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The fluctuating hydrodynamics by Brey et. al. is analytically solved to get the long-time limit of the fluctuations

of the number density, velocity field, and energy density around the homogeneous cooling state of a granular gas,

under physical conditions where it keeps stable. Explicit expressions are given for the non-white contributions in

the elastic limit. For small dissipation, the latter is shown to be much smaller than the inelastic contributions, in

general. The fluctuation-induced Casimir-like forces on the walls of the system are calculated assuming a fluctuating

pressure tensor resulting from perturbing its Navier-Stokes expression. This way, the Casimir-like forces emerge as

the correlation between the longitudinal velocity and the energy density. Interestingly, the fluctuation-induced forces

push/pull the system towards the square or rectangular geometry where they vanish, in good agreement with the event-

driven numerical simulations.

I. INTRODUCTION

The Casimir effect is the appearance of quantum-thermal

fluctuation-induced interactions of the electromagnetic field

between objects. Casimir showed in his seminar works1,2

that quantum fluctuations of the electromagnetic field, even

at zero temperature, make two parallel plates in vacuum to at-

tract each other. In this case, boundary conditions at the plates

restrict the fluctuation modes, giving rise to an energy density

in between the plates different form that outside and, impor-

tantly, dependent on the distance between the plates, which

ultimately induces the attraction. The Casimir effect has been

studied in different configurations, taking into account the

properties of the involded materials3,4 and the particular ge-

ometry of the experiment5–8. See9,10 for recent reviews.

However, the Casimir effect is not a purely electromagnetic

interaction, but an emergent interaction of the electromagnetic

field due to its fluctuations11. Moreover, Casimir-like forces

or fluctuation-induced forces can appear between objects im-

mersed in any kind of field under fluctuations. For this reason,

the Casimir effect can be understood as a universal interaction.

Fluctuation-induced interactions have been studied in many

different physical systems9,12–16, showing that two main in-

gredients can be identified for Casimir-like forces to arise:

large enough fluctuations and a confining geometry17. When

we come to thermal, classical systems, the former condition

typically requires being close to a critical point18. This is

the case of Casimir-like forces measured within a critical bi-

nary mixture19–22, in wetting films23,24, Ising systems25, and

Brownian motion of colloids26, just to mention a few exam-

ples. Moreover, there is a growing interest in the study of

Casimir-like forces in out-of-equilibrium systems27,28, given

that many of them show non-negligible fluctuations even

far from critical points. Examples include Soret-Casimir

effect for systems driven by a thermal gradient29–31, liq-

uid mixtures32–34, reaction-diffusion systems35, and active

matter36, among many others.

Of particular relevance for our study is the granular Casimir

effect postulated by Brito et. al. in37,38 and further general-

ized to non-equilibrium systems11,39,40. Brito and co-workers

measured and calculated the Casimir-like force between two

large intruders in a thermostated granular gas. Interestingly,

according to their theory, the force between intruders origi-

nates from an unbalance renormalized pressure, due to density

fluctuations and density-temperature correlations. Moreover,

the existence of fluctuation-induced forces is not due to the

proximity to a critical point but an intrinsic property of the

granular dynamics.

In this article, we study Casimir-like forces in the homoge-

neous cooling state (HCS) of a granular gas41–43. This state

can be reached by a granular gas in a system with periodic

boundary conditions, and is macroscopically characterized by

being spatially homogeneous, with zero velocity field, and de-

creasing in time energy. The HCS is known to be fundamen-

tal to understand the macroscopic dynamics of a granular gas,

by playing the role of a reference state around which the hy-

drodynamic description can be constructed44–46, for instance.

Hence, advancing in the study of the fluctuation properties of

the HCS seems natural. In particular, we consider a hypercube

system and compute the fluctuation-induced forces acting on

the "virtual" walls under physical conditions where the HCS

keeps stable. This provides us with information about the role

of fluctuations in the stability of the HCS.

The rest of the paper is organized as follows. Section II

is devoted to the definitions and to introduce the fluctuating

hydrodynamic description of the system in terms of the fluc-

tuations of the number density, the velocity field, and the en-

ergy density. The values of most coefficients can be found

in Appendix A. We use the theory by Brey et. al.47,48, sys-

tematically derived from the fluctuating Boltzmann equation

for smooth inelastic hard spheres or disks. It has two main

differences as compared with previous theories49–51: it in-

cludes the contribution of the density gradient to the heat flux,

which has been shown to be relevant under some physical

conditions52–54, and it also accounts for the non-white prop-

erties of the fluctuation terms as well as the breakdown of
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fluctuation-dissipation relations55.

The fluctuating hydrodynamics is analytically solved in

Sec. III to obtain the long-time limit of the fluctuations and

correlations of the fluctuations of the hydrodynamic fields in

the Fourier space. Explicit expressions are given for the elastic

case with small wave vector, providing the first order contribu-

tion of the non-white properties of the sources, as well as the

leading inelastic contributions for small dissipation and small

wave vector. The long-time limit is considered because only

in this case the amplitudes of the fluctuations of the sources

have an explicit known dependence on time, which in turn is

sufficient for the subsequent computation of the Casimir-like

forces. Further calculation details are given in Appendix B.

