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Abstract

After a general description of the tomographic picture for classical systems, a tomographic description
of free classical scalar fields is proposed both in a finite cavity and the continuum. The tomographic
description is constructed in analogy with the classical tomographic picture of an ensemble of harmonic
oscillators. The tomograms of a number of relevant states such as the canonical distribution, the classical
counterpart of quantum coherent states and a new family of so called Laguerre states, are discussed.
Finally the Liouville equation for field states is described in the tomographic picture offering an alternative
description of the dynamics of the system that can be extended naturally to other fields.
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1. Introduction

Recently it has been shown the equivalence between the tomographic picture of quantum states and
the various standard representations of them: Schrödinger [1], Heisenberg [2], Wigner [3], etc. (see for
instance [4], [5] and references therein). In this paper we try to extend such description to classical fields.
In particular we will discuss the tomographic description of the real scalar Klein–Gordon field inspired
by the tomographic description of an ensemble of harmonic oscillators. In fact classical and quantum
field states are usually considered as classical and quantum mechanics applied to describing these states
for systems with infinite number of degrees of freedom (the field modes). Thus a state of a classical free
field when restricted to consider just a finite number of modes can be treated as an statistical ensemble
of harmonic oscillators.

This attempt will generalize the description of classical (or quantum) states in two directions. On one
side, describing classical field states involves dealing with an infinite number of degrees of freedom and
on the other, a covariant treatment of fields implies taking into the description of the state its dynamical
evolution. In order to show how to proceed with this task we will analyze the foundations of tomography
for a classical system with a finite number of degrees of freedom and we will extend straightforwardly
such construction to deal with classical fields.
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The tomographic description of classical systems presented here will be directly inspired by the Radon
transform, so that our construction can also be considered as an infinite dimensional extension of the
Radon transform. The transition to quantum fields should proceed using similar ideas in the realm of
quantum mechanical systems, however we will leave such analysis to a subsequent paper. Classical and
quantum standard descriptions of the fields are dramatically different. The states of classical mode are
identified with probability densities and the states of quantum modes are identified with Hermitian trace-
class nonnegative density operators (or density matrices). The observables in the tomographic picture of
quantum mechanics are tomographic symbols of corresponding operators which are constructed by means
of a specific star–product scheme [6]. The analogous tomographic representation of classical system states
by means of classical Radon transform [7] of the classical probability density ρ(ω) is also available [8],
[9], [4].

Till now the classical and quantum field states have not been considered in the tomographic proba-
bility representations, except in early attempts [10], [11] and more recently when applying the quantum
Radon transform to study tomographic symbols of creation and annihilation field operators for bosons
and fermions [12] [13]. The aim of our work is to extend the tomographic approach to the case of quan-
tum and classical systems with infinite number of degrees of freedom and to introduce for classical and
quantum fields the tomographic probability density functionals determining their states. We will also
find the tomographic form of the classical field Liouville equation for the tomographic probability density
functionals.

The paper is organized as follows. In section 2 a generalized description of the tomography of classical
systems inspired on the Radon transform will be described. In this picture the description of states
of a physical system as normalized positive functionals on the algebra of observables of the system
is paramount. Notice that such framework is common to both classical and quantum systems. The
tomographic description of a family of states, similar to coherent states, for an ensemble of independent
harmonic oscillators will be done in section 3. Then, in section 4, and using as a guideline the results
obtained for the family of oscillators before, we will discuss the tomographic picture of a real scalar
Klein–Gordon on a finite cavity. For that we will consider the field as described by a countable ensemble
of harmonic oscillators and a family of states similar to coherent states for harmonic oscillators will be
analized. It will be shown that the tomographic description an such states is equivalent to the original
one. The tomographic description of the field states on the continuous case will be discussed in section
5 following similar lines and finally, the Liouville field equation in tomographic form will be discussed in
section 6. Conclusions and further perspectives of this work are given in section 7.

2. The tomographic picture of classical physical systems: an overview

The states of a classical system with a finite numbers of degrees of freedom are described by a
probability density ρ($) on its phase space $ ∈ Ω. The phase space carries a canonical measure, the
Liouville measure µLiouville that in canonical coordinates (q,p), q = (q1, . . . , qn),p = (p1, . . . pn), has the
form dµLiouville(q,p) = dnqdnp = dq1 · · · dqndp1 · · · dpn. In the case that Ω is a domain in R2n, the
classical center–of–mass tomogram Wcm of the state ρ is defined as the Radon transform of the density
ρ and consists on the average of ρ along affine hyperplanes on phase space, i.e.,

Wcm(X,µ,ν) =

∫
Ω

ρ (q,p) δ(X − µ · q − ν · p)dnqdnp, (1)

where µ = (µ1, . . . , µn), ν = (ν1, . . . νn) and the equation X −µ · q− ν ·p = 0 determines an hyperplane
Π in Ω. The classical center–of–mass tomogram Wcm(X,µ,ν) defines a probability density, depending
on the random variable X, on the space of hyperplanes in Ω. The state ρ can be reconstructed by using
the inverse Radon transform:

ρ (q,p) =

∫
R2n+1

Wcm(X,µ,ν) exp [i(X − µ · q − ν · p)] dX
dnµdnν

(2π)2n
. (2)

