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Abstract

In the age of connectivity, every person is constantly producing large amounts of

data every minute: social networks, information about trips, work connections,

etc. These data will only become useful information if we are able to analyze

and extract the most relevant features from it, which depends on the field of

analysis. This task is usually performed by clustering data into similar groups

with the aim of finding similarities and differences among them. However, the

vast amount of data available makes traditional analysis obsolete for real-life

datasets. This paper addresses the problem of dividing a set of elements into

a predefined number of equally-sized clusters. In order to do so, we propose a

Strategic Oscillation approach combined with a Greedy Randomized Adaptive

Search Procedure. The computational experiments section firstly tunes the

parameters of the algorithm and studies the influence of the proposed strategies.

Then, the best variant is compared with the current state-of-the-art method

over the same set of instances. The obtained results show the superiority of the

proposal using two different clustering metrics: MSE (Mean Square Error) and

Davies–Bouldin index.
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1. Introduction

The large amount of data available in several fields of research like economics

or biology has made traditional analysis techniques impractical for real-life prob-

lems [35]. In fact, data used in most of these areas grows exponentially everyday.

Therefore, the design of high-quality and high-performance algorithms has be-5

come a research field of interest for data analysts.

In order to get relevant information when using huge volume of data, two

main approaches are typically followed: classification and clustering [20]. In the

former, there is a complete previous knowledge of the available information (i.e.,

the group to which each element belongs to is known beforehand). Then, data10

analysis techniques can take advantage of this information in a supervised way.

On the contrary, clustering techniques use this information in an unsupervised

way, since it is not available a priori. The design of effective procedures for

clustering is harder as the actual group for each element is not known [39].

Clustering problems consist in splitting data into groups (also known as15

clusters), which contain elements that share some specific features. In other

words, it is expected that if two elements belong to the same cluster, then it

is because they are related to each other by means of some specific features.

Symmetrically, if two elements are in different clusters, it is because they are

barely related. Therefore, clustering algorithms are designed to split a given20

dataset into several subsets maximizing the similarity of elements in the same

subset, while minimizing the similarities between elements in different subsets.

It is important to remark that the similarity metric used totally depends on the

dataset and the scope of the clustering.

The minimum sum-of-squares clustering problem (MSSC) presents several25

practical applications in a wide variety of areas (biology, biometry, psychology,

marketing, etc.), and it is also a useful technique to improve the performance

of other techniques like pattern recognition, data mining, or image processing,

among others [36]. This problem has been proven to be NP-hard [24], even

when considering only two clusters in the Euclidean space [2].30
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MSSC considers that the number of clusters k is known a priori. The ob-

jective of MSSC is to assign a set of n points P = {p1, p2, . . . , pn} located in an

s-dimensional Euclidean space Rs to a cluster Ki ∈ {K1,K2, . . . ,Kk}. MSSC

then tries to find the assignment S of points to clusters with the minimum sum-

of-squares distances from each point pj of the cluster Ki to its corresponding35

centroid p̄i. Given a cluster Ki, its centroid is defined as the point whose dis-

tance to the other points of the cluster is minimum. More formally, the quality

of the partition S, denoted as f(S) can be evaluated as:

f(S) =

n∑
j=1

k∑
i=1

xij ||pj − p̄i||2

where xij is a binary variable (with 1 ≤ i ≤ k and 1 ≤ j ≤ n) that takes on the

value 1 if point pj is assigned to cluster Ki; otherwise, xij = 0. Naturally, this40

variable satisfies that
∑k

i=1 xij = 1 for 1 ≤ j ≤ n.

The evaluation of the objective function can be improved by leveraging the

results derived from the Huygens’ theorem [13], as stated in [9]. Specifically,

evaluating the sum-of-squared distances from all points of a given cluster to its

centroid is equivalent to evaluating the sum-of-squared distances between each45

pair of points in the cluster divided by its cardinality. It can be formally defined

as:

f(S) =

k∑
i=1

n−1∑
j=1

n∑
l=j+1

xijl
||pj − pl||2

|Ki|

where xijl is a binary variable (with 1 ≤ i ≤ k and 1 ≤ j < l ≤ n) that takes

on the value 1 if points pj , pl are assigned to cluster Ki; otherwise, xijl = 0.

It is worth mentioning that the use of the Huygens’ theorem [13] allows us to50

design considerably efficient algorithms. Specifically, we compute the distances

between each pair of elements only once (even before executing the algorithm)

storing them in a matrix. Then, looking up the distance between two elements

can be performed in O(1) since it only requires an access to the distance matrix.

Additionally, this approach makes the algorithms independent of the instance55
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dimensionality. See [4, 21] for further details about the issues related with the

dimensionality course.

In this paper, we focus on the variant with the cardinality constraint, which

is called Balanced MSSC (BMSSC) problem. Specifically, there will be n mod k

clusters of size dn/ke, and k− (n mod k) clusters of size bn/kc. BMSSC has also60

been proven to be NP-hard for n/k ≥ 3. See [28] for further details.

Figure 1 shows an example of two possible clustering solutions for k = 2,

where we consider the same set of points. On the one hand, Figure 1.a de-

picts a solution S1 conformed with K1 = {A, B, C, F, H} and K2 = {D, G, E, I},

resulting in an objective function value of f(S1) = 245. On the other hand,65

the solution S2 presented in Figure 1.b contains clusters K1 = {A, C, D, G, I} and

K2 = {B, E, F, H}, with an objective function value of f(S2) = 353. Analyzing

these values, we can conclude that S1 is better than S2 since the elements con-

tained in each cluster are more similar among them (regarding the computation

of the objective function).70
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Figure 1: Two possible clustering solutions for a given set of points: (a) {A,B,C,F,H} and

{D,G,E,I}, and (b) {A,C,D,G,I} and {B,E,F,H}

In this paper, we propose a Greedy Randomized Adaptive Search Procedure

(GRASP) [15] combined with Strategic Oscillation (SO) [16]. Figure 2 shows
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the complete scheme of the proposed algorithm, where we can identify two

main blocks: GRASP and SO. The first one performs a predefined number

of constructions followed by a local search method. Then, the best solution75

found is further improved in the SO block by alternatively considering feasible

and unfeasible solutions. The SO block finally returns the best solution found

during the search.