The results of Sec. III are used to derive an expression for

the fluctuation-induced force on the "virtual" walls of the sys-

tem in Sec. IV. We first propose an expression for the pres-

sure tensor up to second order in the fluctuations and then de-

rive the Casimir-like force using a microscopic cutoff, given

by the particles diameter. Explicit expression of the force is

given for the rectangular (2D) system, under some approxima-

tions as done in Appendix C. It is shown that the fluctuating

contribution to the force on both the horizontal and vertical

walls vanishes for a square system, being different from zero

in other cases. The results are compared against event-driven

molecular dynamics simulations. We finish with a discussion

and some conclusions in Sec. V.

II. FLUCTUATING HYDRODYNAMICS

The granular gas is modeled as N smooth hard spheres (d =
3) or disks (d = 2) in a rectangular container with volume

V = L1 · · ·Ld and periodic boundary conditions. All particles

have the same mass m and diameter σ , moving freely between

inelastic collisions characterized by a constant coefficient of

normal restitution α ∈ [0,1]. The case α = 1 corresponds to

the elastic limit.

A. Homogeneous cooling state

It is well known that under periodic boundary conditions,

when the system is small enough, a granular gas can reach the

so-called homogeneous cooling state (HCS). From a macro-

scopic point of view, the HCS is characterized by a spatially

homogeneous number density nH = N
V , zero mean velocity,

and a decreasing-in-time granular temperature TH(t). The lat-

ter is related with the total energy density d
2

nHTH (setting the

Bolzmann constant kB = 1) and obeys the Haff’s law56,57:

∂sTH =−ζ0TH . (1)

The time scale s is proportional to the number of accumulated

collisions, defined as

ds =
v0

λ
dt, (2)

where

v0 =

√

2TH

m
(3)

and

λ =
1

nHσd−1
(4)

are proportional to the thermal velocity and the mean free

path, respectively. The dimensionless cooling rate ζ0 is a

function of α , whose approximate expression is given in Ap-

pendix A, and takes into account the dissipation of energy due

the inelastic collisions. Hence, it vanishes in the elastic limit

α → 1.

B. Fluctuations around the HCS

As in the elastic case58, the hydrodynamics quantities fluc-

tuate around their values in the HCS. In47,48 closed fluctuat-

ing Navier-Stokes equations were derived for the fluctuations

of the number density δn, momentum density (proportional

to the velocity field) δG, and the energy density δE. These

quantities depend on position r and time s.

Before providing the fluctuating equations, it is convenient

to introduce dimensionless hydrodynamics quantities as

δρ(ℓ,s) =
δn(ℓ,s)

nH
, (5)

δω(ℓ,s) =
δG(ℓ,s)

mnHv0(s)
, (6)

δε(ℓ,s) =
δE(ℓ,s)

d
2

nHTH(s)
, (7)

where ℓ is a dimensionless vector measuring positions in unit

of the local mean free path

ℓ=
r

λ
. (8)

The corresponding Fourier quantities, denoted by δρ(k,s),
δω(k,s), and δε(k,s) are given by

δρ(ℓ,s) =
1

V
∑
k

δρ(k,s)eik·ℓ, (9)

and similarly for the other two fluctuation fields. We have

introduced the dimensionless volume

V = L1 . . .Ld , (10)

with

Li =
Li

λ
= nHσd−1Li, i = 1, . . . ,d, (11)

the dimensionless lengths. Since we are assuming a finite sys-

tem with periodic boundary conditions, the wave vectors of

the Fourier sum are restricted such as

ki =
2π

Li
ni, ni ∈ Z, i = 1, . . . ,d, (12)
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Finally, the fluctuations are real magnitudes, hence

[δρ(k,s)]∗ = δρ(−k,s), (13)

and similarly for the velocity and energy fluctuations.

C. Fluctuating Navier-Stokes equations

From the results in48, the Langevin Navier-Stokes equa-

tions for the fluctuations of the hydrodynamic quantities in

the Fourier space read

∂sδρ + ik ·δω = 0, (14)

∂sδω +

(

ηk2 − ζ0

2

)

δω+η
d −2

d
kk ·δω

+ i
k

2
δε =W , (15)

∂sδε +

[

ζ0

2
− 2

d
k2(κ −µ)

]

δρ + i
d +2

d
k ·δω

+

(

ζ0

2
+

2

d
k2κ

)

δε = E , (16)

where we have removed the dependence of the quantities on

k and s to easy the notation. The new quantities are the di-

mensionless transport coefficients, namely the viscosity η ,

thermal conductivity κ , and diffusive heat conductivity µ .

They are time dependent quantities whose asymptotic val-

ues for large times are given in the Appendix A. Moreover,

the two magnitudes on the right-hand side of the second and

third equations are uncorrelated noise sources whose statisti-

cal properties read

⟨W ⟩= 0, (17)

〈

Wi(k,s)Wj(k
′,s′)

〉

≃ d

2(d −1)
cwδk,−k′

×
(

δi j +
d −2

d

kik j

k2

)

eλ4|s−s′|, (18)

⟨E ⟩= 0, (19)
〈

E (k,s)E (k′,s′)
〉

≃
[

c(1)ε δ (s− s′)

+c(2)ε k2eλ5|s−s′|
]