2



The ideas before can be extended by considering with more care the role of the observables of the
system in the construction of the tomogram Wcm. The description of a physical system involves always
the selection of its algebra of observables, call it O, and its corresponding states, denoted by S. The
outputs of measuring a given observable A ∈ O when the system is in the state ρ are described by
a probability measure µA,ρ on the real line such that µA,ρ(∆) is the probability that the output of A
belongs to the subset ∆ ⊂ R. Thus a measure theory for the physical system under consideration is a
pairing between observables A and states ρ assigning to pairs of them measures µA,ρ. In this setting the
expected value of the observable A in the state ρ is given simply by:

〈A〉ρ =

∫
λdµA,ρ(λ). (3)

Such picture applies equally to both classical and quantum systems. Thus for closed quantum systems
the observables are described by self–adjoint operators A on a Hilbert space H while states are described
as density operators ρ acting on such Hilbert space. The pairing above is provided by the assignment of
the measure µA,ρ = Tr(ρEA) where EA denotes the projector–valued spectral measure associated to the
Hermitian operator A.

The description of a classical system whose phase space is Ω can be easily established in these terms
by considering that the algebra of observables O is a class (large enough) of functions on Ω, and that
the states of the system are normalized positive functionals on O, thus for instance if O contains the
algebra of continuous functions on Ω, states are probability measures on phase space. If we assume that
the phase space is originally equipped with a measure µ, for instance the Liouville measure µLiouville in
the case of mechanical systems, then we may restrict ourselves to the statistical states considered by
Boltzmann corresponding to probability measures which are absolutely continuous with respect to the
Liouville measure, thus determined by probability densities ρ($) on Ω. We denote such space of states by
S as before. Given an observable f($) on Ω, the pairing between states and observables will be realized
by assigning to the observable f its characteristic distribution ρf with respect to the probability measure
ρ($)dµ($), then the probability of finding the measured value of the observable f in the interval ∆ is
given by ∫

∆

ρf (λ)dλ, (4)

and the expected value of f on the state ρ will be given by:

〈f〉ρ =

∫
λρf (λ)dλ. (5)

The tomographic description provided by the classical center–of–mass tomograms Wcm above (1)
does not allow to cope with systems whose phase space is not of the previous form (for instance spin
systems) and it is convenient to expand the scope of the formalism to make it more flexible and allow for
alternative and more general pictures. Other tomographic pictures have been proposed for both classical
and quantum systems (see for instance [14] for a description of quantum tomograms in the realm of
C∗–algebras, include more references here!!!).

We will construct a tomographic picture of a classical system starting with a family of elements in O
parametrized by an index x that can be discrete or continuous. Often x is a point on a finite dimensional
manifold that we will denote byM, thus x ∈M. We will denote the observable associated to the element
x by U(x) or Ux depending on the context. Given a state ρ of the system, the correspondence x 7→ Ux,
allows to pull–back the observables Ux to M defining the function Fρ(x) on M associated to the state
ρ($) by:

Fρ(x) =

∫
Ω

Ux($)ρ($)dµ($). (6)

The functions Ux must be chosen so that the previous integral is defined. For instance we could have
chosen M = Ω as in the definition of the Radon transform above (1), and then consider U$ = δ($),
thus the function Fρ associated to the state ρ($) will be again ρ($) itself. The original state ρ($)

3



could be reconstructed from Fρ iff the family of observables U(x) separate states, that is, given ρ 6= ρ′

two different states, there exists x ∈ M such that Fρ(x) = 〈ρ, U(x)〉 6= 〈ρ′, U(x)〉 = Fρ′(x). Then two
states are different if and only if the corresponding representing functions Fρ are different.

Clearly up to now, our construction does not discriminate the description of classical systems from
quantum systems. The difference will appear only at the level of the product structure on the induced
functions Fρ. Another important ingredient for the tomographic description is the Radon transform. To
give an abstract presentation of this transform, we shall assume for the time being thatM is a manifold
which carries a measure, so that we can consider integrable functions on it and perform the corresponding
integrals.

Consider now the dual space of F(M) and a second auxiliary space N whose points will be denoted
by y ∈ N . The space N parametrizes a certain subspace D(M) ⊂ F(M)′. In other words, for each
y ∈ N there is an assignment y 7→ D(y) with D(y) ∈ D(M) a linear functional on the space of functions
on M. We obtain a map from F(M) to F(N ) by setting for each f ∈ F(M):

Wf (y) = 〈D(y), f〉. (7)

For instance suppose that N parametrizes a family of submanifolds S(y) of Ω, y ∈ N . If the sub-
manifold S(y) has the form Φ(q,p;X1, . . . , Xd) = X0, y = (X0, X1, . . . , Xd) denoting a parametrization
of N , the corresponding generalized Radon transform would be written as:

W(y) =

∫
Ω

ρ(q,p)δ(X0 − Φ(q,p;X1, . . . , Xn))dnqdnp, (8)

which has the same form as eq. (1).
When the imbedding is properly chosen, it turns out that W(y) is a fair probability distribution on

N which we have constructed out of the initial state ρ. The aim of tomography is to reconstruct ρ out of
the experimental distribution functions that we obtain from the measurement of the selected observables
parametrized by M. This is the so called inversion formula for the Radon transform. In the case that
Ω = R2n and N denotes as in (1) the space of hyperplanes, then because of the homogeneity properties
of the Dirac distribution, we find that Wcm satisfies the condition:[

X
∂

∂X
+ µ · ∂

∂µ
+ ν · ∂

∂ν
+ 1

]
Wcm(X,µ,ν) = 0. (9)

Due to the homogeneity condition (9), Wcm depends effectively only on 2n variables instead of 2n + 1
and the inversion formula works, out of the “measurements” performed with the family of operators
{µ · q̂ + ν · p̂}, (µ,ν) ∈ R2n, we are able to recover ρ by mneans of eq. (2).