Construct Local Search
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Figure 2: Complete scheme of the proposed algorithm.

This procedure presents a remarkable performance in both, quality and com-

puting time, as we will show in the computational experience. The remaining80

of the paper is organized as follows: Section 3 presents the metaheuristic algo-

rithm developed for the BMSSC, Section 4 describes a post-processing method

in order to improve the quality of the obtained solutions, Section 5 thoroughly

describes the experiments performed to test our proposal and, finally, Section 7

draws some conclusions over the problem and the proposed algorithms.85

2. Literature review

Most of the clustering problems have been proven to be NP-hard [17].

Therefore, the majority of the algorithms found in the related literature are
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approximate procedures, where the main goal is to find a high quality parti-

tion in reasonable computing times. However, these algorithms are not able to90

guarantee the optimality of the provided solution. Clustering algorithms can

be classified in: partitional clustering [29], in which data must be divided into

disjoint sets and each element is assigned to one set; hierarchical clustering [5],

where clusters are created following a top-down or bottom-up approach; density-

based clustering [27], where elements are grouped following a density function;95

or grid-based clustering [19], in which data is divided into grids with different

granularity level. We refer the reader to [34] for a detailed taxonomy of basic

and advanced clustering techniques.

In this paper, we focus on partitional clustering whose objective is to gen-

erate non-overlapping subsets of elements where each element is assigned to100

exactly one cluster. The concept of similarity can be defined in a large vari-

ety of criteria, but usually they do not coincide. However, there is a common

criterion when considering the clustering of elements that can be located in an

Euclidean space. Specifically, it is widely accepted that minimizing the sum of

squares between elements in the same cluster is a good criterion for clustering105

analysis. Furthermore, it is equivalent to maximizing the sum of squares be-

tween elements in different clusters, resulting in a criterion for increasing both

similarity in the same cluster and separation among different clusters [36].

The k-means procedure has been widely used mainly due to its simplicity

and its computational efficiency [31, 37]. However, it totally relies on the initial110

random centroid selection. Therefore, if that selection results in a bad initial

set of centroids, the method will not be able to obtain a good partition. A

new method named k-means++ [3] was designed to mitigate this behavior and

perform a better initial centroid selection. Specifically, it consists in selecting

the most diverse centroid; that is, the one with the smallest similarity measure115

among them. This idea reduces the harmful effect that a random centroid

selection can produce in the performance of the traditional k-means algorithm.

Recently, there have been another approaches proposed to even reduce this

effect. In particular, the power k-means algorithm is proposed to avoid poor
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local minima by annealing through a family of smoother surfaces [38]. This120

algorithm is further improved in [6] when dealing with high dimensions. Finally,

in [8] is described a different approach, denoted as convex clustering, where a

penalty function is introduced to guarantee the convexity of the derived problem.

The classical Minimum Sum-of-Squares Clustering (MSSC) problem does

not have any constraint about the number of elements that can be assigned to125

each cluster. However, several problems require generating clusters of similar

sizes. Desrosiers et al. [11] proposed a Variable Neighborhood Search algorithm

for dividing students from school and universities in teams, considering that each

team must provide a good representation of the population. They propose two

different functions for evaluating the balance among teams and test the efficiency130

of the algorithm over actual data from an MBA program. This problem also has

applications in Very Large Scale Integration (VLSI) design. Specifically, Hagen

et al. [18] indicates that the second smallest eigenvalue of a matrix derived from

the corresponding netlist provides a good approximation to the optimal ratio

cut partition cost. As is stated in this paper, balance clustering problems are135

equivalent to the second eigenvector computation. Consequently, an effective

and efficient method for the former is useful for the later. Finally, Su et al. [33]

present an algorithm for balancing tenant placement in cloud computing, with

the aim of improving the performance and maximizing the resource utilization

of complex multi-tenant architectures.140

First attempts to solve the Balanced Minimum Sum-of-Squares Clustering

(BMSSC) problem consider the well-known k-means procedure [32]. This algo-

rithm is a classical clustering method that consists of two main steps: it firstly

selects the elements that will become the centroids of the clusters and then as-

signs each one of the remaining elements to their nearest centroid. We refer the145

reader to [22] for an efficient implementation of the method.

The best heuristic algorithm identified in the related literature is presented

in [9]. The procedure is based on the Variable Neighborhood Search methodol-

ogy, which relies on the idea of combining stochastic and deterministic changes

of neighborhood to escape from local optimality. Therefore, we include this150
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algorithm in the computational testing. In order to complement the experimen-

tation, we include k-means [3] with the Hungarian algorithm [23] to satisfy the

balance constraint among clusters. Finally, we include two of the most perform-

ing procedures for the MSSC problem. Specifically, the hierarchical Clustering

with Optimal Transport (HCOT) method [5] and the Continuous GRASP [29].155

In both methods, a post-processing method is executed to guarantee the balance

constraint (i.e., oversized clusters are repaired by reassigning their elements to

the best available cluster).

3. Greedy Randomized Adaptive Search Procedure

The term Greedy Randomized Adaptive Search Procedure (GRASP) refers160

to a metaheuristic algorithm originally introduced in the late 1980s [14] but it

was not formally defined until 1994 [15]. GRASP is an iterative algorithm where

each iteration can be divided into two stages: generating an initial solution

and then locally improving it. The first phase starts from an empty solution

building the Candidate List (CL) of elements to be added to the solution under165

construction. The first element is usually selected at random from the CL.

The remaining elements to be included in the solution are selected following a

greedy criterion. Specifically, a Restricted Candidate List (RCL) is conformed

with those elements that surpass the greedy criterion established. Then, the

next element to be added is selected at random from the RCL. This random170

selection allows GRASP methodology to explore diverse regions of the search

space, thus increasing the possibility of finding better solutions.