δk,−k′ , (20)

where the approximate relations hold for s ≫ 1, s′ ≫ 1 and

the new coefficients cw, c(1)ε , and c(2)ε are explicitly given in

Appendix A. The exponents λ4 and λ5 can be written as a

function of the transport coefficients:

λ4 ≃− 1

2η
+

ζ0

2
, (21)

λ5 ≃−3(d +2)−2κζ0

4(3κ −2µ)
, (22)

where, again, the approximations stand for the long-time

limit. Note that, on the one hand, the fluctuating Navier-

Stokes equations (14)–(16) are restricted to small gradients,

i.e. small values of k, as well as to small hydrodynamic fluc-

tuations. Moreover, noise terms are no longer white but in-

clude a finite (exponential) correlation time. On the other

hand, they include the elastic case for α = 1. However, the

Landau theory58 for the molecular fluids is recovered not only

by taking α = 1, but also by assuming that the noise terms

are delta-correlated, which is true provided time correlations

among the noise terms decay faster than the typical hydrody-

namic time scales, namely

eλ4s → 2

|λ4|
δ (s), (23)

eλ5s → 2

|λ5|
δ (s). (24)

This is equivalent to assuming that |λ4|s ≫ 1, |λ4|s ≫ 1 for s
in the hydrodynamic time scale.

III. SPATIAL CORRELATIONS

In this section we solve the fluctuating Navier-Stokes equa-

tions to get the steady-state spatial correlations of the fluctu-

ating hydrodynamic quantities. In doing so, we first consider

the general solution to the set (14)–(16). Then we use it to get

the structure factors.

A. General solution

In order to solve the fluctuating Navier-Stokes equations, it

is useful to decompose the fluctuation of the velocity into its

component along k and normal to it:

δφ =−i
k

k
·δω, (25)

δφ=−iδω−δφ
k

k
, (26)

where the imaginary unit i has been introduced to make the

coefficients of the resulting equations real. Note that, while

δφ is a scalar, the transversal velocity δφ is a vector.

By means of the new quantities, the equation for δφ decou-

ples form the rest:

∂sδφ+

(

ηk2 − ζ0

2

)

δφ=W⊥, (27)

where

W⊥ =−iW −W∥
k

k
, (28)

and

W∥ =−iW · k
k
. (29)
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As for the reminder fluctuating quantities, we have a closed

set of equations:

∂sδρ − kδφ = 0, (30)

∂sδφ +

[

2(d −1)

d
ηk2 − ζ0

2

]

δφ +
k

2
δε =W∥, (31)

∂sδε +

[

ζ0

2
− 2

d
(κ −µ)k2

]

δρ − d +2

d
kδφ

+

(

ζ0

2
+

2

d
κk2

)

δε = E . (32)

The solution to Eq. (27) can be written as

δφ(s,k) =
∫ s

0
ds1 e

−
(

ηk2− ζ0
2

)

(s−s1)W⊥(s1,k), (33)

where we have assumed that δφ(0) = 0. It is readily seen that

δφ diverges as time rises for wave vectors k such as ηk2 −
ζ0
2
< 0. Hence, in order for the linear regime described by

system (27), (30)–(32) to hold for large times s ≫ 1, we have

to restrict ourselves to wave vectors larger than km:

km =

√

ζ0

2η
. (34)

This restriction is related to the linear stability of the HCS,

extensively discussed in the literature44,59. Note that the wave-

vector limitation is irrelevant in the elastic limit, since ζ0 → 0

for α → 1, while η keeps positive.

Proceeding analogously, the general solution to (30)–(32)

can be written as

δu(s,k) =
∫ s

0
ds1 e(s−s1)Ab(s1,k), (35)

where we have introduced the following matrix notation

u= (δρ,δφ ,δε)t , (36)

A =





0 k 0

0 −ν − k
2

β d+2
d k −γ



 , (37)

b= (0,W∥,E )t . (38)

and

ν =
2(d −1)

d
ηk2 − ζ0

2
, (39)

β =
2

d
(κ −µ)k2 − ζ0

2
, (40)

γ =
2

d
κk2 +

ζ0

2
. (41)

The previous coefficients depend on α and k.

It can be seen that the eigenvalues of A have all negative

real parts for a wide range of values of α (including α = 1)

provided k > km. Hence, under the latter conditions, Eq. (35)

provides the time dependence of the fluctuations for all times.

B. Structure factor

From the previous results we directly obtain that δφ is un-

correlated from the other fluctuating magnitudes. Using ⟨·⟩
to denote average over the noise around the HCS, we directly

obtain that
〈

δφ(s,k)δu(s′,k′)
〉

= 0, (42)

since the noise terms W⊥,W∥, and E are uncorrelated. On

the other hand, after some calculations we obtain the two-time

correlation function for δφ

〈

δφi(s,k)δφ j(s
′,k′)

〉

=
V 2η

2N
(

ηk2 − ζ0
2

)k2δk,−k

×δi je
−
(

ηk2− ζ0
2

)

|s−s′|
, (43)

which holds for s,s′ ≫ 1. We refer to47,55 for a deeper analysis

of the correlations of the transverse velocity.