As an important example of the previous discussion, we introduce another kind of tomographic rep-
resentation of the state ρ(q,p), the classical symplectic tomogram defined as:

Wρ(X,µ,ν) =

∫
R2n

ρ(q,p)

n∏
k=1

δ(Xk − µkqk − νkpk)dq1 . . . dqndp1 . . . dpn. (10)

Notice that we have takenM = R2n, the phase space again, and N = N1×· · ·×Nn with Nk the space of
lines in R2, the phase space of each individual degree of freedom of the physical system under considera-
tion. Thus, we have obtained a joint probability distribution of the n random variables (X1, . . . , Xn) = X.
In contrast to the center–of–mass case, because of the presence of n Dirac distributions, we find that the
symplectic tomogram Wρ satisfies n homogeneity conditions:[

Xk
∂

∂Xk
+ µk

∂

∂µk
+ νk

∂

∂νk
+ 1

]
Wρ(X,µ,ν) = 0 , k = 1, . . . , n. (11)

In other words, the classical symplectic tomogram Wρ(X,µ,ν) depends effectively only on 2n variables
instead of 3n. In fact, one can show that the symplectic tomogram Wρ(X,µ,ν) can be transformed into
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the center–of–mass tomogramWcm of the same state ρ, and vice versa. Finally, out of the “measurements”
performed with the family of operators {µkq̂k + νkp̂k}, (µk, νk) ∈ R2, k = 1, . . . , n, we are again able to
recover ρ, by means of the symplectic inversion formula:

ρ(q,p) =

∫
R3n

Wρ(X,µ,ν) exp

[
i

n∑
k=1

(Xk − µkqk − νkpk)

]
dnX

dnµdnν

(2π)2n
, (12)

where dnX = dX1 . . . dXn.

3. Tomograms for states of an ensemble of classical oscillators

3.1. The canonical ensemble

If we consider a family of n independent one–dimensional oscillators with frequencies ωk > 0, its phase
space Ω will be R2n with canonical coordinates (qk, pk), k = 1, . . . , n. The Hamiltonian of the system
will be H =

∑n
k=1Hk, Hk(qk, pk) = 1

2 (p2
k + ω2

kq
2
k). The dynamics of the system will be given by

q̇k = pk, ṗk = −ω2
kqk, k = 1, . . . n, (13)

and the Liouville measure on phase space takes again the form dµLiouville = dq1 . . . dqndp1 . . . dpn. Making
the change of variables ξk = qk/

√
ωk, ηk =

√
ωkpk, the dynamics is written in the symmetrical form

ξ̇k = ωkηk, η̇k = −ωkξk. k = 1, . . . n. (14)

and the Hamiltonian becomes

H(ξ, η) =

n∑
k=1

Hk(ξk, ηk) =
1

2

n∑
k=1

ωk(ξ2
k + η2

k). (15)

The Liouville measure remains unchanged under this change of variables dµLiouville(q,p) = dnqdnp =
dnξdnη = dξ1 . . . dξndη1 . . . dηn = dµLiouville(ξ,η) and statistical states are described by probability
densities ρ(q,p) = ρ(ξ,η). Liouville equation determines the evolution of the state:

d

dt
ρ = {ρ,H} (16)

where the Poisson brackets are defined by the canonical commutation relations {qk, pl} = δkl, {qk, ql} =
{pk, pl} = 0. Notice that if $ = (ξ,η) ∈ Ω is a point in phase space, then ρt($) = ρ(ξ(t),η(t)) with
(ξ(t),η(t)) the solution of the equations of motion (14) starting at $ at time t = 0.

In particular, the Gibbs state or canonical distribution is given by ρcan(q,p) = e−βH/Z0 where the
normalization constant Z0 is easily evaluated

Z0 =

∫
Ω

e−βH(q,p)dµLiouville(q,p) =

∫
R2n

e−
1
2β
∑n
k=1 ωk(ξ2k+η2k)dξ1 . . . dξndη1 . . . dηn (17)

= (2π)
n

n∏
k=1

(βωk)−1.

Hence for a given observable f we will have:

〈f〉ρcan =
1

Z0

∫
R2n

f(ξ,η)e−
1
2β
∑n
k=1 ωk(ξ2k+η2k)dξ1 . . . dξndη1 . . . dηn. (18)

More detailed information will be found in [15].
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The classical tomographic description of a state ρ(ξ,η) will be performed by means of a symplectic
tomogram:

Wρ(X,µ,ν) =

∫
R2n

ρ(ξ,η)

n∏
k=1

δ(Xk − µkξk − νkηk)dξ1 . . . dξndη1 . . . dηn. (19)

We recall that here we have takenM = R2n, the phase space again, and N = N1×· · ·×Nn with Nk the
space of lines in R2, the phase space of each individual one–dimensional oscillator. A simple computation
shows that the Gibbs state tomogram reads:

Wρcan(X,µ,ν) =

n∏
k=1

√
βωk

2π (µ2
k + ν2

k)
exp

[
− βωkX

2
k

2(µ2
k + ν2

k)

]
. (20)

A interesting family of states which are the classical counterpart of quantum coherent states can be
introduced by means of the holomorphic representation ζk = 1√

2
(ξk+iηk) of phase space, hence the phase

space becomes the complex space Cn with the Hermitian structure H(ζ, ζ̄) =
∑n
k=1 ωk|ζk|2. Given a

point z = (z1, . . . , zn) ∈ Cn we can construct the distribution

ρz(ζ, ζ̄) = N (z) exp

[
n∑
k=1

ωk(zk ζ̄k + z̄kζk)

]
ρcan(ζ, ζ̄)

∣∣
β=1

(21)

where

N (z) =

n∏
k=1

πω−1
k exp

[
−ωk|zk|2

]
. (22)

Notice that integrating the Liouville equation for such state yields:

ρz (t) = ρz(t), (23)

with
zk(t) = e−iωktzk(0). (24)

The symplectic tomographic distribution corresponding to ρz(ζ, ζ̄) is a product

Wρz (X,µ,ν, z) =

n∏
k=1

W(k)
ρz (Xk, µk, νk, zk), (25)

where the tomogram W(k)
ρz of a single degree of freedom is a Gaussian distribution

W(k)
ρz (Xk, µk, νk, zk) =

√
ωk

2π (µ2
k + ν2

k)
exp

[
−ωk (Xk − 〈Xk (µk, νk, zk)〉)2

2(µ2
k + ν2

k)

]
(26)

of the random variable Xk, with mean value

〈Xk (µk, νk, zk)〉 = µk< (zk) + νk= (zk) (27)

and variance given by

σXkXk =
2(µ2

k + ν2
k)

ωk
. (28)
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3.2. A new class of states: Laguerre states

We will consider now the family of classical states, inspired on the distribution probabilities of the
bounded states of an electron moving on a plane in a perpendicular magnetic field, given by:

ρLaguerre,{m}(ξ,η) =

n∏
k=1

ρ
(k)
Laguerre,mk

(ξk, ηk), (29)

where {m} = {m1,m2, . . . ,mn} is a multi–index and

ρ
(k)
Laguerre,mk

(ξk, ηk) =
ωk
2π

[
Lmk

(ωk
2

(ξ2
k + η2

k)
)]2

e−
1
2ωk(ξ2k+η2k). (30)

Here Lmk is the Laguerre polynomial of degree mk and the exponential is the not normalized Gibbs state

%can|β=1. Notice that ρ
(k)
Laguerre,mk

(ξk, ηk) is a classical state on a bidimensional phase space.
The symplectic Radon transform of the state factorizes:

WLaguerre,{m}(X,µ,ν) =

n∏
k=1

W(k)
L,mk

(Xk, µk, νk). (31)

and we will obtain

W(k)
L,mk

(Xk, µk, νk) =
exp

[
−X

2
k

σ2
k

]
π

1
2σk

mk∑
s=0

1

22mk

(
2 (mk − s)
mk − s

)(
2s

s

)[H2s

(
Xk
σk

)]
22s (2s)!

2

(32)

with

σk =

√
2 (µ2

k + ν2
k)

ωk
, (33)

while H2s is the Hermite polynomial of degree 2s. The above result can be obtained as follows.

First, we drop the label k and write Wm(X,µ, ν) in place of W(k)
L,mk

(Xk, µk, νk). Thus

Wm(X,µ, ν) =
ω

2π

∫
L2
m

(ω
2

(ξ2 + η2)
)

e−
1
2ω(ξ2+η2)δ (X − µξ − νη) dξdη (34)

=
ω

(2π)
2

∫
dKeiKX

∫
L2
m

(ω
2

(ξ2 + η2)
)

e−
1
2ω(ξ2+η2)e−iK(µξ+νη)dξdη.

Now we put
√
µ2 + ν2 = rµν , µ = rµν cosαµν , ν = rµν sinαµν , and ξ = r sin θ, η = r cos θ. Then, we

recast the previous formula as

Wm(X,µ, ν) =
1

2π

∫
dKeiKXW̃m(K,µ, ν) (35)

where the characteristic function of Wm, i.e. its Fourier transform W̃m, is given by

W̃m(K,µ, ν) =

∫ 2π

0

dθ

2π

∫ ∞
0

[
Lm

(
ωr2

2

)]2

e−
ωr2

2 e
−i(Krµν)r sin(θ+αµν)

d

(
ωr2

2

)
. (36)

The integral over the angular variable θµν = θ + αµν yields the Bessel function J0, so:

W̃m(K,µ, ν) =

∫ ∞
0

[
Lm

(
x2

2

)]2

e−
x2

2 J0

(
Krµν√
ω
x

)
d

(
x2

2

)
. (37)

7



The above integral can be evaluated and gives ([16], n. 7.422 2)

W̃m(K,µ, ν) = e
− 1

2

(
Krµν√

ω

)2
[
Lm

(
1

2

(
Krµν√
ω

)2
)]2

(38)

= e
− 1

2

(
Krµν√

ω

)2 1

22m

m∑
s=0

(
2 (m− s)
m− s

)(
2s

s

)
L2s

((
Krµν√
ω

)2
)
,

where the last line has been obtained by a well known addition formula of Laguerre polynomials ([16], n.
8.976 3).

