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Nonreciprocal heat flux via synthetic fields in linear quantum systems1
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We study the heat transfer between N coupled quantum resonators with applied synthetic electric and magnetic
fields realized by changing the resonator parameters by external drivings. To this end we develop two general
methods, based on the quantum optical master equation and on the Langevin equation for N coupled oscillators
where all quantum oscillators can have their own heat baths. The synthetic electric and magnetic fields are
generated by a dynamical modulation of the oscillator resonance with a given phase. Using Floquet theory, we
solve the dynamical equations with both methods, which allow us to determine the heat flux spectra and the
transferred power. We apply these methods to study the specific case of a linear tight-binding chain of four
quantum coupled resonators. We find that, in that case, in addition to a nonreciprocal heat flux spectrum already
predicted in previous investigations, the synthetic fields induce here nonreciprocity in the total heat flux, hence
realizing a net heat flux rectification.
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I. INTRODUCTION29

In the past decade a great number of experiments have ver-30

ified the near-field enhancement of thermal radiation between31

two macroscopic objects down to distances of a few nanome-32

ters [1–9]. In particular, the theoretically proposed effects of33

thermal rectification with a phase-change diode [10,11], a34

phase-change material-based memory [12], and active heat35

flux switching or modulations [13–15] have been realized36

experimentally. Also, several proposals for heat flux recti-37

fication in nonreciprocal systems, called nonreciprocal heat38

flux, have been made, but these effects have not been demon-39

strated experimentally. Typically, these proposals rely on the40

application of magnetic fields to nanoscale setups involving41

magneto-optical materials or by using Weyl semimetals with42

intrinsic nonreciprocal optical properties. It can be shown43
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theoretically that by means of magnetic fields the magnitude 44

of the heat flux and its direction can be manipulated [16–23]. 45

Due to the broken time-reversal symmetry, also nonrecipro- 46

cal heat fluxes can exist in such cases, leading to persistent 47

heat currents and fluxes [24,25], persistent angular momenta 48

and spins [25–27], normal and anomalous Hall effects for 49

thermal radiation [28,29], diode effects by coupling to non- 50

reciprocal surface modes [30–33], and spin-directional near- 51

and far-field thermal emission [34,35]. A tradeoff of using 52

magneto-optical materials is that to have observable nonre- 53

ciprocal heat fluxes, experiments with large magnetic fields 54

in a nanoscale setup are necessary. On the other hand, using 55

Weyl semimetals with intrinsic nonreciprocity does not allow 56

for dynamic tuning. 57

Recently, the modulation of resonance frequencies of a 58

system of resonators with a single modulation frequency 59

but different phases has been interpreted as a way to create 60

synthetic electric and magnetic fields [36]. For the energy 61

transmission in a setup of two resonators with applied syn- 62

thetic electric and magnetic fields, i.e., with a modulation of 63

the resonance frequencies and a phase shift, it could be shown 64

experimentally and theoretically that monochromatic waves 65
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are transmitted in a nonreciprocal manner [37] if there is a66

nonzero phase shift, i.e., a synthetic magnetic field. If the67

two resonators with applied synthetic electric and magnetic68

fields are coupled to two thermal reservoirs within a master-69

equation approach [38–41], then the transmission coefficients70

for the heat current in both directions are not the same, which71

is a manifestation of a broken detailed balance [42]. However,72

in this case the total power transferred between both reso-73

nances is reciprocal even in the presence of synthetic electric74

and magnetic fields [42].75

That the transferred power is reciprocal might not be sur-76

prising for two reasons. First of all, in the context of Rytov’s77

fluctuational electrodynamics it can easily be shown that the78

total radiative heat flux between two objects is always recip-79

rocal [16]. Nonreciprocal effects necessitate at least a third80

object and nonreciprocal material properties of the objects81

or environment [43,44]. Another argument is that within the82

quantum master-equation approach for linearly coupled os-83

cillators, typically nonlinear effects need to be included to84

have nonreciprocal heat flow [45], even though it seems that85

nonreciprocal heat flow can also be generated by specific86

choices of temperatures in a linear chain of oscillators [46,47].87

However, as we will show below, the application of synthetic88

electric and magnetic fields can indeed generate nonreciprocal89

heat flow in a tight-binding configuration of four coupled res-90

onators without the need for nonlinearity due to the presence91

of the synthetic magnetic field.92

We distinguish our work from previous studies. Sev-93

eral kinds of modulations have been proposed such as the94

periodic modulation of the permittivity [48–50]. Such mod-95

ulations have been shown to introduce synthetic magnetic96

fields for photons [51] and consequently related effects like97

the Aharonov-Bohm effect for photons [52]. In the context of98

thermal radiation, it could be demonstrated that permittivity99

modulations can introduce nonreciprocity, which manifests100

in a breakdown of the detailed balance in Kirchhoff’s law101

[53] and can be employed for photonic refrigeration [54]. In102

similar approaches a combined dynamical modulation of the103

resonances of heat exchanging objects and their interaction104

strength was applied, resulting in a heat pumping effect and105

nonreciprocal heat fluxes in a three-resonator configuration106

[55,56]. Heat pumping effects also exist when only the inter-107

action strengths in three-body configurations are dynamically108

modulated [57]. It must be emphasized that these effects are109

different from the heat shuttling effect where the temperature110

or chemical potentials of two reservoirs are periodically mod-111

ulated around their equilibrium values in order to have a heat112

transport despite the fact that the system is on average in equi-113

librium [58–60]. Indeed, in that case the modulation affects114

the baths only and not resonator parameters. Finally, it could115

be demonstrated theoretically that geometrical phases by adi-116

abatic dynamical modulation of resonators with nonreciprocal117

conductance can increase or reduce the thermal relaxation118

[61] and rapid magnetic-field modulations in magneto-optical119

systems can substantially increase the cooling [62].120

In this work we extend the quantum Langevin equa-121

tion (QLE) and quantum master equation (QME) approach122

used in Ref. [42] to the case of N coupled arbitrary resonators123

with their own heat baths as sketched in Fig. 1 with applied124

synthetic electric and magnetic fields. Both methods can be125

FIG. 1. Sketch of N coupled quantum resonators, each coupled
to its own heat bath.