Focusing on the correlations among the other fields, the

components of δu, it is also readily seen that only compo-

nents with opposite wave vectors can be correlated. Again,

this is a direct consequence of the statistical properties of the

nose terms given in Eqs. (18) and (20). Hence, in order to

account for the relevant correlations taking place at the same

time, we consider the following structure-factor vector:

S = (⟨δρδρ∗⟩ ,⟨δρδφ ∗⟩ ,⟨δρδε∗⟩ ,
⟨δφδφ ∗⟩ ,⟨δφδε∗⟩ ,⟨δεδε∗⟩)t , (44)

where all quantities are functions of the time s and the wave

vector k. In Appendix B we show that the steady-state value

of S is given by

S = M−1Q, (45)

where

M =

















0 2k 0 0 0 0

0 −ν − k
2

k 0 0

β d+2
d k −γ 0 k 0

0 0 0 −2ν −k 0

0 β 0 d+2
d k −ν − γ − k

2

0 0 2β 0
2(d+2)

d k −2γ

















(46)

and

Q=

























0
cw(γ−λ4)
|λ4Id+A| k

− c
(2)
ε

2|λ5Id+A|k
2

− 2cwλ4(γ−λ4)
|λ4Id+A|

cw(β− d+2
d λ4)

|λ4Id+A| k+ c
(2)
ε λ5

2|λ5Id+A|k

−c(1)ε − 2c
(2)
ε λ5(ν−λ5)
|λ5Id+A|

























→



















0

0

0

− 2cw
|λ4|
0

−c(1)ε − 2c
(2)
ε

|λ5|



















.(47)

The form |λ Id + A| denotes the determinant of the matrix

λ Id + A, with λ a number and Id the identity matrix. The

limiting expression for Q holds for |λ4| and |λ5| much larger

than the entries of A.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
8
9
4
9
2



Accepted to Phys. Fluids 10.1063/5.0189492

5

C. Correlations and fluctuations for k = 0

For k = 0 the matrix M is singular, and we have to solve

Eq. (B14) directly, without inverting M. It is not difficult to

see that all correlations and fluctuations vanishes for k = 0 but

the energy fluctuations

⟨δεδε∗⟩k=0 =
4V 2

N
a33(α). (48)

This expression provide the global energy fluctuation around

the HCS, as already reported and fully studied in60,61. For

α = 1, it is a33 = 0 and no global energy fluctuations exist, as

expected.

D. Correlations for the elastic case

For α = 1 the solution given by Eq. (45) provides the cor-

relations and fluctuations in the elastic case. It is readily seen

that

⟨δρδφ ∗⟩= 0. (49)

Keeping up to order k3, the other quantities read:

N

V 2
⟨δρδρ∗⟩ ≃ 1− 2

[

(d −1)(d +2)3η3 +8κ3
]

(d +2)2 [(d −1)(d +2)η +2κ]
k2,(50)

N

V 2
⟨δρδε∗⟩ ≃ 1− 2

[

(d −1)(d +2)3η3 +8κ3
]

d(d +2) [(d −1)(d +2)η +2κ]
k2,(51)

N

V 2
⟨δφδφ ∗⟩ ≃ 1

2
−

(d −1)(d +2)
[

3d(d +2)η3 +4η2κ
]

+8κ3

d(d +2) [(d −1)(d +2)η +2κ]
k2, (52)

N

V 2
⟨δφδε∗⟩ ≃ 8(d −1)ηκ

[

−(d +2)2η2 +4κ2
]

d2(d +2) [(d −1)(d +2)η +2κ]
k3, (53)

N

V 2
⟨δεδε∗⟩ ≃ d +2

d
(54)

−2
{

(d −1)(d +2)
[

(d +2)3η3 +8ηκ2
]

+8(d +4)κ3
}

d2(d +2) [(d −1)(d +2)η +2κ]
k2,

where the transport coefficients η and κ take their elastic val-

ues.

Since the Navier-Stokes fluctuating equations arise con-

sidering up to k2 terms, the velocity-energy correlations

Eq. (53) may contain additional contributions not taking

into account here. Further analysis, by considering Burntett

contributions45 for instance, is needed to clarify this point.

It is important to note that, in the elastic limit, the de-

pendence of the fluctuations and correlations on k disappears

when noise is supposed to be white. This way, Eqs. (49)–(54)

provide the first k-corrections to the classical results58 when

exponential decay of the noise correlations are taking into ac-

count. Moreover, the corrections also disappear in the limit

η , κ ≪ 1 which is related to the conditions |λ4|, |λ5| ≫ 1, as

it is evident from Eqs. (21) and (22).

E. Correlations and fluctuations for k > 0 and α < 1

In the general case, i.e. k > 0, and α < 1, the exact expres-

sions for the correlations are given by Eq. (45). Particularly,

the density and the longitudinal velocity are also found to be

uncorrelated:

⟨δρδφ ∗⟩= 0. (55)

For the other magnitudes, we cannot take the limit of small

k directly. Since we are assuming that the HCS is stable, i.e.

that k2 > ζ0/(2η), we take k2 ∼ ζ0 ∼ µ small and of the same

order, while the other transport coefficients are taken of zeroth

order in k. This way, we can show the explicit contribution of

the dissipation, at least in its weak limit, as

N

V 2
⟨δρδρ∗⟩ ≃ 1+

d
4

ζ0
(

κk2 − d
4

ζ0

) ×

×
2(d−1)η−(d−2)κ
(d−1)(d+2)η+2κ

k2 + k2
0

k2 + k2
0

, (56)

N

V 2
⟨δρδε∗⟩ ≃ 1− k2

0

k2 + k2
0

, (57)

N

V 2
⟨δφδφ ∗⟩ ≃ 1

2

(

1− k2
0

k2 + k2
0

)

, (58)

N

V 2
⟨δφδε∗⟩ ≃

4[(d2−1)η+κ]
d2 k2

0

k2 + k2
0

k, (59)

N

V 2
⟨δεδε∗⟩ ≃ d +2

d

(

1− k2
0

k2 + k2
0

)

, (60)

where

k2
0 =

d2ζ0

4 [(d −1)(d +2)η +2κ]
, (61)

and η and κ evaluated at α = 1.