The random part of the initial solution construction is able to generate di-

verse solutions, but it is not designed to find a local optimum with respect to

the constructed solution. Therefore, a local improvement method is required175

in order to find a local optimum with respect to the constructed solution. The

versatility of the GRASP methodology allows us to use different algorithms in

this stage, from traditional local search methods to more complex implementa-

tions such as hybridizations with other metaheuristics that has lead to successful
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research: Tabu Search [26], Path Relinking [12], Ejection Chains [30], among180

others.

Finally, this two stages are iteratively repeated until a stopping criterion

is reached, which is usually a maximum number of generated solutions or a

maximum allowed running time. The method returns the best solution found

during the search. The remaining of this section is devoted to presenting the185

specific design of the GRASP algorithm for the BMSSC.

3.1. Initialization

Classical GRASP algorithms usually select the first element to be added to

the solution under construction at random. However, as stated in Section 1, the

random selection of the initial elements in a clustering problem can determine190

the quality of the obtained results. Therefore, we propose a new initialization

criterion which tries to guide the initial solution to promising regions of the

search space by inserting a single vertex in each cluster. The method starts

by selecting the first element at random and inserting it in the first cluster.

Then, the distance from the remaining elements to the one already selected is195

evaluated, selecting the element that presents the largest one (i.e., the one that

is furthest from the element already clustered).

Once two elements have been assigned to two different clusters, the next

element to be inserted should be far away from both elements already assigned.

For this purpose, we define the distance from an element p to a given cluster Ki200

as follows:

d(p,Ki) =
∑

pj∈Ki

||p− pj ||2

where Ki is the set of points pj ∈ P that have been assigned to cluster i.

Then, the distance from an element p to a given solution S = {K1,K2, . . . ,Kk}

can be defined as:

d(p, S) = min
Ki∈S

d(p,Ki)
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Then, the next element to be added, p?, will be the one with the largest205

distance to the already clustered elements. More formally:

p? = arg max
p∈P\S

d(p, S)

This criterion allows us to insert, in each cluster, the furthest element with

respect to the already clustered elements, thus reducing the similarity of the

elements in different clusters and, therefore, increasing the similarity between

elements in the same cluster.210

The initialization stage ends when each cluster has exactly one element in

it, using this partial solution as input for the constructive method.

3.2. Constructive method

The constructive algorithm proposed in this work, named JoinClosest, fol-

lows a traditional GRASP approach where each element is added to the cluster215

that minimizes the value of the objective function. JoinClosest, as a GRASP

constructive method, requires from a greedy function that evaluates the rele-

vance of adding an element in a given step of the construction.

The greedy function for each element is evaluated as the increase in the

objective function value if the element is inserted in the closest cluster. It220

is worth mentioning that only the clusters which are not completed yet are

considered in this step, in order to maintain the feasibility of the solution. More

formally,

g(v, S) = min
1≤i≤k

∑
p∈Ki

d(p, v)

Algorithm 1 depicts the pseudocode of the JoinClosest constructive proce-

dure. The algorithm receives three input parameters: P , the set of points that225

needs to be clustered; S, the set of clusters created in the initialization step;

and α, a parameter that controls the greediness/randomness of the method

(discussed later).
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Algorithm 1 JoinClosest(P, S = {K1,K2, . . .Kk}, α)

1: CL← P \ S

2: while CL 6= ∅ do

3: gmin ← minc∈CL g(c, S)

4: gmax ← maxc∈CL g(c, S)

5: µ← gmin + α · (gmax − gmin)

6: RCL← {c ∈ CL : g(c, S) ≤ µ}

7: c? ← Random(RCL)

8: CL← CL \ {c?}

9: K? ← arg minKi∈S d(c?,Ki)

10: K? ← K? ∪ {c?}

11: end while

12: return S

The method starts by creating the Candidate List (CL) with the set of

elements in P that has not been assigned to any cluster in the initialization230

phase (step 1). Then, it iterates until all the elements have been clustered

(steps 2-11), adding a new element to a cluster in each iteration.

Specifically, JoinClosest evaluates the minimum and maximum value for the

greedy function previously defined (steps 3-4) and then evaluates a threshold µ

(step 5) that depends on the value of the parameter α ∈ [0, 1] whose function235

is to limit the elements that are allowed to enter the Restricted Candidate List

(RCL). On the one hand, α = 0 indicates that only the elements with the best

greedy function value are selected, which results in a totally greedy algorithm.

On the other hand, α = 1 considers all the elements in the CL to be added to

the RCL, which results in a totally random algorithm. Therefore, parameter α240

is able to control the greediness/randomness of the constructive procedure.

Once the RCL is created with the elements whose objective function value

is smaller than the threshold (step 6), an element c? is selected at random from

the RCL (step 7). Then, the algorithm selects the closest cluster K? (step 9)

and inserts the element in the cluster (step 10). The method ends when all the245
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elements have been assigned to a cluster, returning the solution created.

3.3. Local optimization

The solution created in the construction phase tries to find a balance between

diversification and intensification in order to explore a wider portion of the

search space. However, this behavior complicates finding a local optimum in250

the construction stage. The second phase of a GRASP procedure consists of an

improvement strategy that is able to find a local optimum of the initial solution

with respect to a given neighborhood.

In this work, we consider a neighborhood based on interchanging two ele-

ments of different clusters. More formally, given a solution

S = {K1, . . . ,Ka, . . . ,Ki, . . . ,Kk}

the interchange of elements pj ∈ Ka and pl ∈ Ki, produces a new solution

S′ = {K1, . . . ,Ka \ {pj} ∪ {pl}, . . . ,Ki \ {pl} ∪ {pj}, . . . ,Kk}. For the sake of255

clarity, we represent this move as S′ ← move(S, pj ,Ki).

