520

ance that could be obtained at every stage by making an 521
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A. Sanchez Campos et al.

Fig. 3 Effect of discarding features from the plot in Fig. 2 according to

different measures. The plot in a is obtained after removing the variable

“sepal-width,” as suggested by the proposed approach, for which it is the

feature with the least influence. Instead, when using point displacement

or axis length, the feature to remove is “petal-width,” which leads to

the plot in b. The sum of variances along the X and Y axes of the plot

when using the proposed measure (2.99) is greater than the one for the

other two approaches (2.95)

optimal choice when discarding a variable. Note that, given522

a set of n features, it could be possible to compute n new plots523

where each feature is discarded, and subsequently select the524

feature for which λ1 + λ2 is maximized. However, this strat-525

egy is clearly inefficient. Figure 5 illustrates a comparison526

of the three feature relevance measures and also shows how527

close they are to the optimal choice, for the standardized528

Auto MPG data set from [9] that contains eight features. The529

graphic shows variances associated with PCA plots as vari-530

ables are discarded from the initial feature subset (one by one,531

following a greedy approach, as explained in Fig. 4), accord-532

ing to the three measures and the optimal choice strategy. In 533

the example, our metric g(vi) provides feature subsets that 534

lead to larger variances in general, which are very close to 535

the ones obtained by discarding the optimal variables. Nat- 536

urally, since the variance of each variable is one (because 537

the data is standardized), the three curves take the value 2 538

when reducing the selected set to two single features in a 539

two-dimensional plot. 540

We also tested the performance of the feature relevance 541

measures on a broader experiment involving PCA and LDA 542

plots for randomly selected feature subsets of numerous 543

data sets. For PCA, we used: “Iris,” “Auto MPG,” “Breast 544

Cancer Wisconsin,” “Ecoli,” “Glass Identification,” “Mice 545

Protein Expression,” “Parkinsons,” “Spambase,” “SPECTF 546

Heart,” “Statlog,” “Wine,” “Forest Types,” “Wall-Following 547

Robot Navigation,” “Letter Recognition,” and “Weight Lift- 548

ing Exercises” available at repository [9]. For LDA, we used: 549

“Glass Identification,” “Iris,” “Mice Protein Expression,” 550

“Wine,” “Letter Recognition,” “Weight Lifting Exercises,” 551

“Optical Recognition of Handwritten Digits,” and “Olives,” 552

which include class labels. 553

The experiments involved 200 trials where in each one we 554

selected a data set at random, and a subset of features, also 555

randomly (with n > 2). Subsequently, we applied the three 556

metrics in order to discard a single feature and evaluated the 557

resulting subset. This allows us to compare the performance 558

of each metric on the same subset of features. For both PCA 559

and LDA, we considered that a feature subset is superior to 560

another if the value of its objective function (i.e., λ1 + λ2) 561

is larger (for PCA it is the variance, while for LDA it is a 562

measure of class separation). 563

Since this experiment involves repeated measures, we per- 564

formed nonparametric Friedman tests to determine whether 565

there were statistically significant differences between the 566

feature relevance measures. These tests were followed up 567

by a multiple comparison analysis to test for individual 568

differences between the metrics. We found statistically sig- 569

nificant differences between our approach and the other two 570

described in the literature. Figure 6 shows summary diagrams 571

of comparison intervals of the mean ranks, where there are 572

statistically significant differences (we have used a default 573

significance level of α = 0.05) if the intervals do not over- 574

lap. 575

Finally, we present an example in which we discard sev- 576

eral features at the same time. Figure 7 shows the initial 577

LDA mapping for the (larger) Weight Lifting Exercises data 578

set [42]. This data set contains 4024 samples of exercises 579

monitored through 53 numerical features and categorized 580

into five classes that indicate the way of executing the exer- 581

cise. At the top of the plot, we have indicated the value of 582

the objective function for LDA. In addition, we have also 583

included the average silhouette coefficient score [34] of the 584

projected points, which is a popular measure of cluster (or 585
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Feature selection based on star coordinates plots associated with eigenvalue problems

Fig. 4 Visual feature selection process of a PCA plot with the Olives

data set (variance 5.50) according to ‖vi ‖, f (vi), and g(vi). During

the first step, the three metrics recommend to discard the same feature:

“stearic.” In the second step, f (vi) and g(vi) recommend to discard

“arachidic” (variance 5.01). Then, “linolenic” would be eliminated by

g(vi) (variance 4.44) while point displacement would discard “palmitic”

(variance 4.25). In the last step, both would discard “palmitoleic,” which

yields a reduced model of 4 variables. Instead, in the second step, the

recommended feature to discard by ‖vi ‖ is “palmitic,” leading to a

variance of 4.68. Subsequently, “eicosen” and “palmitoleic” would be

discarded due to their length. Finally, by comparison, g(vi) is able to

obtain a plot with a larger variance (3.64) using a subset of 4 features
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A. Sanchez Campos et al.