The possible divergence of the density fluctuations Eq. (56)

for κk2 = d
4

ζ0 is related to the heat mode instability of the

HCS. Here, since we are considering physical conditions

where the HCS is stable, ηk2 > 1
2
ζ0, it is κk2 > d

4
ζ0 and no

divergence is present.

It is worth noting that the previous results coincide with

those obtained using the approximation of white noise. More-

over, if we set ζ0 = 0 then k0 = 0 and we recover the leading

orders of the elastic case, Eqs. (49)–(54) with k = 0. Neverthe-

less, the inelastic contribution is relevant, in general, even in

the case of the energy-velocity correlations in Eq. (59) which,

despite showing a small dependence on k, is in the origin of

the Casimir-like forces, as we show in the next section.

IV. CASIMIR-LIKE FORCES

The results of the previous sections are used to compute the

Casimir-like forces on the “virtual” walls of the system. In do-

ing so, we first postulate an expression for the pressure tensor
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up to second order in the fluctuations. Our final goal is to pro-

vide an explicit expression for the fluctuation-induced forces

for the two-dimension geometry which we compare against

event-driven molecular dynamic simulations.

A. Second order pressure tensor

We assume that the contributions of the fluctuations to the

pressure tensor Pi j around the HCS can be obtained by per-

turbing its Navier-Stokes expression62

Pi j = nT δi j −η

(

∂ℓiu j +∂ℓ j ui −
2

d
∂ℓ ·uδi j

)

, (62)

where n, u, and T are the number density, mean velocity vec-

tor, and granular temperature, respectively. By perturbing the

hydrodynamic fields as n → nH(1+δρ), ui → v0
δωi

1+δρ
, nT →

nHTH(1+δε), the scaled pressure tensor becomes63

P̃i j ≡
Pi j

nHTH
≃ (1+δε)δi j −2η

√

1+δε

1+δρ

(

∂ℓi

δω j

1+δρ

+∂ℓ j

δωi

1+δρ
− 2

d
∂ℓ ·

δω

1+δρ
δi j

)

. (63)

Note that perturbing nT is different from perturbing T . In the

former case, the contribution of the pressure tensor of order k0

is exactly (1+δε)δi j, i.e. up to linear order in the fluctuations.

If n and T are perturbed separately, second order fluctuations

appear. Hence, the election of the relevant variables (energy

or temperature) gives rise to different results in this context.

The zeroth order in the fluctuations of Pi j reads nHTHδi j
which is the nonfluctuating hydrodynamic pressure. The first

order has zero mean and does not contribute to the Casimir

force. Hence, we retain the second order:

P̃(c)
i j ≃ 2η

[

∂ℓi(δω jδρ)+∂ℓ j(δωiδρ)− 2

d
∂ℓ · (δωδρ)δi j

]

−η(δε −δρ)

(

∂ℓiδω j +∂ℓ j δωi −
2

d
∂ℓ ·δωδi j

)

.(64)

The actual dimensionless second-order pressure tensor P̃(c)
i j

should have an additional noisy term, not directly related with

the fluctuating quantities. However, we expect it to have zero

mean, as happens with the first-order contribution48.

Using the fact that δρ and δω are uncorrelated, see previ-

ous section, we have

〈

P̃(c)
i j

〉

≃−η

〈

δε

(

∂ℓiδω j +∂ℓ j δωi −
2

d
∂ℓ ·δωδi j

)〉

.

(65)

After some algebra, this expression can be written using the

Fourier quantities as

〈

P̃(c)
i j

〉

≃ 2η

V 2 ∑
′

k

(

kik j

k2
− δi j

d

)

k ⟨δφδε∗⟩k , (66)

where we have used that ⟨δφδε∗⟩= 0. The prime of the sum

stands for its truncation. Here we assume that this is due to

the approach to the microscopic scale, namely when (approx-

imately) k > 2πλ
σ .

Since the sum in (66) includes, for any k, the vector −k as

well, then

〈

P̃(c)
i j

〉

= 0, for i ̸= j. (67)

Moreover, it is readily seen that

d

∑
i=1

〈

P̃(c)
ii

〉

= 0. (68)

The Casimir-like force F(c)
i on a given wall normal to the

i-direction comes from the contribution of the fluctuation to

the pressure tensor:

F(c)
i = nHTH

〈

P̃(c)
ii

〉

Si, (69)

where Si = V/Li is the area (d = 3) or length (d = 2) of the

wall. We shall use the dimensionless Casimir-like force per

unit area, which can be written as

f (c)i =
F(c)

i

nHTHSi
≃ 2η

dV 2 ∑
′

k

dk2
i − k2

k
⟨δφδε∗⟩k . (70)

By symmetry consideration, when all sides of the system have

the same length L1 = · · ·= Ld we have

∑
′

k

k2
x

k
⟨δφδε∗⟩k = ∑

′

k

k2
y

k
⟨δφδε∗⟩k

= · · ·= ∑
′

k

k

d
⟨δφδε∗⟩k . (71)

Hence, our Casimir-like force is zero for a d-dimension cube.