We propose a local search method for the BMSSC based on this neighbor-

hood. It evaluates the interchange of every pair of elements in the solution,

executing in each step the first interchange that results in a better solution

(first improvement, FI). We additionally propose a different approach in which260

the interchange performed is not the first element that leads to a better solution

but the one that leads to the best solution in the neighborhood (best improve-

ment, BI). The performance of both local search methods will be later discussed

in Section 5.

4. Strategic oscillation265

Reaching a better solution during the search might prove difficult in some

cases, since the constraint on the size of each cluster in the BMSSC problem

limits the number of available movements that can be performed. Specifically,

in order to maintain the same size in each cluster it is only possible to perform

symmetrical movements (mostly based on interchanges).270
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With the aim of increasing the portion of the search space explored, we

propose to consider unfeasible solutions during the search that can eventually

lead the algorithm to better feasible solutions.

Strategic oscillation (SO) is a methodology originally proposed for being used

in combination with Tabu Search [16]. It is based on allowing the algorithm to275

surpass the boundaries of its search space, usually by consider the exploration

of unfeasible solutions. When the search gets stuck in a deep basin of attrac-

tion, SO modifies the rules of the search, allowing the algorithm to continue its

exploration considering the set of unfeasible solutions. Every time a promising

unfeasible solution is reached, the algorithm must repair it in order to transform280

it into a feasible solution that would eventually be a high-quality one.

The first step in SO is the definition of the boundary to be surpassed. In the

context of BMSSC, we consider the increment of the size of each cluster. This

modification is performed by increasing each cluster size by a percentage defined

by a parameter β ∈ [0, 1] that controls how far the explored solutions are from285

being feasible. Specifically, given a cluster Ki, if the original cluster size is |Ki|,

considering the relaxation of the feasibility, the new cluster size is now limited

by |Ki| · (1 + β). This relaxation allows the algorithm to include more points in

each cluster, which may lead the procedure to find better solutions that can be

later repaired. A search algorithm that considers small values of β will explore290

solutions that are almost feasible, while considering larger values will explore

rather unfeasible solutions.

SO allows us to define a new neighborhood to be explored, which consists in

moving a given element from one cluster to another. Notice that this movement

cannot be considered in the feasible solution space since any move violates the295

size constraint. Given a point pj that belongs to cluster Ka which is moved to

cluster Ki in a certain solution S = {K1, . . . ,Ka, . . . ,Ki, . . . ,Kk}, the move-

ment generates a new solution S′ = {K1, . . . ,Ka \ {pj}, . . . ,Ki ∪ {pj}, . . . ,Kk}.

The SO methodology can be divided into two phases: the first one is a local

search devoted to exploring the unfeasible region while the second one tries to300

repair every promising solution.
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The local search phase considers the move neighborhood previously defined

as follows. The method evaluates the move of each element pj (with 1 ≤ j ≤ n)

of the solution S = {K1,K2, . . . ,Kk} to every cluster Ki (with 1 ≤ i ≤ k).

Notice that, in the context of SO, the size of each cluster Ki is now limited305

by |Ki| · (1 + β). The method then selects the cluster K? that minimizes the

objective function value f . More formally,

K? = arg min
1≤i≤k;1≤j≤n

f (move(S, pj ,Ki))

It is worth mentioning that the local search moves each element to the cluster

that minimizes the value of the objective function, resulting in a best improve-

ment method.310

The repair phase is applied to every unfeasible solution whose objective

function value outperforms the best solution found so far. This phase is intended

to reduce the number of elements of each oversized cluster as follows. For each

element pj belonging to an oversized cluster, the method finds the cluster Ki

that minimizes the value of the objective function of those whose size satisfies315

the original size constraint. Then, it applies the operation move(S, pj ,Ki) in

order to insert pj in cluster Ki. The method ends when every cluster satisfies

the original size constraint, returning the best solution found during the search.

5. Computational experiments

This section is intended to evaluate the quality of the proposed algorithms320

and compare it with the best previous approach. All algorithms have been

implemented using Java 8 and the experiments were conducted in an Intel Core

i5-4210U 1.7GHz and 8GB RAM. The source code and the full experimental

results are available at the following URL: https://grafo.etsii.urjc.es/

BMSSC.325

In order to have a fair comparison, we have considered the set of 16 instances

used in the best previous work found in the literature. We have additionally

incorporated 9 instances to have a larger benchmark. All these instances have
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been taken from the machine learning repository of the University of California1.

Table 1 shows, for each single instance, the number of points (n), dimensions (s),330

and clusters (k). Notice that we first show the original instances and then the

new instances, separated by an horizontal line. It is worth mentioning that all

instances come from real data. In particular, benchmarks consider information

derived from different real world scenarios: breast cancer, phone sensors, water

treatment, among others. We refer the reader to [9] to find a deep analysis and335

description of these instances.

We divide the experiments performed into two different subsets: preliminary

experimentation and final experimentation. The former refers to those exper-

iments designed to find the best parameters for the proposed algorithms and

to evaluate the relevance of the proposed strategies (constructive method, lo-340

cal search procedure, and Strategic Oscillation algorithm), while the aim of the

latter is to perform a comparison between the best algorithm designed and the

best previous method found in the state of the art. Notice that the proposed

algorithm requires just one run to obtain the presented results.

All the experiments report the following metrics: Dev. (%), the average345

deviation with respect to the best solution found in the experiment; #Best, the

number of times that an algorithm reaches the best solution; and Time (s), the

average computing time in seconds.

5.1. Preliminary experimentation

This section is intended to find the best values for the input parameters of350

the proposed algorithms. Specifically, the algorithms proposed require to find

the best value for α and β parameters (constructive procedure and Strategic

Oscillation, respectively), as well as selecting the best local search method. We

have selected a subset of 4 representative instances (Vehicle, Yeast, Multiple

Features, and Image Segmentation) for tuning the parameters of the algorithm355

in order to avoid overfitting.