used to calculate the heat flux between any two resonators 126

which are coupled to their own reservoirs. We show numer- 127

ically that both methods give the same values for the heat 128

flux. The QLE approach naturally allows for calculating the 129

heat flux spectra, whereas the master-equation method is a 130

better choice for fast numerical calculations of the heat flux. 131

We use both methods to show that the heat flux itself is 132

nonreciprocal in the presence of synthetic fields in a linear 133

tight-binding chain of four resonators. This finding might be 134

of great interest in the field of quantum thermodynamics, 135

where energy flux management and thermal tasks in many- 136

body quantum systems are of high relevance as in the studies 137

on long-range transport and amplification in chains of atoms 138

and ions [63,64], distributed thermal tasks in many-body sys- 139

tems [65], chiral or nonlocal heat transport [66,67], quantum 140

fluctuation theorems [68], thermodynamical consistency of 141

master equations [69], and many others. 142

The paper is organized as follows. First, in Sec. II we in- 143

troduce the standard master equation for N coupled resonators 144

with N reservoirs. We derive the dynamical equations for the 145

mean values of products of the resonator amplitudes and in- 146

troduce the QLE for the coupled resonator system. In Sec. III 147

we introduce the synthetic fields in the QLE approach and 148

provide a formal solution in Fourier space. In Sec. IV we 149

introduce the synthetic fields in the master-equation approach 150

and give a formal solution by making a Fourier series ansatz. 151

In Sec. V we show the occurrence of nonreciprocal heat flux 152

in the presence of synthetic electric and magnetic fields in a 153

four-resonator chain. We conclude with a summary in Sec. VI. 154

II. LANGEVIN AND MASTER EQUATIONS 155

We start by writing the Hamiltonian of a coupled 156

harmonic-oscillator system (each oscillator coupled to its own 157

heat bath of oscillators), which is given by [70,71], 158

H = HS +
∑

i

HB,i +
∑

i

HSB,i, (1)

with the Hamiltonian of the system of coupled oscillators 159

HS =
∑

i

h̄ωia
†
i ai +

∑
i, j,i �= j

h̄gi ja
†
i a j, (2)
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with resonance frequencies ωi and coupling constants gi j =160

g∗
ji for the Hermitian system H†

S = HS and the bosonic cre-161

ation and annihilation operators a†
i and ai, respectively. The162

bath oscillator Hamiltonians are given by (i = 1, . . . , N)163

HB,i =
∑

j

h̄ωi jb
†
i jbi j, (3)

with bosonic creation and annihilation operators b†
i j and bi j ,164

respectively, and the Hamiltonians describing the linear cou-165

pling between the system oscillators and their baths are given166

by167

HSBi = ih̄
∑

j

gB,i j (ai + a†
i )(bi j − b†

i j ), (4)

with the corresponding coupling constants gB,i j . By assuming168

the validity of the Born-Markov and rotating-wave approxi-169

mation and tracing out the bath variables we can arrive at the170

QME [71]171

∂ρS

∂t
= −i

∑
i

ωi[a
†
i ai, ρS]

− i
∑

i, j;i �= j

gi j[a
†
i a j, ρS]

−
∑

i

κi(ni + 1)(a†
i aiρS − 2aiρSa†

i + ρSa†
i ai )

−
∑

i

κini(aia
†
i ρS − 2a†

i ρSai + ρSaia
†
i ), (5)

where the coupling to the bath oscillators is formally given172

in terms of the coupling constants κi = π
∑

j g2
B,i jδ(ωi j −173

ωi ) and ni = [exp(h̄ωi/kBTi ) − 1]−1 are the mean occupation174

numbers at the bath temperatures Ti. As mentioned before, gi j175

is in general a complex number with the constraint gi j = g∗
ji176

to ensure Hermiticity of HS . This master equation is also177

called the local approach and it is valid when the intersystem178

coupling does not affect the system-bath coupling [41,72,73].179

From the QME we can derive the dynamical equation for180

the mean values of any observable. For example, for the mean181

values of products of raising and lowering operators we obtain182

the set of equations (k, l = 1, . . . , N ; k �= l)183

d

dt
〈a†

kak〉 = −i
∑
j, j �=k

(gk j〈a†
ka j〉 − g jk〈aka†

j〉)

− 2κk〈a†
kak〉 + 2κknk, (6)

d

dt
〈a†

kal〉 = �kl〈a†
kal〉 − i

∑
j �=k; j �=l

(gl j〈a†
ka j〉 − g jk〈a†

j al〉)

− iglk (〈a†
kak〉 − 〈a†

l al〉), (7)

with184

�kl = i(ωk − ωl ) − κk − κl . (8)

In the following we will refer to this set of equations for the185

mean values of operator products (6) and (7) as the master-186

equation approach as they are derived from the QME (5).187

Similarly, we obtain for the time evolution of the mean188

values of the raising and lowering operators of each oscillator189

ai the set of equations (k = 1, . . . , N) 190

d

dt
〈ak〉 = −�k〈ak〉 − i

∑
i;i �=k

gki〈ai〉, (9)

with �k ≡ iωk + κk . The set of equations for the mean values 191

of the lowering operators of the two oscillators in Eq. (9) 192

motivates the introduction of a set of QLE for the operators 193

themselves instead of their expectation values 194

ȧk = −iωkak − κkak − i
∑
i,i �=k

gkiai + Fk, (10)

where the coupling to baths is taken into account by the bath 195

operators Fk , which obviously must fulfill 〈Fk〉 = 0 to retrieve 196

Eq. (9). To be consistent with the QME approach and in 197

particular with the set of equations (6) and (7), the correlation 198

functions of the bath operators are given by 199

〈F †
k (t )Fk (t ′)〉 = 2κknkδ(t − t ′), (11)