B. Casimir forces for a rectangular system (d = 2)

For a d = 2 system, using Eq. (66), the approximate result

of Eq. (59), and some other approximations, the dimension-

less Casimir force per unit length on the vertical walls can be

written as

f (c)1 ≃ − (3η +κ)ηζ0

16(2η +κ)

L1 +L2

L1L2

L 2
1 −L 2

2

L 2
1 +L 2

2

= − 1

nHσ

(3η +κ)ηζ0

16(2η +κ)

L1 +L2

L1L2

L2
1 −L2

2

L2
1 +L2

2

, (72)

and for the horizontal walls f (c)2 = − f (c)1 . The details of the

computation are in Appendix C.

The force f (c)1 is clearly negative for L1 > L2, positive for

L1 < L2, and zero only for L1 = L2. This means that fluctua-

tions try to push the system towards the square configuration.
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In order to corroborate the theoretical prediction, we have

run numerical simulation using the event-driven algorithm

by Lubachevsky64, adapted to account for the inelastic colli-

sions and the steady-state representation65,66. All simulations

started with an initial condition where all particles are homo-

geneously distributed and have Gaussian velocity distribution.

After a transient, of the order of 104 collisions per particle,

measurements are done along 105 collisions per particle. In

addition, quantities are obtained after averaging over different

times as well as different realizations.

The forces on the “virtual” walls have been measured as the

average momentum transfer of particles. Results are shown in

the following Fig. 1 for α = 1 (elastic case) and α = 0.85 and

different system sizes. It is observed that in the elastic case

there is no dependence on the system size (no Casimir-like

force), within the numerical precision. In the inelastic case,

there is no dependence on the system size, provided the sys-

tem remains square L1 = L2, while the horizontal force and

the vertical one are symmetric with respect to their hydrody-

namic values with rectangular geometries. This allowed as to

identify the Casimir-like forces f (c)1 and f (c)2 , by subtracting

the force of square configurations from the total force.

 0.9999

 0.99992

 0.99994

 0.99996

 0.99998

 1

 1.00002

 1.00004

 1.00006

 1.00008

 1.0001

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

F
/(

p
L

)

nHσL1

L1=L2
F1/(nHTH L2)
F2/(nHTHL1)

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

F
/(

p
L

)

nHσL1

F/(nHTHL); L1=L2
F1/(nHTHL2); nHσL2=2
F2/(nHTHL1); nHσL2=2
F1/(nHTHL2); nHσL2=1
F2/(nHTHL1); nHσL2=1

FIG. 1. Numerical simulations results for the total (nonfluctuating

and fluctuating) force on the vertical walls for the elastic case α = 1

(top) and α = 0.85 (bottom) with nHσ2 = 0.025.

The theoretical result of Eq. (72) is more clearly compared

against simulations in Fig. 2. As theoretically predicted, the

force is seen to vanish for square configurations. Moreover,

a good quantitative agreement is also found, better for larger

systems.

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

f1
(c)

nHσL1

nHσL2=2
nHσL2=1

FIG. 2. Dimensionless Casimir force per unit length on the vertical

wall f (c)1 as a function of the horizontal length of the system for a

fixed density nHσ2 = 0.025 and the same coefficient of normal resti-

tution α = 0.85. Symbols stands for simulations results and lines for

theoretical results of Eq. (72). Two values of the height of the system

are considered: nHσL2 = 1 (purple asterisks) and nHσL2 = 2 (black

crosses).

V. DISCUSSION AND CONCLUSIONS

In this work, we have studied the long-time limit of the fluc-

tuations and correlations of the density, velocity, and energy

around the HCS, under condition where the it is stable. The

calculations have been carried out using the fluctuating the-

ory by Brey et. al.47,48, which considers any dimensionality

and non-white properties of the noise terms and is expected

to be valid for a dilute gas beyond the limit of small dissi-

pation (α ∼ 1). Our results provide a non-white correction

to the classical results in the elastic case [Eqs. (49)–(54)] as

well as explicit expressions for small dissipation [Eqs. (55)–

(60)]. Moreover, we have found that non-white contributions

can be neglected for small dissipation and small wave vector,

provided the HCS keeps stable.

The dissipation introduces new dependence of the fluctu-

ations and correlations on the wave vector, which vanishes

smoothly as we approach the elastic limit. For small dissi-

pation, the main dependence on k of most correlations comes

from the function k2
0/(k

2 + k2
0) where k2

0 is proportional to the

cooling rate (dissipation) as given by Eq. (61). Similar depen-

dence has also been found in driven systems38,51. However we

stress that in our case the previous function is no longer diver-

gent for small k because, on the one hand, we can no longer

neglect k0 as it is given by the degree of dissipation and, on the

other hand, the stability condition k > km ≃ k0, with km given
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by Eq. (34), ensures a minimal value of k which, again, de-

pends on α . This is one more manifestation of the difference

between driven and non-driven granular gases, which now re-

lies on the stability of the state around which fluctuations are

studied.