1http://www.ics.uci.edu/~mlearn/MLRepository.html
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Instance Name n s k

Body 507 5 2

Breast Cancer 569 30 2

Glass 214 9 7

Image Segmentation 2310 19 7

Ionosphere 351 34 2

Iris 150 4 3

Libra 360 90 15

Multiple Features Reduced 2000 240 7

Synthetic Control 600 60 6

Thyroid 215 5 3

User Knowledge 403 5 4

Vehicle 846 18 6

Vowel 871 3 3

Water 527 38 13

Wine 178 13 3

Yeast 1484 8 10

Cardiotopography 2126 24 10

MobileKSD 2855 71 56

Ozone 2536 73 21

Seismic Bumps 2584 15 19

Internet Ads 3279 1555 2

PhonesAcc 2000 3 4

PhonesGyro 2000 3 4

WatchAcc 2000 3 4

WatchGyro 2000 3 4

Table 1: Individual description of each instance considered in this work. For each instance,

the following parameters are provided: n, total number of points; s, number of dimensions;

k, number of clusters to create.
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The first experiment is devoted to evaluating the performance of constructive

method JoinClosest when varying the α parameter value. In particular, we have

considered α = {0.25, 0.50, 0.75,RND}, where RND indicates that the value is

selected at random in the range 0–1 in each construction.360

Algorithm Dev.(%) #Best Time (s)

JoinClosest(0.25) 1.10 1 8.99

JoinClosest(0.50) 20.51 2 9.89

JoinClosest(0.75) 22.77 0 9.85

JoinClosest(RND) 13.94 1 9.26

Table 2: Performance of the constructive method JoinClosest when varying the α parameter

value.

Table 2 shows the effect of the α parameter in the performance of JoinClosest

when constructing 100 solutions. In particular, the best results are achieved with

JoinClosest(0.25), which is the closest variant to a totally greedy algorithm.

It is worth mentioning that a pure greedy configuration of this constructive

method produces worse results than the constructive procedure configured with365

α = 0.25. We can then conclude from this experiment that the larger the

randomness, the lower the quality of the constructive procedure. Notice that

these results are in line with those presented in [3], which indicates that a

random initialization in the well-known k-means algorithm usually produces

worse quality solutions than those obtained with the greedy initialization of the370

k-means++ version.

The main aim of the second experiment is to analyze the ability of each

proposed improvement method for finding a local optimum starting the search

from each constructed solution. Specifically, we combine the best constructive

method (i.e., α = 0.25) with the two local search methods proposed in Section375

3.3: First Improvement (FI) and Best Improvement (BI).

Table 3 compares the results obtained when combining the best variant of

the constructive procedure coupled with both local search algorithms, resulting
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Algorithm Dev.(%) #Best Time (s)

JoinClosest(0.25) 31.41 0 8.99

JoinClosest(0.25) + BI 0.24 2 15.24

JoinClosest(0.25) + FI 0.07 2 10.57

Table 3: Comparison of the two local search procedures, Best Improvement (BI) and First

Improvement (FI),

and the best constructive method.

into two GRASP variants: JoinClosest(0.25) + FI and JoinClosest(0.25) + BI.

We also include the results obtained with JoinClosest isolated, in order to an-380

alyze the contribution of the improvement strategies. Notice that the results

reported in Table 3 are averaged over the 4 instances used in the preliminary

experiments. As can be seen in this table, both local search approaches obtain

similar results in terms of quality, which can be seen in the average deviation

with respect to best found value (0.24% and 0.07%, respectively) and number of385

best solutions found (both methods matches 2 best solutions). It is also impor-

tant to remark that avoiding exploring the neighborhood exhaustively with the

First Improvement approach lead us to marginally increase the computing time

with respect to the constructive method (10.57 versus 8.99 seconds on average).

However, the Best Improvement approach requires almost twice the computing390

time (15.24 versus 8.99), without significantly improving the obtained results.

Therefore, we select the First Improvement approach as the local search proce-

dure for the final algorithm.

The next preliminary experiment is intended to evaluate the contribution of

using Strategic Oscillation to further improve the best solution obtained with395

the GRASP procedure. As stated in Section 4, SO method requires only one

parameter that controls how far from feasibility are the solutions explored during

the search. In this experiment we consider the values β = {0.1, 0.25, 0.50, 0.75}.

These values indicates the increase of each cluster size in a 10%, 25%, 50%, and

75% of the original cluster size. We do not consider larger values of β since400
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values that exceed 100% will evaluate clusters with more than twice the original

size, which is rather distant from feasibility. If so, it would be equivalent to

start the search from a totally new solution.

Algorithm Dev.(%) #Best Time (s)

JoinClosest(0.25) + FI 0.81 0 10.57

SO(0.10) 0.24 3 10.94

SO(0.25) 0.66 1 10.69

SO(0.50) 0.22 2 10.82

SO(0.75) 0.09 3 11.21

Table 4: Results obtained by Strategic Oscillation (SO) with different increments in the cluster

size.

Table 4 presents the results obtained with the aforementioned different values

of β. Additionally, we have included the best GRASP variant for measuring the405

contribution of the Strategic Oscillation to the quality of the algorithm. As can

be easily seen, every variant of the Strategic Oscillation algorithm outperforms

the GRASP procedure in all metrics, barely increasing the computing time.

Among SO variants, the one that increases the size of the cluster in a 75%

obtains the best results. This can be mainly due to its ability to explore further410

regions of the search space, most of them intractable for the remaining variants.

Therefore, we select β = 0.75 as the best variant of the SO algorithm.

5.2. Comparison with the state-of-the-art procedures

The next experiment is devoted to evaluating the contribution of our best

proposal by comparing it with the best previous method identified in the state of415

the art, which is VNS-LIMA [9]. This method is a Variable Neighborhood Search

algorithm that follows the “Less Is More Approach”. We additionally include

a third algorithm in the comparison to verify the superiority of the proposal.

In particular, we have considered an adaptation of the traditional k-means for

balanced clustering [25]. This work follows the well-known k-means clustering420
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algorithm, which is one of the most successful algorithms for clustering. Instead

of selecting the closest centroid, it considers a set of clusters in which a point can

be assigned, in order to satisfy the size constraint. This assignment is performed

by following the Hungarian algorithm [23].