Fig. 5 Variance reduction obtained by applying feature selection on

PCA plots of the standardized Auto MPG data set. In general, our

approach is able to obtain feature subsets for which the correspond-

ing variance is greater than the one for the other metrics and is very

close to the variance for optimal subsets. Specifically, we computed

the sequence of optimal subsets (of seven down to two variables) by

discarding the feature that leads to the plot with the largest variance at

each step

1.7 1.8 1.9 2 2.1 2.2 2.3

Mean ranks

g(v
i
)

f(v
i
)

||v
i
||

PCA

1.7 1.8 1.9 2 2.1 2.2

Mean ranks

g(v
i
)

f(v
i
)

||v
i
||

LDA

Fig. 6 Multiple comparison post-hoc analysis of the mean rank differ-

ences between the three relevance measures for feature selection on SC

plots, where a smaller rank indicates a better performance. Our pro-

posed measure generally leads to PCA plots with greater variance and

LDA plots with a higher class separation

class) separation quality. A higher average silhouette coef-586

ficient score is associated with denser and more separated587

clusters. For this particular LDA plot that uses all of the fea-588

ture in the data set, its value is 0.56. The LDA plot shows589

the projected data points colored according to their class,590

together with the axis vectors. We have only included the591

names of seven features for clarity. Lastly, the figure includes592

the bar chart with the values of the three analyzed metrics,593

sorted according to g(v). Note that for certain features (e.g.,594

the seventh, from left to right) the metrics can be quite dif-595

ferent.596

Fig. 7 SC plot related to LDA of the Weight Lifting Exercises data

set, which has 53 features and five different classes. Most axis vectors

are clumped in the center of the plot (we have omitted most names of

the features for visual clarity). The bar chart shows the importance of

all of the features according to the three approaches (the features are

ordered according to g(v)). Lastly, the LDA objective is 65.49, while

the silhouette score is 0.56

Fig. 8 SC plot related to LDA of the Weight Lifting Exercises data set,

for seven features selected by considering the lengths of the axis vectors

‖v‖. Instead of discarding variables one by one, we have eliminated the

46 features with the shortest axis vectors in a few steps. Specifically,

we discarded groups of features that shared a similar importance score.

The LDA objective is 35.12, while the silhouette score is 0.35. The bar

chart shows the influence of the seven remaining features sorted by the

length of the axis vectors. We have included the values of the proposed

metric (blue bars) for comparison
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Feature selection based on star coordinates plots associated with eigenvalue problems

Fig. 9 SC plot related to LDA of the Weight Lifting Exercises data set,

for seven features selected by considering the average point displace-

ment metric f (v). The sorted orange bars in the bar chart show the

values of the metric for the seven variables, while the blue bars indi-

cate the value of our proposed measure g(v). In this example, the LDA

objective is 33.42, while the silhouette score is 0.34

Figures 8, 9, and 10 show the feature selection pro-597

cesses that results from analyzing the bar charts for the LDA598

plots regarding ‖vi‖, f (vi), and g(vi), respectively. Subse-599

quently, we have discarded groups of features with similar600

low measure values, in a few iterations, until obtaining a601

final selection of seven features. The figures also show the602

corresponding bar chart of each subset of the seven selected603

variables. Note that some, but not all, of the variables appear604

in each of the selected subsets. The values of the LDA objec-605

tive function (λ1 + λ2) are 35.12, 33.42, and 39.33, while606

the silhouette scores are 0.35, 0.34, and 0.38, respectively.607

Thus, we obtained greater values when using proposed mea-608

sure g(vi). This example shows that it is possible to use the609

metric to remove groups of several features simultaneously.610

6 Discussion and conclusions611

In this paper, we have presented a feature relevance measure612

for visual feature selection based on SC plots associated with613

linear projections related to eigenvalue problems like PCA614

or LDA. In contrast to other approaches in the literature,615

the measure uses information about the eigenvalues, which616

are related to the problems’ objective function, to determine617

the most important features for a particular plot. The fea-618

ture selection is carried out by discarding the least important619

Fig. 10 SC plot related to LDA of the Weight Lifting Exercises data

set, for seven features selected by considering the proposed weighted

displacement metric g(v). The sorted bars show the values of the metric

for the seven variables. In this case, the LDA objective is 39.33, while

the silhouette score is 0.38. These values that measure the quality of

class separation are greater than when using ‖v‖ or f (v)