〈Fk (t )F †
k (t ′)〉 = 2κk (nk + 1)δ(t − t ′), (12)

and 〈FkFk〉 = 〈F †
k F †

k 〉 = 0. Furthermore, the bath operators of 200

different baths are uncorrelated. Here the δ function in time is 201

due to the Markov assumption, whereas the prefactors (or dif- 202

fusion terms) can be derived from the QME with the method 203

used in Ref. [74]. Hence, the QLE approach is related via 204

(5) to the QME approach, so both approaches are equivalent 205

descriptions but on different levels. The QLE approach will 206

allow us to determine the heat flux spectra, whereas the QME 207

approach is a faster method for a direct computation of the full 208

heat flux. 209

III. LANGEVIN EQUATIONS WITH SYNTHETIC FIELDS 210

We now use the set of QLEs as introduced above and 211

include a frequency modulation (k = 1, . . . , N) 212

ωk → ωk + mkβ cos(�t + θk ), (13)

with phase shifts θk and mk = {0, 1} (for mk = 0 the modula- 213

tion of oscillator k is turned off and for mk = 1 the modulation 214

is turned on). The set of coupled QLEs in frequency space is 215

therefore (k = 1, . . . , N) 216

Xkak (ω) + i
∑
l �=k

gkl al (ω) = Fk + β

2i
(ak,−e−iθk + ak,+e+iθk ),

(14)
introducing 217

Xk = i(ωk − ω) + κk (15)

and the shorthand notation 218

ak,± = ak (ω ± �). (16)

The coupled QLEs can now be put in matrix form 219

ψ = MF + β

2i
MQ+ψ+ + β

2i
MQ−ψ− (17)

220
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by introducing the vectors221

ψ =

⎛
⎜⎝

a1(ω)
...

aN (ω)

⎞
⎟⎠, ψ± =

⎛
⎜⎝

a1(ω ± �)
...

aN (ω ± �)

⎞
⎟⎠, F =

⎛
⎜⎝

F1(ω)
...

FN (ω)

⎞
⎟⎠

(18)

and the matrices222

M = A−1, with A =

⎛
⎜⎜⎝

X1 ig12 · · · ig1N

ig21 X2 · · · ig2N
... · · · ...

...

igN1 gN2 · · · XN

⎞
⎟⎟⎠, (19)

and223

Q± = diag(e±iθ1 m1, . . . , e±iθN mN ). (20)

In Eq. (17) it can be clearly seen that due to the modulation224

there are couplings to the next sidebands ω ± � so that this set225

of equations is recursive and infinitely large. These sidebands226

can be understood as being the consequence of a synthetic 227

constant electric field. Furthermore, the phase shift adds a 228

phase ±θk to this coupling which can be understood as a 229

consequence of a synthetic magnetic field. 230

The solution of the coupled QLEs (17) can formally be 231

written for all orders. By introducing the block vectors 232

ψ = (. . . ,ψ++,ψ+,ψ,ψ−,ψ−−, . . .)T, (21)

F = (. . . , F++, F+, F, F−, F−−, . . .)T, (22)

the diagonal block matrix 233

M =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
· · · M+ O O · · ·
· · · O M O · · ·
· · · O O M− · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠, (23)

and the tridiagonal block matrix 234

L =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
iβ
2 M+Q+ 1

iβ
2 M+Q− O · · ·

· · · iβ
2 MQ+ 1

iβ
2 MQ− · · ·

· · · O
iβ
2 M−Q+ 1

iβ
2 M−Q−

· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠, (24)

we can rewrite the coupled QLE (17) as a matrix equation235

Lψ = MF. (25)

Hence236

ψ = L−1MF. (26)

By considering only block vectors ψ of 2n + 1 vectors ψ with237

the corresponding block matrices of size (2n + 1) × (2n + 1)238

submatrices, we obtain the perturbation results up to order n.239

Note that the full size of the block vectors and matrices is240

N (2n + 1) and N2(2n + 1)2, respectively.241

To evaluate these spectra in our general formalism, we242

start with Eq. (26) and introduce the block matrices Y1 =243

diag(1, 0, . . . , 0, 1, 0, 0, . . .), Y2 = diag(0, 1, 0, . . . , 0, 1, 0,244

0, . . .), Y3 = diag(0, 0, 1, 0, . . . , 0, 1, 0, 0, . . .), etc., so that245

there are N − 1 zeros between the nonzero entries and246 ∑
k Yk = 1. These matrices allow us to split the contributions247

from all baths k so that248

ψ =
N∑

k=1

L−1MYkF. (27)

To evaluate products, we use the fluctuation-dissipation theo-249

rem in the form250

〈F †
k (ω + l�)Fk′ (ω′ + l ′�)〉 = δk,k′δl,l ′2πδ(ω − ω′)〈F †

k Fk〉ω,

(28)
where 〈F †

k Fk〉ω = 2κknk . Here, in agreement with the treat-251

ment in the QME approach, we are assuming that nk is252

constant, as demanded by the assumption of white noise. This 253

assumption is justified for β 	 ωk and � 	 kBT/h̄. Then we 254

have 255

〈ψ†
α
ψ

ε
〉ω =

N∑
k=1

2κknk (L−1MYkM
†L−1†

)ε,α, (29)

using the properties Y†
k = Yk and YkYk = Yk . From this ex- 256

pression we can numerically calculate all spectral correlation 257

functions. 258

As detailed in Appendix B, the total power emitted by the 259

hot oscillator or reservoir k into the system is given by [41,45] 260

Pem
k =

∫
dω

2π
h̄ωk2κk (nk − 〈a†

kak〉ω ). (30)