Additionally, we have executed two state-of-the-art algorithms for the clas-425

sic clustering problem. Specifically, the Hierarchical Clustering with Optimal

Transport (HCOT) [5] and the Continuous Greedy Randomized Adaptive Search

Procedure (CGRASP) [29]. Notice that these methods do not consider the bal-

ance constraint. Therefore, once an algorithm obtains a solution, a post pro-

cessing method is applied in order to make it feasible. In order to do so, each430

point belonging to an overloaded cluster is moved to the best cluster not yet

completed.

With the aim of facilitating the comparison among algorithms, we report in

Table 5 the same information than the one reported in [9]. Specifically, we show

the Mean Squared Error of (MSE) of every single instance achieved with the435

proposed Strategic Oscillation algorithm (SO), when comparing with those ob-

tained with HCOT, CGRASP, k-means with Hungarian algorithm (KMH), and

VNS-LIMA. All the algorithms have been executed in the same computer and

the same time per instance to have a fair comparison (last column of Table 5).

We additionally consider in these experiments the whole set of 25 instances. In-440

stances where a procedure is not able to produce a feasible solution are marked

with an asterisk symbol ′∗′.

As we can observe, instance dimensions are rather different so it is hard to

compare directly the MSE value. Therefore, we consider the average deviation

with respect to the best known value since this metric is dimensionless. In445

particular, SO presents an average deviation of 0.38% with respect to the best

known value, while the deviation of VNS-LIMA rises up to 4.84%. Finally, the

HCOT, CGRASP, and KMH algorithms have a deviation of 23.70%, 54.35%,

and 23.20%, respectively. Summarizing, SO is able to reach the best known

solution in most of the instances (19 out of 25). Symmetrically, in the 6 instances450

in which SO does not obtain the best value, the corresponding result remains
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Instance Name HCOT CGRASP KMH VNS OS Time (s)

Body 1.14E+05 1.14E+05 2.34E+05 1.14E+05 1.14E+05 1.08

Breast cancer * 1.38E+08 1.38E+08 1.38E+08 1.38E+08 0.90

Glass 9.70E+02 9.36E+02 7.29E+02 5.08E+02 5.25E+02 0.27

Image Segmentation * 2.24E+07 2.75E+07 2.14E+07 2.14E+07 19.24

Ionosphere 2.52E+03 2.44E+03 2.52E+03 2.43E+03 2.43E+03 0.32

Iris 8.14E+01 8.14E+01 8.90E+01 8.14E+01 8.14E+01 0.06

Libra * 6.66E+07 6.70E+07 6.42E+07 6.41E+07 0.57

Multiple Features 2.04E+06 2.00E+06 2.10E+06 1.99E+06 1.96E+06 16.29

Synthetic Control 1.64E+06 1.09E+06 1.28E+06 1.14E+06 1.01E+06 0.97

Thyroid 3.82E+04 3.70E+04 3.87E+04 3.44E+04 3.44E+04 0.12

User Knowledge 8.31E+01 7.17E+01 8.06E+01 7.09E+01 7.03E+01 0.49

Vehicle * 6.32E+06 4.76E+06 2.93E+06 2.90E+06 2.13

Vowel * 6.47E+07 1.58E+08 7.53E+07 6.45E+07 2.18

Water * 2.73E+10 7.88E+09 7.94E+09 7.93E+09 0.96

Wine * 5.55E+06 3.77E+06 3.83E+06 3.77E+06 0.08

Yeast 6.74E+01 5.82E+01 6.01E+01 5.41E+01 5.35E+01 8.84

Cardiotopography 1.19E+07 2.72E+07 1.10E+07 8.50E+06 8.60E+06 23.24

MobileKSD * 3.85E+10 3.28E+10 3.12E+10 3.11E+10 141.65

Ozone * 3.61E+09 2.56E+09 2.46E+09 2.56E+09 61.93

Seismic Bumps * 1.07E+14 2.96E+13 3.05E+13 2.94E+13 56.93

Internet Ads 3.76E+04 * * 3.74E+04 3.75E+04 24.41

Phones Acc 4.16E+02 * 3.35E+02 3.11E+02 2.63E+02 20.14

Phones Gyro 3.65E+01 * 3.42E+01 3.47E+01 3.37E+01 13.72

Watch Acc 2.08E+03 * 1.80E+03 2.65E+03 1.68E+03 30.86

Watch Gyro 1.64E+01 * 1.58E+01 1.54E+01 1.54E+01 22.86

Table 5: Final comparison among SO, VNS-LIMA, KMH, CGRASP and HCOT considering

the MSE metric. Best values found with each method are highlighted with bold font.
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very close to the best known.

With the aim of studying the adaptability of the algorithms to different

metrics, we evaluate the five procedures when considering an alternative metric

not used during the optimization phase. In particular, the well-known Davies-455

Bouldin [10] index (DB) is analyzed. This index was proposed for evaluating

the quality of clustering algorithms by reducing the inter-cluster similarity while

increasing the intra-cluster similarity. The smaller the index value, the better

the clustering. Table 6 shows the individual results of each algorithm over each

instance evaluated with the Davies-Bouldin index.460

These results are in line with those reported in Table 5, obtaining our method

the best DB index in 16 out of 25 instances, followed by VNS-LIMA (11 out of

25). As expected, algorithms not explicitly designed for the BMSSC problem

present a moderate performance. We can then conclude that the proposed

Strategic Oscillation algorithm emerges as the best variant even considering465

this new metric.