features, either one by one, or by considering groups of vari- 620

ables. Results show that the proposed measure outperforms 621

other methods based on SC plots described in the literature. 622

The goal of the approach is to involve the user in order to 623

benefit from its domain knowledge when making decisions 624

regarding which variables to discard. If the number of vari- 625

ables is very large, it can be extremely difficult for users to 626

consider all or most of them simultaneously. In those cases, 627

users could rely on the proposed metric, but would essentially 628

apply it without taking advantage of their expertise. Thus, 629

in those scenarios, it is preferable to first employ an auto- 630

matic feature selection procedure (e.g., based on entropy) in 631

order to reduce the number of variables to a more manage- 632

able amount (around 50 or less if possible), and only then 633

use our visualization approach on the remaining features. 634

In addition, in principle, g(v), as well as ‖v‖ and f (v), 635

could be applied in an automatic manner. However, it is meant 636

to provide suggestions to expert users, within a visualization 637

framework, where they can intuitively decide whether to dis- 638

card the proposed variable, or to retain it according to their 639

domain knowledge, and to the information shown in the plots. 640

It is important to note that g(v) not only ranks the features (as 641

do many other methods), but the approach is coupled with a 642

plot where users can obtain additional information from the 643

visualizations (e.g., which variables are related and could 644

therefore be redundant, the distribution of data points and 645
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their attribute values, which variables are related to outliers,646

etc.).647

Although nonlinear mappings are generally be able to rep-648

resent data more faithfully, it is difficult to understand how649

the original variables affect the mappings. Instead, when650

working with linear mappings, we can represent the orig-651

inal features as (axis) vectors in SC plots. Although their652

lengths and orientations provide information and possibly653

new insight, we have shown that it is beneficial to consider654

additional aspects as well, such as the point displacement655

together with the problem’s eigenvalues, when performing656

feature selection. Specifically, we have shown that the pro-657

posed feature relevance measure leads to PCA plots with658

greater variance, and LDA plots that separate classes better,659

after removing the least important features for the linear map-660

pings. Nevertheless, the approach can be applied to many661

other linear methods for dimensionality reduction that are662

based on eigenvalue problems (e.g., variants of LDA and663

PCA, locality preserving projections (LPP) [15], neighbor-664

hood preserving embedding (NPE) [14], etc.).665

The effectiveness of the method depends on how well666

the linear mappings represent the data. In practice, analysts667

should examine the relative values of the obtained eigenval-668

ues (e.g., through a typical scree plot) and verify that the669

values of the first two (λ1 and λ2) are relatively greater than670

the rest. If λ3 was also relatively large, users could also exam-671

ine additional SC plots involving the third eigenvector. For672

example, they could form projection matrices whose columns673

correspond to eigenvectors 1 and 3, or 2 and 3. Another option674

consists of creating a three-dimensional SC plot. In that case,675

the formula for g(v) in (10) can be easily extended in order to676

involve a third eigenvalue and the average point displacement677

on the Z axis.678

The invariance of our approach with respect to rotations679

and scalings depends exclusively on the invariance of the680

linear methods. For example, PCA and LDA are invariant to681

rotations, but not to scalings. Users must therefore be aware682

that the data normalization will affect the feature selection.683

We recommend standardizing the data, since in SC plots the684

scales of the features should be similar.685

We have developed a prototype tool in dash and plotly686

using scikit-learn and pandas, to compare our measure with687

previous alternatives. The visual interface can run several688

linear dimensionality reduction methods and provides a bar689

chart where analysts can analyze and compare the different690

feature relevance measures. This combination of an automat-691

ically calculated measure, together with an interactive visual692

tool, allows users to discard features based on the automatic693

recommendations and on their own expertise about the fea-694

tures. The code of the tool is freely available (http://monkey.695

etsii.urjc.es/vfsc/VFSC).696

We have also tested the tool with experts from the fields of697

medicine and monitoring of distributed systems, who com-698

pared the feature relevance measures analyzed in the paper. 699

They obtained similar results with the measures, since they 700

relied on their domain knowledge to select the features. How- 701

ever, they indicated that the proposed measure provided more 702

reasonable feature candidates to discard. Thus, they were able 703

to select the final feature subsets considerably faster. 704

Finally, the proposed feature relevance measure allows 705

users to carry out feature selection through a backward elim- 706

ination approach. We have not defined a stopping criterion 707

for this iterative process, since it depends on the particular 708

analysis task and on domain knowledge. For example, when 709

using LDA, users could discard variables until the classes 710

begin to overlap, or while the performance of a classifier 711

trained on the selected features is above a certain threshold. 6712
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