Assuming that only reservoir k has nonzero temperature, then 261

the heat flux flowing into the reservoir l is given by 262

Pk→l =
∫

dω

2π
h̄ωl2κl〈a†

l al〉ω, (31)

where 〈a†
l al〉ω is given by 〈ψ†

α
ψ

ε
〉ω from Eq. (29) with ε = 263

α = Nn + l coming from the term involving nk due to bath k. 264

IV. MASTER EQUATIONS WITH SYNTHETIC FIELDS 265

Now, instead of the QLEs we use the QMEs (6) and (7) 266

with periodic driving as in Eq. (13). This directly leads to the 267
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set of equations268

d

dt
〈a†

kak〉 = −i
∑
j, j �=k

(gk j〈a†
ka j〉 − g jk〈aka†

j〉)

− 2κk〈a†
kak〉 + 2κknk, (32)

d

dt
〈a†

kal〉 = �̃kl〈a†
kal〉 − i

∑
j �=k; j �=l

(gl j〈a†
ka j〉 − g jk〈a†

j al〉)

− iglk (〈a†
kak〉 − 〈a†

l al〉), (33)

with269

�̃kl = i(ωk − ωl ) − κk − κl

+ iβ[mk cos(�t + θk ) − ml cos(�t + θl )]. (34)

To solve the equations, we make the Fourier series270

ansatz for the expectation values of each observable O such271

that272

〈O〉 =
∑

n

e−in�t 〈O〉n. (35)

Then we note that273 ∑
n

e−in�t 〈O〉n[cos(�t + θk ) − cos(�t + θl )]

=
∑

n

e−in�t

(
ηkl

2
〈O〉n+1 + η∗

kl

2
〈O〉n−1

)
, (36)

with274

ηkl = (mkeiθk − mle
iθl ). (37)

Inserting this ansatz into the set of equations (32) and275

(33) gives the following set of equations for the Fourier276

components:277

(−in� + 2κk )〈a†
kak〉n

= −i
∑
j, j �=k

(gk j〈a†
ka j〉n − g jk〈aka†

j〉n) + 2κknkδn0, (38)

278
(−in� − �kl )〈a†

kal〉n

= −i
∑

j �=k; j �=l

(gl j〈a†
ka j〉n − g jk〈a†

j al〉n)

− iglk (〈a†
kak〉n − 〈a†

l al〉n) − iβηkl

2
〈a†

kal〉n+1

− iβη∗
kl

2
〈a†

kal〉n−1. (39)

The set of equations for the Fourier components can again be 279

written in matrix form 280

Lψ = κ (40)

when introducing the block vector 281

ψ = (. . . ,ψ1,ψ0,ψ−1, . . .)
T, (41)

with 282

ψn = (〈a†
1a1〉n, . . . , 〈a†

N aN 〉n, 〈a†
1a2〉n, 〈a†

2a1〉n, . . . ,

〈a†
1aN 〉n, 〈a†

N a1〉n, 〈a†
2a3〉n, 〈a†

3a2〉n, . . . , 〈a†
2aN 〉n,

〈a†
N a2〉n, . . . 〈a†

N−1aN 〉n, 〈a†
N aN−1〉)T

n , (42)

as well as the block vector 283

κ = (. . . , 0, 0,+2κ1n1, . . . ,+2κN nN , 0, 0, . . .)T. (43)

The block matrix L then takes the form of a tridiagonal block 284

matrix 285

L =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · · · · · · ·
· · · M1 G− O · · ·
· · · G+ M0 G− · · ·
· · · O G+ M−1 · · ·
· · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠, (44)

with 286

Mn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−in� + 2κ1 0 · · · 0 +ig12 −ig21 · · · 0 0

0 −in� + 2κ2 · · · 0 −ig12 ig21 · · · · · · ...
... · · · · · · · · · · · · · · · · · · · · · ...

0 0 · · · −in� + 2κN 0 0 · · · −igN−1,N igN,N−1

−ig21 ig12 · · · 0 −in� − �12 0 · · · 0 0
ig21 −ig12 · · · 0 0 −in� − �21 · · · 0 0
... · · · · · · · · · · · · · · · · · · · · · ...

0 0 −ig3N ig3N · · · · · · · · · 0 −in� − �N,N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(45)

G+ = iβ

2
diag(0, . . . , 0, η12,−η12, . . . , ηN−1,N ,−ηN−1,N ),

(46)

and G− defined as the matrix obtained from G when complex287

conjugating ηkl . The different perturbation orders n can be288

obtained by using 2n + 1 subblocks in the matrix L. Note that289

even though we use the same notation as in the QLE approach,290

the vectors and matrices used are different and also have a 291

different dimension. Here the dimensions of the block vectors 292

and matrices are N2(2n + 1) and N4(2n + 1)22. 293

The mean heat flux (transferred power over one oscillation 294

period) from oscillator k at temperature Tk to an oscillator l at 295

temperature Tl = 0 K is defined by [42] 296

Pk→l = h̄ωl2κl〈a†
l al〉0, (47)
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FIG. 2. Sketch of a chain of four resonators 1, 2, 3, and 4
with equal nearest-neighbor couplings g and resonance frequencies
ω0. The oscillators in the middle are modulated with a modulation
strength β and a relative phase shift θ , resulting in synthetic electric
and magnetic fields.