We complement these experiments by conducting a Friedman test to deter-

mine whether there exists statistically significant differences among the com-

pared methods or not. The resulting p-value smaller than 0.0001, in both MSE

and DB metrics, indicates that the proposed algorithm is statistically better470

than the competitors. Table 7 reports the associated rank values for both MSE

and DB for the five compared algorithms. These results confirm the superior-

ity of the proposal when considering short computing times, which is specially

relevant when considering applications where clustering is just a small part of

the whole process that must be performed several times.475

6. Experimental Analysis

This section is devoted to deeply analyzing the parameters selected for the

proposed algorithm. Specifically, we first test the robustness and reliability

of the proposed algorithm by executing 30 times the SO algorithm over the

4 instances of the preliminary experimentation (Multiple Features, Vehicles,480
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Instance Name HCOT CGRASP KMH VNS OS Time (s)

Body 9.25E+01 9.24E+01 8.35E+02 9.23E+01 9.24E+01 1.08

Breast cancer * 1.64E+02 1.65E+02 1.64E+02 1.64E+02 0.90

Glass 3.02E+02 5.80E+02 9.12E+01 3.67E+01 6.14E+01 0.27

Image Segmentation * 1.11E+03 9.43E+02 8.33E+02 1.15E+03 19.24

Ionosphere 3.07E+02 2.65E+02 3.08E+02 2.64E+02 2.64E+02 0.32

Iris 1.64E+01 1.64E+01 2.02E+01 1.64E+01 1.64E+01 0.06

Libra * 3.24E+02 4.38E+02 2.88E+02 3.16E+02 0.57

Multiple Features 1.18E+03 9.83E+02 1.25E+03 9.50E+02 8.40E+02 16.29

Synthetic Control 1.53E+03 2.90E+02 3.67E+02 4.19E+02 2.36E+02 0.97

Thyroid 1.16E+02 9.86E+01 1.75E+02 9.00E+01 9.00E+01 0.12

User Knowledge 2.55E+02 1.68E+02 2.02E+02 1.56E+02 1.42E+02 0.49

Vehicle * 2.64E+02 9.01E+02 1.40E+02 1.05E+02 2.13

Vowel * 1.47E+02 1.08E+03 1.71E+02 1.47E+02 2.18

Water * 1.58E+03 4.72E+01 2.71E+01 2.53E+01 0.96

Wine * 2.72E+01 1.49E+01 1.51E+01 1.49E+01 0.08

Yeast 7.00E+02 5.89E+02 3.65E+02 3.65E+02 3.63E+02 8.84

Cardiotopography 1.41E+03 3.61E+03 7.75E+02 5.02E+02 4.85E+02 23.24

MobileKSD * 1.95E+03 3.92E+02 3.89E+02 3.94E+02 141.65

Ozone * 5.16E+03 2.91E+02 1.50E+02 1.46E+02 61.93

Seismic Bumps * 3.58E+04 2.11E+02 4.23E+03 2.14E+02 56.93

Internet Ads 3.12E+04 * * 2.57E+04 3.01E+04 24.41

Phones Acc 2.10E+03 * 6.98E+02 3.84E+03 5.22E+02 20.14

Phones Gyro 1.23E+04 * 1.81E+03 1.87E+03 1.66E+03 13.72

Watch Acc 1.46E+03 * 1.19E+03 2.30E+05 1.36E+03 30.86

Watch Gyro 1.54E+04 * 6.60E+03 6.09E+03 6.14E+03 22.86

Table 6: Final comparison among SO, VNS-LIMA, KMH, CGRASP and HCOT

considering the Davies-Bouldin metric. Best values found with each method

are highlighted with bold font.

Metric HCOT CGRASP KMH VNS OS p < 0.01

MSE 4.38 3.62 3.50 2.10 1.40 YES

DB 4.34 3.62 3.30 2.10 1.64 YES

Table 7: Friedman test for both MSE (Mean Squared Error) and DB (Davies–Bouldin) metrics.
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Yeast, and Image Segmentation). Considering that differences in the objective

function are rather large, we use the average deviation with respect to the best

value found in the 30 independent executions, since it is a dimensionless metric.

We depict in Figure 3 the associated box and whisker plot, reporting for each

instance quartiles, median, minimum, and maximum values (excluding outliers).485

Figure 3: Box and whisker plot for 30 independent executions.

As it can be derived from the results, the proposed algorithm presents a

robust behavior when considering 30 independent executions in the instances

considered for the preliminary experiments. As expected, the combination of

GRASP with SO tries to find a balance between diversification and intensifi-

cation. Specifically, in all the instances the mean (represented with an x) and490

median (represented with an horizontal value) values are very close, with the

median under the mean in most of the cases. This result indicates that the

algorithm is able to diversify the search to explore a larger portion of the search

space but the intensification phase is able to lead the algorithm to high-quality
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solutions.495

We additionally conduct a sensitivity analysis. In particular, for each param-

eter of the SO algorithm, namely α (the balance between greediness/randomness

of the constructive method) and β (the percentage of cluster size increment in-

side Strategic Oscillation), we evaluate different possibilities while fixing the

remaining parameters to the best values found in the preliminary experimen-500

tation. In particular, we test values α = {RND , 0.25, 0.50, 0.75} and β =

{0.1, 0.25, 0.5, 0.75}. For each instance and each parameter setting, we execute

30 independent iterations of each algorithm.

α 0.25 0.50 0.75

0.50 0.686

0.75 0.181 0.581

RND 0.196 0.123 0.742

β 0.10 0.25 0.50

0.25 0.012

0.50 0.002 0.000

0.75 0.133 0.019 0.002

Table 8: Sensitivity analysis for α and β parameters.

We consider the Wilcoxon signed rank test to determine if there exists sig-

nificant statistical differences among variants (in terms of the average objective505

function value) when we only vary a single parameter as mentioned above. The

corresponding Wilcoxon test shows that the different α configurations do not

significantly affect the performance of the proposal. Specifically, the associated

p-values range from 0.181 to 0.742 which are considerably larger than the cus-

tomary 0.05 threshold. This experiment shows that the proposed algorithm510

does not present a particular sensitivity with respect to this parameter.

On the other hand, observing the β parameter, there are statistical differ-

ences in performance. Therefore, this experiment justifies the election of the

β = 0.75, as shown in Table 4.