We remark that the above equation yields, by multiplication over the restored label k, the characteris-
tic function W̃Laguerre,{m}(K,µ,ν) , withK = (K1, . . . ,Kk, . . .Kn), of the tomogramWLaguerre,{m}(X,µ,ν).

Besides, as W̃m(K = 0, µ, ν) = 1, we get at once the normalization property of the tomogram
Wm(X,µ, ν).

Finally, we are able to perform the last integration. The Fourier anti–transform of W̃m(K,µ, ν) is
obtained by means of the integral over y = Krµν/

√
ω ([16], n. 7.418 2):

1

π

√
ω

rµν

∫ ∞
0

L2s

(
y2
)

e−
1
2y

2

cos

(√
ω

rµν
Xy

)
dy =

√
ω√

2πrµν
e
− ω

2(rµν)2
X2 1

22s (2s)!

[
H2s

( √
ω√

2rµν
X

)]2

. (39)

So, we get the predicted expression of Wm(X,µ, ν).

4. The tomographic picture of Liouville’s equation

Finally, let us discuss the tomographic form of the evolution equation for states, Liouville equation
(16). The evolution equation in the tomographic description was recently obtained in [17] in relation
with a relativistic wave function description of harmonic oscillators. We will describe it here in the realm
of our previous discussion. Notice that because of the symplectic reconstruction formula for a classical
state (12) we can compute:

∂

∂t
ρ(ξ,η, t) =

∫
R3n

exp

[
i

n∑
k=1

(Xk − µkξk − νkηk)

]
∂

∂t
Wρ(X,µ,ν, t)dnX

dnµdnν

(2π)2n
, (40)

(notice that the symplectic tomogram is computed at a given fixed time) and, on the other hand:

{ρ,H} =

n∑
k=1

[
∂H

∂ηk

∂

∂ξk
− ∂H

∂ξk

∂

∂ηk

]
ρ (41)

=

n∑
k=1

∫
R3n

dnX
dnµdnν

(2π)2n
Wρ(X,µ,ν, t)

[
∂H

∂ηk

∂

∂ξk
− ∂H

∂ξk

∂

∂ηk

]
exp

i

n∑
j=1

(Xj − µjξj − νjηj)


=

n∑
k=1

∫
R3n

dnX
dnµdnν

(2π)2n
Wρ(X,µ,ν, t)

[
∂H

∂ξk
νk

∂

∂Xk
− ∂H

∂ηk
µk

∂

∂Xk

]
exp

i

n∑
j=1

(Xj − µjξj − νjηj)

 .
Eventually, we obtain the evolution equation for the classical tomogram Wρ:

∂Wρ(X,µ,ν, t)

∂t
= (42)

n∑
k=1

[
∂H

∂ηk

({
ξj → −

[
∂

∂Xj

]−1
∂

∂µj

}
,

{
ηj →

[
∂

∂Xj

]−1
∂

∂νj

})
µk

∂

∂Xk
Wρ(X,µ,ν, t)

−∂H
∂ξk

({
ξj → −

[
∂

∂Xj

]−1
∂

∂µj

}
,

{
ηj →

[
∂

∂Xj

]−1
∂

∂νj

})
νk

∂

∂Xk
Wρ(X,µ,ν, t)

]
.
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Notice that the arguments {ξj} , {ηj} of the derivatives of H, for any j, are replaced by the operators{
−
[

∂
∂Xj

]−1
∂
∂µj

}
,

{[
∂
∂Xj

]−1
∂
∂νj

}
, respectively. Explicitly, the operator

[
∂
∂X

]−1
is defined in terms of

a Fourier transform as[
∂

∂X

]−1 ∫
R
f (K) exp (iKX) dK =

∫
R

f (K)

iK
exp (iKX) dK. (43)

Due to the presence of such terms, for a generic Hamiltonian H the evolution tomographic equation is
integro-differential. In the particular instance of H given by (15), because of the general correspondence
rule:

∂

∂ξk
ρ↔ µk

∂

∂Xk
Wρ ,

∂

∂ηk
ρ↔ µk

∂

∂Xk
Wρ, (44)

the tomographic evolution equation takes the form of a differential equation:

∂Wρ(X,µ,ν, t)

∂t
=

n∑
k=1

ωk

[
µk

∂

∂νk
− νk

∂

∂µk

]
Wρ(X,µ,ν, t) (45)

= σ

(
{µk, νk}k ,

{
ξk → ωk

∂

∂µk
, ηk → ωk

∂

∂νk

}
k

)
Wρ(X,µ,ν, t),

where σ is the canonical symplectic form on the linear space E = R2n.