taking ni = 0 for all other resonators. Again the total emitted297

mean power by oscillator k is given by298

Pem
k = h̄ωk2κk (nk − 〈a†

kak〉0) (48)

and we have energy conservation, i.e., Pem
k = ∑

l �=k Pk→l . The299

advantage of the QME approach is that, differently from the300

QLEs (30) and (31), a frequency integration is not necessary.301

On the other hand, the size of the matrices for a given pertur-302

bation order is much larger than for the QLE approach. Note303

also that the simplifying white-noise assumption in the QLE304

and QME approaches has the virtue that the cycle-averaged305

energy which is pumped into the system by the modulation306

is exactly zero. Hence any change in the power flowing be-307

tween the oscillators or baths can be attributed to heat. (See308

Appendix C for a detailed discussion.)309

V. FOUR RESONATORS CASE: NONRECIPROCAL310

HEAT FLUX WITH SYNTHETIC FIELDS311

We consider here the heat flux in a chain of four res-312

onators as depicted in Fig. 2. We assume that all resonators are313

identical and we further assume reciprocal nearest-neighbor314

coupling with identical coupling strength g so that the nonzero315

coupling constants are g12 = g21 = g32 = g23 = g34 = g43 =316

g. The resonance frequencies ω1 and ω4 of resonators 1 and317

4 are fixed to ω0, whereas the resonance frequencies of the318

resonators in the middle are modulated as319

ω2 = ω0 + β cos(�t ), (49)

ω3 = ω0 + β cos(�t + θ ). (50)

In this configuration, we first determine the power P14 trans-320

ferred from resonator 1 to resonator 4 with T1 = 300 K321

and T2 = T3 = T4 = 0 K. Then we compare with the heat322

flow in the backward direction by calculating the power P41323

transferred from resonator 4 to resonator 1 with T4 = 300 K324

and T1 = T2 = T3 = 0 K. Hence, only the first and the last325

resonator are in our configuration coupled to a heat bath.326

Therefore, here the modulation frequency � and the modu-327

lation strength β are in principle not limited by the constraint328

due to the white-noise assumption because the two resonators329

in the middle have zero temperature. Nonetheless, we will330

restrict ourselves to values which fulfill the above criteria331

for the white-noise approximation. For our numerical cal-332

culations we use ω0 = 1.69 × 1014 rad/s and κ = 0.013ω0,333

which are the values taken from those for a graphene flake334

FIG. 3. Plot of (a) P14 (solid line) and P41 (dashed line) from the
QME approach (47) at perturbation order n = 15 normalized to the
value P14(β = 0) = P41(β = 0) = 5.88 × 10−22 W for g = 0.011κ

and � = 0.05ω0 for θ = 0.1π and 0.5π . The closed and open sym-
bols are the results for P14 and P41 from integration of spectra as in
Fig. 5 from the QLE approach according to Eq. (31) at perturbation
order n = 10. (b) Comparison of exact numerical results (solid lines)
for the difference P14 − P41 normalized to P14(β = 0) = P41(β =
0) = 5.88 × 10−22 W with the corresponding power difference from
the approximate expression (dashed lines) from Eq. (52).

with EF = 0.4 eV from Ref. [75]. The coupling constant g 335

is determined by the near-field heat flux value, which de- 336

pends on the relative distance between the graphene flakes. 337

For a distance d = 100 nm between two graphene flakes, a 338

fitting of the resonator model with the results from fluctuating 339

electrodynamics [42] gives g = 0.011κ . Hence, we are in the 340

weak-coupling regime. 341

In Fig. 3(a) we show the results for the transferred power as 342

a function of the modulation strength β and for two different 343

values of θ . We show the numerical results obtained with 344

the QME method with Eq. (47) and the QLE approach with 345

Eq. (31). First of all, we can see that both methods provide the 346

same values for the exchanged power. Furthermore, it can be 347

seen that the heat flux is clearly nonreciprocal, in contrast to 348

the case of two resonators or two graphene flakes, where the 349

heat flux is reciprocal despite the nonreciprocal spectra [42]. 350

As detailed in Ref. [37], for instance, the nonreciprocity 351

in transmission as sketched in Fig. 2 can be understood in 352
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second-order perturbation theory as an interference of dif-353

ferent transmission paths. The energy at ω0 provided by354

resonator 1 can go through the chain in second order via355

the upper and lower sidebands at ω0 ± � by two scattering356

events ω0 → ω0 + � and ω0 + � → ω0 or ω0 → ω0 − �357

and ω0 − � → ω0, as sketched in Fig. 2. Due to the pres-358

ence of the synthetic magnetic field, a phase is picked up in359

this process which is not the same in forward transmission360

from resonator 1 to resonator 4 and backward transmission361

from resonator 4 to resonator 1. This symmetry breaking of362

the synthetic magnetic field can be directly understood from363

Eq. (14), which shows that upward and downward transi-364

tions in the Floquet sidebands are connected to picking up a365

positive or negative phase. Hence the forward and backward366

transmission along the upper or lower sidebands results in367

different phase factors. We emphasize that when considering368

the heat flux between only two resonators, like our resonators369

2 and 3 with modulation, there is no heat flux rectification370

due to the fact that because of the white-noise reservoirs the371

heat can enter via all the sidebands from resonator 2 to 3 or372

vice versa [42]. Here the rectification is achieved by adding373

two more resonators 1 and 4 which act as spectral filters for374

the energy entering resonator 2 from the left or 3 from the375

right so that the situation is very similar to the plane-wave376

transmission in Ref. [37]. For a plane wave with frequency ω377

being transmitted through the coupled resonators 2 and 3, the378

difference in the transmission is explicitly given by [37]379

τ23 − τ32 = −2i
β2

4
[τ (ω + �) − τ (ω − �)] sin(θ ), (51)

where τ (ω) is the transmission coefficient without modu-380

lation. This transmission coefficient shows that there is a381

nonreciprocal transmission for any phase difference θ �= mπ382

with integer m. From this expression it can be expected that383

at least in second-order perturbation theory, i.e., when β is384

sufficiently small, the largest difference can be expected for385

θ = π/2. For the four-resonator configuration depicted in386

Fig. 2, a similar expression can be derived using a second-387

order perturbation theory for the QME approach as detailed in388

Appendix A. In the weak-coupling limit g 	 κ we find for the389

difference of heat flux in the forward and backward directions390

P14 − P41

h̄ω0ng
= β2 g5

κ5

(
7

8

Im(A2)

|A|4 + κ Im(A3)

|A|6 − κ3Im(A5)

|A|10

)