To further investigate the performance of the proposed SO procedure, we515

conduct a convergence analysis by considering time-to-target plots (TTTPlot),

which is essentially a run-time distribution [1]. The experimental hypothesis

in TTTPlots is that running times fit a two parameter, or shifted, exponential
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distribution. Then, for a particular instance, the execution time needed to find

an objective function value at least as good as a given target value is recorded.520

In the context of the heuristic optimization, the algorithm is determined a pre-

established number of times on the selected instance and using the given target

solution. For each of run, the random number generator is initialized with a

different seed and therefore the executions are assumed to be independent. To

compare the empirical and the theoretical distributions, we follow a standard525

graphical methodology for data analysis [7], execute our algorithm 30 times,

and recording for each instance/target pair the corresponding running time.

Figure 4 shows the TTTPlot for those instances in the set of preliminary ex-

periments. In these figures, each value in the abscissa axis represents a running

time, while each value in the ordinate axis, reports the probability of obtain-530

ing the best-known value. This experiment confirms the expected exponential

run-time distribution of our SO algorithm. If we analyze the instances Multiple

Features, Vehicles, and Yeast, we can observe that the probability of SO to find

a solution at least at good as the target value in less than a second is close

to 100%. However, regarding Image Segmentation, which is a more complex535

instance, this probability is near 50% when considering 10 seconds, requiring

about 15 seconds to rise the probability to 100%.

7. Conclusions

We proposed a Greedy Randomized Adaptive Search Procedure (GRASP)

coupled with Strategic Oscillation (SO) algorithm for the Balanced Minimum540

Sum-of-Squares Clustering Problem (BMSSC), which consists in grouping a

set of s-dimensional points into k clusters maximizing the similarity among

them. The experiments performed showed that SO is able to modify the search

space, allowing us to explore solutions that are unattainable by using traditional

heuristic procedures. This behavior leads our proposal to obtain better results545

than the best previous method found in the state of the art. The simplicity of

the method and its speed is essential when considering large amounts of data
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Image Segmentation

Vehicles Yeast

Multiple Features

Figure 4: Time to target plots for the preliminary instances.
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that are continuously generated (i.e., data derived from the stock exchange,

social networks, etc.) and must be quickly analyzed.

The proposed algorithm presents the best results in the literature for the550

BMSSC problem, requiring small computing times. As we follow the GRASP

methodology, the algorithm is easily scalable to a distributed system, in order

to further reduce the computing times. The main limitation of our algorithm

emerges when dealing with a variant in which the size of the clusters is not fixed

and can vary during the execution. In that case, a deep redesign of the algorithm555

should be performed to adapt the method to this new problem. Furthermore,

the algorithm is designed to work with a single neighborhood structure. In

order to include more neighborhoods, one shall consider a more complex local

search method, such as Variable Neighborhood Descent, which embeds several

neighborhood structures in the same algorithm.560

In order to summarize the main features of our procedure, we report in

Table 9 its main advantages and disadvantages.

Advantages Disadvantages

Best results in the literature Not suitable if the size of the clus-

ters is not fixed

Fast method Does not guarantee optimality

Easily adaptable to new objective

functions

Works with just one neighborhood

structure

Scalable to a distributed architec-

ture

Independent of the dataset

Table 9: Advantages and disadvantages of the proposed algorithm

Focusing on the first disadvantage mentioned, this paper deals with the

BMSSC, in which all the clusters share the same size. The proposed algorithm

is designed to obtain high quality solutions when the cluster size is constrained.565

This proposal can be easily adapted to an unconstrained problem by modifying
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the feasibility constraint and the greedy criterion of the algorithm, in order to

consider alternative moves inside the local search and constructive procedure.

As a metaheuristic algorithm, GRASP does not guarantee optimality. How-

ever, it must be born in mind that, in most real world applications, finding570

the optimum value is not feasible, mainly due to the complexity of the problem

under consideration. Nonetheless, the proposed GRASP algorithm tries to bal-

ance solution quality and computational cost, being able to reach high quality

solutions in reasonable computing time. Due to the size of the instances under

consideration, using an exact solver cannot be considered.575

This algorithm considers a single neighborhood structure since the results

obtained are excellent, and it is not necessary to increase the computational time

by including additional neighborhoods. However, the algorithm can be easily

modified to consider new neighborhood structures, by extending the proposed

local search procedure.580
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[17] González, T. F. (1982). On the computational complexity of clustering630

and related problems. In Drenick, R. F. and Kozin, F., editors, System Mod-

eling and Optimization, pages 174–182, Berlin, Heidelberg. Springer Berlin

Heidelberg.

[18] Hagen, L. W. and Kahng, A. B. (1992). New spectral methods for ratio

cut partitioning and clustering. IEEE Trans. on CAD of Integrated Circuits635

and Systems, 11(9):1074–1085.

[19] Hinneburg, A. and Keim, D. A. (1999). Optimal grid-clustering : Towards

breaking the curse of dimensionality in high-dimensional clustering. In Pro-

ceedings of the 25 th International Conference on Very Large Databases, 1999,

pages 506–517.640

[20] Jajuga, K., Sokolowski, A., and Bock, H.-H. (2012). Classification, clus-

tering, and data analysis: recent advances and applications. Springer Science

& Business Media.

[21] Jin, J., Wang, W., et al. (2016). Influential features pca for high dimen-

sional clustering. Annals of Statistics, 44(6):2323–2359.645

31



[22] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D., Silverman,

R., and Wu, A. Y. (2002). An efficient k-means clustering algorithm: analysis

and implementation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(7):881–892.

[23] Kuhn, H. W. (1955). The hungarian method for the assignment problem.650

Naval research logistics quarterly, 2(1-2):83–97.

[24] Mahajan, M., Nimbhorkar, P., and Varadarajan, K. (2009). The Planar k-

Means Problem is NP-Hard. In Das, S. and Uehara, R., editors, WALCOM:

Algorithms and Computation, pages 274–285, Berlin, Heidelberg. Springer

Berlin Heidelberg.655

[25] Malinen, M. I. and Fränti, P. (2014). Balanced k-means for clustering. In
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