The long-time limit of the fluctuations and correlations has

been used to compute the fluctuation-induced or Casimir-like

force on the walls of the system, by first assuming a form of

the pressure tensor up to second order in the fluctuations of

the hydrodynamic fields, resulting from perturbing its Naiver-

Stokes form. This way, the only contribution to the force

comes from the correlations between the longitudinal veloc-

ity and the energy, as opposite to what has been proposed

in the driven case37,38,67 where density-density and density-

temperature correlations are the relevant ones. The latter

emerges as the perturbation of the hydrostatic pressure (equa-

tion of state) as a function of the density and temperature.

To be more specific, in our approach the hydrostatic pres-

sure nT does not contribute to the second-order pressure ten-

sor, since nT gives rise to 1+δε which is linear in the energy

fluctuations. If instead we follow37,38,67, the number density n
and T are separately perturbed, giving rise to a second-order

contribution equal to ⟨δρδε∗⟩ − ⟨δρδρ∗⟩. For small dissi-

pation [Eqs. (56) and (57)] the latter is of zeroth order in the

cooling rate, ∼ ζ 0
0 , while the velocity-energy correlation is of

higher order, ∼ ζ
1/2

0 . However, ⟨δρδε∗⟩ − ⟨δρδρ∗⟩ has a

well defined sign and does not vanish in general, which would

give rise to a Casimir-like force even for square systems. This

has not been observed in simulations. Further theoretical or

experimental68,69 investigation are needed to elucidate why

the use of the energy density instead of the temperature pro-

duces a better result.

Our theory and simulations predict a zero Casimir-like

force for a cube or square system. Moreover, for the two-

dimension case, the force on a vertical wall, for instance, is a

decreasing function of the horizontal length of the system, be-

ing zero only when the length equals the height, which is con-

firmed with event-driven simulations, even beyond the limit of

small dissipation. Hence, the fluctuations have the important

effect of stabilizing the square configuration. A similar effect

is also expected for the three-dimension case.

A natural extension of the present work is to include hard

walls. This case presents important challenges, since the walls

induce a non-homogeneous and non-negligible density pro-

file the makes calculation and identification of the fluctuation-

induced forces very difficult.
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Appendix A: Transport coefficients

Here we provide explicit expression of the transport coeffi-

cients used along the work. All are dimensionless quantities

that depend on the dimensionality d and the coefficient of nor-

mal restitution α .

The cooling rate is

ζ0 ≃
√

2π
d−1

2 (1−α2)

dΓ
(

d
2

)

(

1+
3

16
a2

)

(A1)

where a2 is related with the kurtosis of the distribution func-

tion of the HCS:

a2 ≃
16(1−α)(1−2α2)

9+24d +(8d −41)α +30α2(1−α)
. (A2)

The long-time limit of the viscosity is

η =

(

8|I|
1+a2

−ζ0

)−1

, (A3)

with

I =− (2d +3−3α)(1+α)π
d−1

2

2
√

2d(d +2)Γ
(

d
2

)

(

1+
23

16
a2

)

. (A4)

The long-time limit of the thermal conductivity κ and the

diffusive heat conductivity read

κ =
(d +2)(1+2a2)

2(2|λ5|−ζ0)
, (A5)

µ = 2κ − (d +2)(2+a2)

4|λ5|
, (A6)

where

λ5 =
4J+(d +2)ζ0

(d +2)a2
+

3ζ0

2
, (A7)

J = − π
d−1

2 (1+α)

32
√

2dΓ
(

d
2

) {16(d +2)(1−α)

+ [70+47d −3(34+5d)αa2]} . (A8)

Other quantities related with the correlations of the noise

sources are

λ4 = ζ0 +
4I

1+a2
, (A9)

a33 =
d +1

2d
+

d +2

4d
a2 +

[

1+d −6d2

−(10−15d +2d2)α −2(2+7d)α2

+2(10−d)α3
]

[6d(2d +1)−2d(11−2d)α

+12dα2 −12dα3
]−1

. (A10)
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and

cw =
2(d −1)

d

V 2

N

1+a2

4
k2, (A11)

c(1)ε =
4V 2

N
ζ0a33, (A12)

c(2)ε =
(d +2)V 2

d2N

[

1+
d +8

2
a2

+
2dζ0a33(1+2a2)

|λ5|− ζ0
2

]

k2, (A13)

Appendix B: Computation of the structure factor

The starting point to compute the correlations among fluc-

tuating fields at the same time and opposite wave vectors, is

to define the matrix structure factor as

S(s,k) =
〈

δu(s,k)[δu(s,−k)]t
〉

=
〈

δu(s,k)[δu(s,k)]†
〉

, (B1)

where last equality holds from Eq. (13). Taking the time

derivative of the structure factor and the formal solution in

Eq. (35) we arrive at the following equation

∂sS = AS+SAt +
〈

bδu† +δub†
〉

, (B2)

where the matrix A and vector b are given by Eqs. (37) and

(38), respectively. The bracket term of the equation can be

computed using Eq. (35):