× sin(θ ), (52)

where A = 2κ − i� and n ≡ n1 = n4 is the mean occupation391

number of the resonator 1 in the forward direction or resonator392

4 in the backward direction. In Fig. 3(b) we compare its393

predictions with the exact numerical results from Fig. 3(a),394

clearly showing its validity in the small-β limit. This expres-395

sion has a similar structure to Eq. (51), indicating the same396

dependence on θ in the limit of small driving amplitudes397

β. To see this effect, we show in Fig. 4 the relative power398

transmission399

E ≡ P14 − P41

P14 + P41
. (53)

It can be seen that indeed for β < 0.05ω0 the maximum400

difference in the forward and backward heat flow happens401

at θ = ±π/2. For larger modulation strengths higher-order402

FIG. 4. Relative power transmission E defined in Eq. (53) as a
function of the dephasing θ for � = 0.05ω0 and different values of
modulation strength β using the QME approach in order n = 15.

effects play a role, so this maximum shifts to slightly larger 403

or smaller values of dephasing. 404

Finally, in Fig. 5 the spectra of power P14,ω and power P41,ω 405

obtained with the QLE approach in the forward and backward 406

directions are shown using � = 0.05ω0, β = 0.05ω0, and 407

θ = π/2. It can be seen that the spectra for the heat flow 408

in the forward and backward directions are not the same as 409

also found for two graphene flakes only [42]. Furthermore, it 410

can be seen that the sideband contribution is very small, so 411

the main nonreciprocity stems from frequencies around the 412

resonance ω0. Integrating these spectra according to Eq. (31) 413

gives the full transferred power for the forward and backward 414

directions shown in Fig. 3(a). 415

Let us compare our results with the heat transport in other 416

nonreciprocal systems, such as those in Refs. [31–33], where 417

nonreciprocal heat flux between two nanoparticles is achieved 418

FIG. 5. Spectra for mean power P14,ω = 2κ h̄ω0〈a†
4a4〉ω for the

forward heat flow and P41,ω = 2κ h̄ω0〈a†
1a1〉ω for the backward heat

flow calculated from the spectra for the mean occupations numbers
〈a†

4a4〉ω and 〈a†
1a1〉ω in Eq. (29). The modulation parameters are

� = 0.05ω0, β = 0.05ω0, and θ = π/2 and we use perturbation
order n = 10.
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by the heat transport via nonreciprocal surface waves of a419

nearby plasmonic substrate. In these systems the energy or420

heat flux rectification can be very efficient but at the cost of421

applying strong magnetic fields or using intrinsically nonre-422

ciprocal materials which do not allow for any active control423

of the rectification mechanism. In our system the rectifica-424

tion ratio expressed by the relative power transmission E can425

be close to one. We find for our choice of parameters at426

maximum a rectification ratio R1 = |P14 − P41|/|P41| = 8.6 or427

R2 = |P14 − P41|/max|P41|, |P12| = 0.9 in Fig. 4. The rectifi-428

cation ratio reported in Ref. [31] is R2 = 0.2 for a magnetic429

field of 0.1 T and R2 ≈ 0.9 for a magnetic field of 1 T,430

whereas in Ref. [32] a rectification ratio R2 ≈ 1 or R1 ≈ 249431

is achieved for a magnetic field of 2–3 T. By replacing the432

plasmonic substrate by a Weyl semimetal one can achieve433

even higher rectification ratios. Depending on the specific434

value of the momentum separation, parameter values of R1 =435

2673 or even larger were reported in Ref. [33]. However,436

Weyl semimetals do not allow for any active control of the437

nonreciprocal heat flux, whereas in our system the direction438

and the rectification strength can be controlled by the phase439

shift and modulation strength. Our rectification mechanism is440

also different from the modulation method in Ref. [56], where441

a nonreciprocal heat flux is observed for the heat flow through442

a specific triangular three-oscillator system by modulation of443

two of the three resonance frequencies with specific phase444

shifts and a modulation of the coupling strength between two445

of the three resonators. In that case, there are also significant446

pumped currents due to the modulation in the system, so a447

direct comparison is difficult. Depending on the choice of448

parameters, maximal relative power transmissions of E ≈ 0.5449

and even E ≈ 1 are reported for cases without spectral filter-450

ing. This system is more complicated than ours in the sense451

that this system needs a dynamic modulation of the coupling452

strength and a frequency modulation including pump currents,453

whereas in our model only frequency modulations are needed.454

Hence, in our four-resonator system we clearly find a non-455

reciprocal heat flow due to synthetic electric and magnetic456

fields. Even though our example might be difficult to realize in457

practice, it clearly shows that synthetic electric and magnetic458

fields can generate a nonreciprocal heat flux. We emphasize459

that this result is not limited to near-field heat transfer between460

graphene flakes but it is generally valid for any configuration461

and any heat transfer channel which can be described by four462

coupled resonators with synthetic fields.463

VI. CONCLUSION464

To summarize, based on the local QME, we have intro-465

duced a formalism for a QLE and a QME approach for466

N coupled resonators with synthetic electric and magnetic467

fields. Both approaches are equivalent and reproduce the same468

numerical results for the heat fluxes. However, the QLE ap-469

proach is the natural choice when heat flux spectra are studied,470

whereas for the heat flow the QME approach is a better choice,471

because it is faster. As a very important example, we used472

both approaches to show, for a system of four linearly coupled473

resonators, that the heat flow is nonreciprocal when synthetic474

electric and magnetic fields are present. This is in contrast to475

the case of only two resonators where the heat flux is strictly476

reciprocal. We also verified numerically that both approaches 477

give the same values for the heat flux. Even though for the nu- 478

merical evaluation we considered the near-field heat transfer 479

in a system of four coupled graphene flakes, our findings are 480

very general and applicable to any system and any heat flux 481

channel which can be described by coupled resonators. Hence, 482

our formalism provides the fundament for further studies on 483

heat flux and other physical effects in coupled many-resonator 484

systems with synthetic fields. 485
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APPENDIX A: PERTURBATION THEORY 499