5. The tomogram of the real Klein-Gordon field on a cavity

Having shown that an interesting family of states for a finite ensemble of harmonic oscillators is
amenable to be described tomographically, we will discuss now the Klein–Gordon equation for a real
scalar field ϕ(x) in a finite cavity on 1 + d Minkowski space–time. Thus we consider Minkowski space–
time M = R1+d with metric of signature (+,−, · · · ,−). Points in space–time will be written as x = (t, x)
The dynamics of the real scalar field ϕ(x) = ϕ(t, x) is defined by the Lagrangian density:

L [ϕ] =
1

2
(∂µϕ∂

µϕ− V [ϕ]) , (46)

with Euler–Lagrange equations:
∂µ∂

µϕ = −V ′ [ϕ] . (47)

Considering V [ϕ] = m2ϕ2 we get the Klein–Gordon equation:

ϕtt −∆ϕ+m2ϕ = 0, (48)

with ∆ the d–dimensional Laplacian in Rd. As we have extensively seen, tomographic methods are
described on phase space where conjugated variables and Poisson brackets are available. On this carrier
space dynamical equations are described by a vector field, first order differential equations in time. Thus,
for our Klein–Gordon equations we have to introduce a larger carrier space where the equations will be
first order in time. The transition from second order equations in time to first order differential equations
in time may be done in many ways [18], here we shall consider one in which the new variables will make the
equations of motion more symmetric. We would stress that by using a specific splitting of spacetime into
a space part and a time part we break the explicit Poincarè invariant form but of course our description
is still relativistic invariant. To proceed, we will consider the Cauchy hypersurface C = {0}×Rd and the
finite cavity will be defined as V ⊂ C. We consider the restriction of the field to the cavity V using the
same notation ϕ(x) := ϕ(0, x), x ∈ V and the Klein–Gordon equation becomes the evolution equation in
the space of fields ϕ(x):

d2ϕ

dt2
= −(−∆ +m2)ϕ. (49)
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Boundary conditions at the boundary of the cavity V are chosen such that the operator −∆ + m2

is strictly–positive and self-adjoint on square integrable functions on V with respect to the Lebesgue
measure, thus we can define the invertible positive self–adjoint operator B =

√
−∆ +m2. We will also

assume for simplicity that boundary conditions are chosen in such a way that the spectrum of B is
nondegenerate, so that the eigenvalues of B will be 0 < ω1 < ω2 < . . . < ωn < . . . with eigenfunctions
Φk(x), BΦk(x) = ωkΦk(x), k = 1, 2, . . .. Thus equation (49) may be transformed into a first order
evolution differential equation by introducing the new fields:

ξ = B1/2ϕ ; η = B−1/2ϕt. (50)

(notice that B−1/2 is well–defined because B is positive and invertible) and the equations of motion (49)
for the field ϕ take the simple symmetric form:

d

dt

(
ξ
η

)
=

(
0 B
−B 0

)(
ξ
η

)
. (51)

Thus the equations of motion for the Klein–Gordon field constitute an infinite dimensional extension of
the dynamics of a finite number of independent oscillators (14). Using the Fourier expansion of the fields
ξ and η with respect to the eigenfunctions Φk of B, ξ(x) =

∑∞
k=1 ξkΦk(x), η(x) =

∑∞
k=1 ηkΦk(x), then,

the mechanical variables qk =
√
ωkξk and pk = ηk/

√
ωk can be interpreted as position and momentum

for a one–dimensional oscillator of frequency ωk and their evolution in time, given by eq. (13), as a
trajectory in phase space Ω = R2∞. In the presence of field fluctuations we have to introduce a statistical
interpretation to the mechanical degrees of freedom (qk, pk) or (ξk, ηk) of the field ϕ(x), thus the classical
statistical description of the field whose physical meaning corresponds to the probability of a certain
fluctuation of the field to take place, will be provided by a probability law ρ on the infinite dimensional
phase space R2∞. Thus in the presence of field fluctuations the state of the field will induce a marginal
probability density on each mode ρk(qk, pk) defined by,

ρk(qk, pk) =

∫
ρ(q1, q2, . . . , qk, . . . ; p1, p2, . . . , pk, . . .)

∏
l 6=k

dqldpl. (52)

Such marginal probability could be understood as a probability density for the k–th mode of the field ϕ
described by the one–dimensional oscillator with Hamiltonian Hk(ξk, ηk). Similar considerations could be
applied to finite dimensional subspaces of modes of the field whose statistical and tomographic description
would be made as in the previous section.

The canonical or Gibbs state for the field ϕ(x) is given by the probability distribution on the infinite
dimensional phase space of the system as:

ρcan(ξ1, ξ2, . . . ; η1, η2, . . .) = N exp

−1

2
β
∑
k≥1

ωk(ξ2
k + η2

k)

 (53)

with the normalization constant N to be determined by regularizing the integral:∫
e−

1
2β
∑
k≥1 ωk(ξ2k+η2k)

∞∏
k=1

dξkdηk =

[
det

(
1

2
βB

)]−1

, (54)

what amounts to define the determinant of the operator B by using the ζ–function regularization of
determinants, i.e.,

det

(
1

2
βB

)
= exp

[
ζ ′1

2βB
(0)
]
, (55)

with

ζ 1
2βB

(s) =

∞∑
k=1

(
1

2
βωk

)−s
. (56)
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In other words, the canonical ensemble for the real scalar Klein–Gordon field ϕ(x) is defined as the
Gaussian measure with variance C = ( 1

2βB)−1 on R2∞. Notice that

H [ξ,η] =
1

2

∞∑
k=1

ωk(ξ2
k + η2

k) =
1

2
||Bϕ||2 +

1

2
||ϕt||2 = H [ϕ] (57)

=
1

2

∫
V

(∂µϕ∂
µϕ+m2ϕ2)ddx,

with 1
2 ||Bϕ||

2 denoting the potential U [ϕ] of the Klein–Gordon field in the Hamiltonian picture. Observe
that U [ϕ] can also be written as:

U [ϕ] =
1

2
||Bϕ||2 =

1

2
〈ϕ,B2ϕ〉 =

1

2

∫
V
ϕ(x)(−∆ +m2)ϕ(x)ddx. (58)

Then the canonical ensemble for the Klein–Gordon field at finite temperature will be written in the usual
form:

dµcan [ϕ] = Ne−
β
2

∫
V(∂iϕ∂

iϕ+m2ϕ2)ddxDϕ (59)

with Dϕ =
∏∞
k=1 dqkdpk. Moreover, if F [ϕ] denotes an observable on the field ϕ (like the energy,

momentum, etc.), then the expected value of F on the canonical distribution at temperature β will be
given by:

〈F 〉can =

∫
F [ϕ] e−βH[ϕ]Dϕ∫

e−βH[ϕ]Dϕ
. (60)

The tomographic description of the states of the Klein–Gordon field will be performed as in the case of
an ensemble of harmonic oscillators in section 4 by choosing the spaceM the phase space R2∞ itself and
N =

∏∞
k=1Nk with Nk the space of straight lines on the phase space of the one–dimensional oscillator

(ξk, ηk). Then, as in (19), we will define:

Wρcan [X,µ,ν] =

∫
ρcan [ξ,η]

∞∏
k=1

δ(Xk − µkξk − νkηk)dξkdηk (61)

=

∫
e−βH[ξ,η]δ [X(x)− µ(x)ξ(x)− ν(x)η(x)]DξDη

Here the Dirac functional distribution must be understood as an infinite continuous product:

δ [X(x)− µ(x)ξ(x)− ν(x)η(x)] =
∏
k

δ (Xk − µkξk − νkηk) (62)

=

∫
exp

[
i

∫
K(x) (X(x)− µ(x)ξ(x)− ν(x)η(x)) ddx

]
DK,

where X(x), µ(x) and ν(x) are fields whose expansion on the modes ωk of the field ϕ(x) are given
respectively by:

X(x) =

∞∑
k=1

XkΦk(x); µ(x) =

∞∑
k=1

µkΦk(x); ν(x) =

∞∑
k=1

νkΦk(x). (63)

Notice that the time dependence of the various fields is encoded in the coefficients of the corresponding
expansions. Taking advantage again of the scaling property of the delta function we may use the natural
parametrization of optical tomograms defined by the reparametrization µ̃k = µk/

√
µ2
k + ν2

k = cos θk,

η̃k = νk/
√
µ2
k + ν2

k = sin θk, X̃k = Xk/
√
µ2
k + ν2

k and after standard computations we get:

Wopt
ρcan(X̃,θ) = Ne−

∑∞
k=1 X̃

2
k = Ne−

∫
V X̃(x)2ddx = Ne−||X̃||

2

. (64)

with θ(x) = tan−1 [η(x)/ξ(x)] and the normalization constant N defined by choosing a proper regular-
ization of the trace of the operator B.
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6. Tomographic picture of continuous modes

If we consider the scalar field in a infinite volume cavity or in the full Minkowski space–time for
instance, many or all of the modes of the system will become continuous. For simplicity we will assume
that we are discussing the field in the d+ 1 Minkowski space–time Rd+1 and the continuous modes of the
fields ϕ(x), ξ(x), η(x) are described by the wave vector k, this is:

ξ(x) =
1

(2π)d/2

∫ (
ξke−ik·x + ξ−keik·x)ddk, (65)

etc. Now a state of the field ϕ(x) will be represented by a probability measure ρ [ξ, η], again nonnegative
and normalized. An example of such state will be given by the canonical ensemble, this is the Gaussian
measure whose covariance is the operator B as in (59):

dµcan [ϕ] = e−βH[ϕ]Dϕ = e−βH[ξ,η]DξDη (66)

with the normalization constant absorbed in the definition of the measure.
We will consider as analogue of Gibbs states, states that are absolutely continuous with respect to

the canonical state, i.e., states of the form:

ρ [ϕ] = f [ξ(x), η(x)]µcan (67)

with

f [ξ(x), η(x)] ≥ 0 (68)∫
f [ξ(x), η(x)] e−βH[ξ,η]DξDη = 1. (69)

Even though at a formal level, we may introduce as in (61) a tomographic probability density for a
state of the field of the form (67) as a functional of three auxiliary tomographic fields X(x), ξ(x), η(x)
and apply, at the functional level, the usual Radon transform. The expansions (63) will be replaced by
the Fourier transform:

X(x) =
1

(2π)d/2

∫ (
Xke−ik·x +X−keik·x)ddk, etc. (70)

Then,

Wf [X(x), µ(x), ν(x)] =

∫
f [ξ(x), η(x)] δ [X(x)− µ(x)ξ(x)− ν(x)η(x)] e−βH[ξ,η]DξDη. (71)

The inverse Radon transform maps the tomographic probability density given by (71) onto the probability
density functional

ρf [ξ, η] =

∫
Wf [X,µ, ν] exp [i(X(x)− µ(x)ξ(x)− ν(x)η(x))]DX(x)Dµ(x)Dν(x) (72)

The tomographic probability functional (71) has the properties of nonnegativity and normalization, i.e.