〈

bδu† +δub†
〉

=
∫ s

0
ds1 B(s− s1)e

(s−s1)A
t

+
∫ s

0
ds1e(s−s1)A B(s− s1), (B3)

where we have introduced the real and symmetric correlation

matrix

B(s) =
〈

b(s,k)b(0,k)†
〉

(B4)

whose dependence on k has been omitted for simplicity. Using

the correlation properties of the noise terms given by Eqs. (18)

and (20), B can be written as

B(s) ≃ cweλ4sI2 +[c(1)ε δ (s)+ c(2)ε eλ5s]I3 (B5)

−→
|λ4|,|λ5|≫1

[

2cw

|λ4|
I2 +

(

c(1)ε +
2c(2)ε

|λ5|

)

I3

]

δ (s), (B6)

where cw, c(1)ε , and c(2)ε are given in Eqs. (A11)–(A13) and the

new matrices are

I2 =





0 0 0

0 1 0

0 0 0



 ; I3 =





0 0 0

0 0 0

0 0 1



 . (B7)

The steady-state solution to Eq. (B2) is obtained by setting

∂sS = 0 and taking s → ∞. By making the change of variable

τ = s− s1, the steady-state structure factor is given by

AS+SAt +
∫ ∞

0
dτ
[

eτAB(τ)+B(τ)eτAt
]

= 0. (B8)

The integral can be carried out by using expression (B5) of B
and the well-known results

∫ ∞

0
dτ δ (τ) f (τ) =

1

2
f (0), (B9)

∫ ∞

0
dτ eτ(λ Id+A) =−(λ Id +A)−1, (B10)

valid provided λ Id + A has negative spectrum, with Id be-

ing the identity matrix, and for any regularly enough function

f (τ). The final equation for the structure factor S read

AS+SAt −Q = 0, (B11)

with

Q = cw
[

I2(λ4Id +At)−1 +(λ4Id +A)−1I2

]

− c(1)ε I3

+c(2)ε

[

I3(λ5Id +At)−1 +(λ5Id +A)−1I3

]

(B12)

−→
|λ4|,|λ5|≫1

−2cw

|λ4|
I2 −

(

c(1)ε +
2c(2)ε

|λ5|

)

I3. (B13)

Thank to the symmetric structure of the matrix equation

(B11) for the structure matrix S, it can be written in a more

familiar form by using the relevant entries of S to construct

the structure vector S given by Eq. (44):

MS =Q, (B14)

where M and Q are given in Eqs. (46) and (47), respectively.

When M is not singular, the solution to Eq. (B14) is given by

Eq. (45).

Appendix C: Approximate computation of the Casimir forces

Using Eq. (66) with Eq. (72) and the result of Eq. (59), valid

for small dissipation and small values of k, the dimensionless

Casimir force per unit length for a d = 2 system reads

f (c)1 ≃ (3η +κ)ηζ0

2(2η +κ)N ∑
′

k

k2
1 − k2

2

k2 + k2
0

, (C1)

where

k2
0 =

ζ0

2(2η +κ)
, (C2)

and the prime indicates a truncation of the sum, as specified

bellow. The sum can be written as

∑
′

k

k2
1 − k2

y

k2 + k2
0

= ∑
′

n1,n2

Sn1,n2
(C3)
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with

Sn1,n2
=

(

2π
L1

n1

)2

−
(

2π
Ly

n2

)2

[

(

2π
L1

n1

)2

+
(

2π
Ly

n2

)2
]

+ k2
0

. (C4)

Taking into account that n1 and n2 take positive and negative

values, we have

∑
′

k

k2
1 − k2

2

k2 + k2
0

= ∑
′

n1,n2

Sn1,n2
≃ 1

2
∑

′

n1,n2

(Sn1,n2
+Sn2,n1

)

= 2 ∑
′

n1>0,n2>0

(Sn1,n2
+Sn2,n1

)

≃ 2

∫ nM

0
dn1dn2 (Sn1,n2

+Sn2,n1
) . (C5)

In the first approximation of the previous equation we assume

that the truncation of the sum is as n1, n2 < nM and not over

the values of k1 and k2, with

nM ≃ L1 +L2

4πnHσ2
. (C6)

The second approximation is an integral approximation of the

sum. In order to compute the integral, we introduce further

approximations:

Sn1,n2
+Sn2,n1

=

[

(

2π

L1

)2

−
(

2π

L2

)2
]

×
2

[

(

2π
L1

)2

+
(

2π
L2

)2
]

n2
1n2

2 + k2
0(n

2
1 +n2

2)

[

(

2πn1
L1

)2

+
(

2πn2
L2

)2

+ k2
0

][

(

2πn2
L1

)2

+
(

2πn1
L2

)2

+ k2
0

]

≃ 2
L 2

2 −L 2
1

L 2
1 +L 2

2

4n2
1n2

2 +
2k2

0
(

2π
L1

)2
+
(

2π
L2

)2 (n
2
1 +n2

2)

[

n2
1 +n2

2 +
2k2

0
(

2π
L1

)2
+
(

2π
L2

)2

]2
, (C7)

which is valid provided L 2
1 ≃ L 2

2 ≃ L1L2. Finally, assum-

ing that
2k2

0
(

2π
L1

)2
+
(

2π
L2

)2 ∼ 1 and nm ≫ 1 and taking into account

that

N = nHL1L2 =
1

nHσ2
L1L2, (C8)

we arrive at Eq. (72).
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