FOR THE QME APPROACH 500

In this Appendix we derive the second-order expression in 501

Eq. (52). To this end, we start with Fourier equations for the 502

QME (40) taking terms with n = 0, 1,−1. Then we have 503

M0ψ0 = κ − G+ψ+1 − G−ψ−1, (A1)

M+1ψ+1 = −G+ψ2 − G−ψ0, (A2)

M−1ψ−1 = −G+ψ0 − G−ψ−2. (A3)

By inserting the expressions for ψ+1/−1 into the equation for 504

ψ0 and neglecting terms from |n| � 2 we arrive at 505

Nψ0 = κ ⇒ ψ0 = N−1κ, (A4)

with 506

N = [
M0 − G+M−1

+1G
− − G−M−1

−1G
+]

. (A5)

By defining 507

G+ = iβ

2
G̃, G− = iβ

2
G̃

∗
, (A6)

with G̃ = diag(0, . . . , 0, η12,−η21, . . . , ηN−1,N ,−ηN−1,N ), 508

we have 509

N =
(
M0 + β2

4

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))

. (A7)

From this expressions it becomes more obvious that the first 510

nonvanishing contributions to the zeroth order are stemming 511

from the second-order terms, i.e., there is no contribution 512

linear in β. 513

For the tight-binding model of the four identical resonators 514

the involved vectors have 16 components and the matrices 515

have a size of 16 × 16. By definition of ψ0 we are interested 516

002200-8



NONRECIPROCAL HEAT FLUX VIA SYNTHETIC FIELDS … PHYSICAL REVIEW A 00, 002200 (2023)

FIG. 6. Comparison of exact numerical results for P14 (black
lines) with the second-order perturbation approach from Eq. (A7)
(PA 1) and with those from Eq. (A8) (PA 2) using the same param-
eters as in Fig. 3(a) and θ = π/2. The approximations for P41 are
similar (not shown).

in the terms N−1
14 and N−1

41 , which determine the transferred517

power P4→1 and P1→4. Obviously, there can only be nonre-518

ciprocity if N−1 �= (N−1)T . From the equation for N it can519

be seen that due to the phase terms G̃ and G̃
∗

in the second-520

order contribution, in general, we have N �= NT , so also521

P4→1 �= P1→4 in general. Hence, the synthetic magnetic field 522

results in an asymmetry for N and hence for N−1. 523

For small β we can further simplify the inverse of N as 524

N−1 =
(
M0 + β2

4

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))−1

=
(
1 + β2

4
M−1

0

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))−1

M−1
0

≈
(
1 − β2

4
M−1

0

(
G̃M−1

+1G̃
∗ + G̃

∗
M−1

−1G̃
))

M−1
0 .

(A8)

In Fig. 6 we show a comparison of the second-order results 525

using Eqs. (A7) and (A8) with numerically exact results. 526

As expected, the second-order expansion is only reliable for 527

small enough values of β and the perturbation expression 528

in Eq. (A7) is valid for a larger range than the perturbative 529

expression in Eq. (A8). 530

Now we want to derive an analytical expression for the 531

heat flux difference. Note that the heat flux difference for the 532

forward and backward cases in our example is given by 533

P14 − P41 = 4h̄ω0nκ2�N14, (A9)

where �N14 = N−1
14 − N−1

41 and n ≡ n1 = n4. That means we 534

can focus on �N14 and add the prefactors later. Starting with 535

the approximate expression in Eq. (A9) and making a Taylor 536

expansion for g 	 κ , we obtain with Mathematica for �N14 537

the relatively long expression 538

�N14 ≈ β2g2

8|A1|6
g4

κ4

( |A1|2Im
(
A2

1

)
A3

0

{4[Im(η13η
∗
12) + Im(η34η

∗
24)] + 3[Im(η23η

∗
13) + Im(η24η

∗
23)] + Im(η14η

∗
13) + Im(η24η

∗
14)}

+ Im
(
A3

1

)
A2

0

[Im(η14η
∗
12) + 2 Im(η24η

∗
13) + Im(η34η

∗
14) − 3 Im(η12η

∗
23) − 3 Im(η23η

∗
34)]

+ 2
Im

(
A4

1

)
|A1|2A0

[Im(η24η
∗
12) + Im(η34η

∗
13)] − 2 Im

(
A5

1

)
|A1|4 Im(η12η

∗
34)

)
, (A10)

where we have introduced An = 2κ − in�. From this ex-539

pression it can be seen that only for complex ηi j is there540

nonreciprocity. It can be further observed that there seem to be541

plenty of combinations which give a nonreciprocal heat flux.542

In our four-oscillator example resonator 3 is the only one with543

a nonzero phase θ ≡ θ3 �= 0 and resonators 1 and 4 are not544

modulated at all, so η12 = −1, η14 = 0, η24 = 1, η34 = eiθ =545

−η13, and η23 = 1 − eiθ . With these specific values we get546

�N14 ≈ β2g6

4κ4
sin(θ )

(
7 Im

(
A2

1

)
|A1|4A3

0

+ 4 Im
(
A3

1

)
|A1|6A2

0

− Im
(
A5

1

)
|A1|10

)
.