Wf [X(x), µ(x), ν(x)] ≥ 0 (73)∫
Wf [X(x), µ(x), ν(x)]DX(x) = 1. (74)

These formulas hold true for any value of the auxiliary fields X(x), µ(x), ν(x).
In the current case the manifold N used to construct the generalized Radon transform is described by

the tomographic fields X(x), ν(x), µ(x), which would be a continuum version of the finite–mode version
of the straight lines:

Xk − µkξk − νkηk = 0. (75)
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We will end this discussion by emphasizing again the homogeneity property of the tomographic de-
scription of the scalar field we just presented, homogeneity that is described by the condition:[

X(x)
δ

δX(x)
+ µ(x)

δ

δµ(x)
+ ν(x)

δ

δν(x)
+ 1

]
Wf [X(x), µ(x), ν(x)] = 0 (76)

7. The tomographic picture of evolution equation for classical fields

Thus the state of the classical scalar field ϕ(x) can be described either by a probability density
functional f [ξ(x), η(x)] on the field phase–space or by the tomographic probability density functional
Wf [X(x), µ(x), ν(x)]. Both probability density functionals are connected by the invertible functional
Radon transform (71), (72) and in view of this, they both contain equivalent information on the random
field states. The dynamical evolution of states of the field ϕ(t, x) will be determined by the Klein–Gordon
equation (51)

If the Hamiltonian providing the evolution of the field is given by the sum of kinetic and potential
energy

H [ϕ] =
1

2

∫ (
ϕ̇(x)2 + V [ϕ(x)]

)
ddx =

1

2
||ϕ̇||2 + U [ϕ] , (77)

the evolution of the probability density functional on the classical phase–space of the field obeys a Liouville
functional differential equation:

df

dt
= {f,H}. (78)

The functional Poisson brackets above are given by:

{F [ξ, η] , G [ξ, η]} =

∫ (
δF

δξ(x)
{ξ(x), η(y)} δG

δη(y)
+

δF

δη(x)
{η(x), ξ(y)} δG

δξ(y)

)
ddxddy, (79)

where the fields ξ(x), η(y) satisfy the canonical commutation relations:

{ξ(x), η(y)} = δd(x− y). (80)

Then we obtain for the Hamiltonian H above (77) the expression:

d

dt
f [ξ, η] +

∫
η(x)

δf [ξ, η]

δξ(x)
ddx−

∫
δV [ξ, η]

δξ(x)

δf [ξ, η]

δη(x)
ddx = 0 (81)

which is just the n → ∞ limit of the Liouville equation for finite number of field modes discussed in
section 4.

In the case that V [ϕ] = 0 we have the functional Liouville equation

d

dt
f [ξ, η] +

∫
η(x)

δf [ξ, η]

δξ(x)
ddx = 0. (82)

and the corresponding tomographic form of this equation reads

d

dt
Wf [X,µ, ν]−

∫
µ(x)

δWf [X,µ, ν]

δν(x)
ddx = 0. (83)

To get this equation starting from (78) we used the correspondences:

δ

δξ(x)
↔ µ(x)

δ

δX(x)
;

δ

δη(x)
↔ ν(x)

δ

δX(x)

ξ(x)↔ − δ

δµ(x)

[
δ

δX(x)

]−1

; η(x)↔ − δ

δν(x)

[
δ

δX(x)

]−1

. (84)

13



These relations correspond to a realization of the infinite Heisenberg–Weyl algebra generators (and
enveloping algebra) on the field phase–space and the map of the representation in terms of the generator
action onto the tomograms.

The rule (84) provide a possibility to construct the tomographic form of the Liouville equation (81).
Using the substitution f →Wf in (81), and the substitutions (84), we get the field evolution equation

d

dt
Wf [X,µ, ν] =

∫
ddx′µ(x′)

δWf [X(x), µ(x), ν(x)]

δν(x′)

+

∫
ddx′

[
δV

δξ(x′)

(
ξ (x)→ − δ

δµ(x)

[
δ

δX(x)

]−1
)
ν(x′)

δ

δX(x′)

]
Wf [X,µ, ν] . (85)

For the case of field which is a collection of noninteracting oscillators described by the potential energy

V [ϕ] =
1

2
m2ϕ2 (86)

then (85) reads
d

dt
Wf =

∫
ddx

(
µ(x)

δWf

δν(x)
− ν(x)

δWf

δµ(x)

)
. (87)

which is the equivalent of eq. (45) to the continuous scalar field ϕ.

8. Conclusion and perspectives

A proposal for the tomographic description of a family of statistical states for a classical real scalar
Klein-Gordon field has been presented inspired by the tomographic description of statistical states for
an ensemble of harmonic oscillators. This tomographic description of classical fields shares most of the
tomographic properties of tomograms for classical states: homogeneity, positivity and normalization.
Moreover the field equations, represented as the evolution equation for field states, are reproduced in
tomographic terms, paving the way towards a tomographic description of the quantum scalar field. Notice
that the tomographic description presented in this work, a natural extension of Radon transform, breaks
the Lorentz covariance of the field theory, thus the Lorentz covariance of the tomographic description
should be restored at the end. Lorentz covariance, as well as gauge invariance (when interactions are
introduced), should be incorporated as a natural ingredient in the tomographic picture. The tomographic
picture of other fields like Maxwell, Dirac, Proca, Einstein could be addressed following similar arguments.
Such issues will be discussed in subsequent works.
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