(A11)

By adding the corresponding factors as defined in Eq. (A9)547

and realizing that A0 = 2κ , we obtain the approximative ana-548

lytical expression for the heat flux difference in Eq. (52).549

APPENDIX B: DEFINITION OF HEAT FLUX 550

The heat flux between two oscillators k and l can be ob- 551

tained by the rate of work done on oscillator k by l , which is 552

classically defined by 553

Pk→l = k0(xk − kl )ẋk, (B1)

where k0 is the spring constant between the oscillators and xk 554

and xl is their displacement. By taking the classical–quantum- 555

mechanical correspondence and expressing the displacement 556

and its temporal derivative by the quantum-mechanical cre- 557

ation and annihilation operators a†
k and ak , respectively, one 558

can express the corresponding mean work rate by [38] 559

Pk→l = −ih̄ωkglk (〈aka†
l 〉 − 〈al a

†
k〉), (B2)

where gkl is the coupling constant between the oscillators. 560

This expression can be generalized for the case where the 561
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coupling can be asymmetric to562

Pk→l = −ih̄ωk (glk〈aka†
l 〉 − gkl〈ala

†
k〉). (B3)

Now this work rate describes the heat flux when it is due to a563

temperature bias.564

Instead of using the analogy with the work rate, the heat565

fluxes can also be directly determined from the QME. For566

instance, the power exchanged between all oscillators k with l567

can be defined as the mean change of the energy of oscillator568

l by [41]569

∑
k �=l

Pk→l = − i

h̄
〈[HS, Hl ]〉, (B4)

with HS defined in Eq. (2) and Hk = h̄ωka†
kak . This gives the570

expression (B3) for Pk→l , validating the above reasoning. On571

the other hand, the power flowing between the reservoir k and572

the system is defined as [41,45]573

Pem
k = Tr[Dk (ρ)Hk], (B5)

where574

Dk (ρ) = −κk (nk + 1)(a†
kakρS − 2akρSa†

k + ρSa†
kak )

− κknk (aka†
kρS − 2a†

kρSak + ρSaka†
k ) (B6)

is the dissipator of the reservoir k and Hk = h̄ωka†
kak . Then575

we arrive at576

Pem
k = h̄ωk2κk (nk − 〈a†

kak〉). (B7)

Note that, due to Eq. (6), we have in steady state energy577

conservation in the form578

∑
k �=l

Pk→l = Pem
k . (B8)

To determine the power flowing between two oscillators k579

and l we do not use the expression (B3), but we consider the580

heat flowing into the reservoir l due to a temperature bias in581

reservoir k, i.e., we assume that only reservoir k has nonzero582

temperature, which leads to the power transferred to reservoir583

l given by584

Pk→l = −Pem
l = h̄ωk2κk〈a†

kak〉. (B9)

APPENDIX C: ENERGY PUMP DUE TO MODULATION585

The power pumped into the system by the modulation can586

be quantified from Eq. (B7) using only the modulation terms587

from Eq. (13), so for each oscillator k we have588

Pmod
k = h̄βmk cos(�t + θk )2κk (nk − 〈a†

kak〉). (C1)

We can compare this power input with that from the unmodu-589

lated part590

Punmod
k = h̄ωk2κk (nk − 〈a†

kak〉). (C2)

Then it is obvious that 591

Pmod
k

Punmod
k

= βmk

ωk
cos(�t + θk ). (C3)

Note that in the white-noise approximation the prefactor ful- 592

fills β/ωk 	 1, so the power pumped into the system due to 593

the modulation is negligibly small. In our model it can be 594

shown that it is exactly zero. 595

To see that within the white-noise approximation the en- 596

ergy pumped into the system by the modulation is exactly 597

zero, we first observe that by using the QLE (10) the change 598

in the mean occupation number of each oscillator due to the 599

modulation terms mkβ cos(�t + θk ) from Eq. (13) is constant 600

in time, i.e., 601

d

dt
〈a†

kak〉mod = 〈ȧ†
kak〉mod + 〈a†

k ȧk〉mod

= imkβ cos(�t + θk )〈a†
kak〉

− imkβ cos(�t + θk )〈a†
kak〉

= 0. (C4)

Similarly, we can use the definition of the system Hamiltonian 602

HS from Eq. (2) with the modulation in Eq. (13) to show that 603

d

dt
〈a†

kak〉mod = − i

h̄
Tr

([
Hmod

S , ρS
]
a†

kak
)

= − i

h̄

〈[
a†

kak, Hmod
S

]〉
= 0, (C5)

with 604

Hmod
S =

∑
i

h̄β cos(�t + θi )a
†
i ai. (C6)

Hence, the energy of any oscillator, i.e., the energy of the full 605

system of oscillators itself, is not changed by the modulation. 606

This is in strong contrast to a modulation of the coupling 607

strength as in Refs. [54–56], where the modulation introduces 608

a strong pumping effect. 609

The full power emitted into the system by reservoir k with 610

modulation per modulation cycle can also be expressed as 611

P
em
k = 2π

�

∫ π/�

−π/�

dt
(
Pmod

k + Punmod
k

)

= −h̄ωk2κk〈a†
kak〉0

− h̄βmkκk (〈a†
kak〉−1eiθk + 〈a†

kak〉+1e−iθk ), (C7)

using the Fourier series expansion from Eq. (35). The sec- 612

ond line corresponds to the time-averaged contribution of 613

the power input due to the modulation. This contribution is 614

exactly zero due to the white-noise assumption, which re- 615

sults in 〈a†
kak〉+1 = 〈a†

kak〉−1 = 0, which can be inferred from 616

Eq. (40). Hence, the energy pumped into the system is zero 617

and using the expression 618

P
em
k = −h̄ωk2κk〈a†

kak〉0 (C8)

quantifies the full power emitted into the system by reservoir 619

k during one oscillation cycle. 620
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